Bayesian Networks

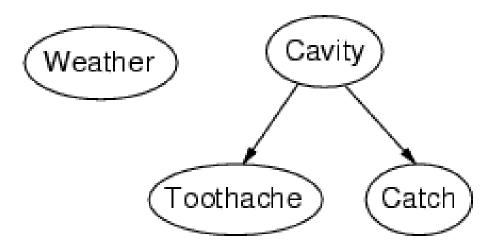
Mausam (Slides by UW-AI faculty)

Bayes Nets

- In general, joint distribution *P* over set of variables $(X_1 \times ... \times X_n)$ requires exponential space for representation & inference
- •BNs provide a graphical representation of conditional independence relations in P
 - -usually quite compact
 - requires assessment of fewer parameters, those being quite natural (e.g., causal)
 - efficient (usually) inference: query answering and belief update

Back at the dentist's

Topology of network encodes conditional independence assertions:



Weather is independent of the other variables

Toothache and Catch are <u>conditionally independent</u> of each other given Cavity

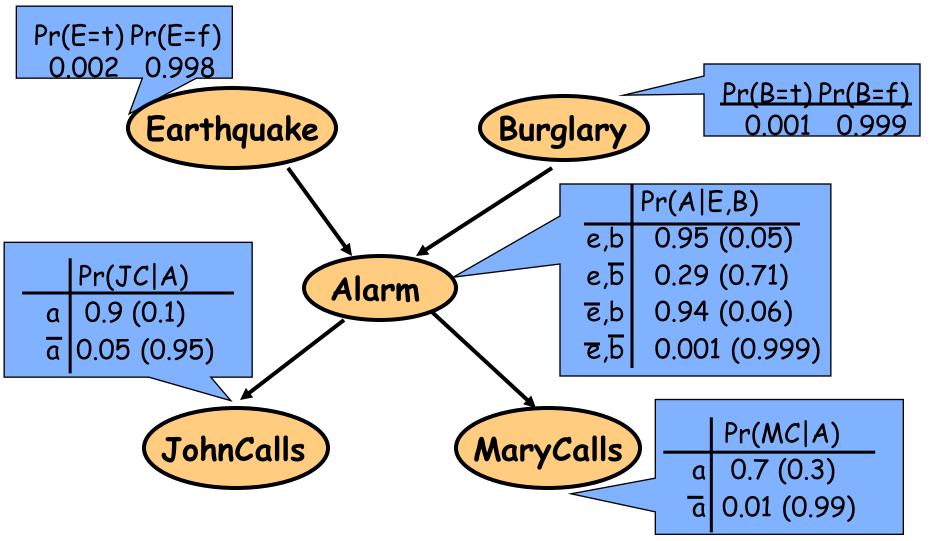
Syntax

- a set of nodes, one per random variable
- a directed, acyclic graph (link ≈"directly influences")
- a conditional distribution for each node given its parents: P (X_i | Parents (X_i))
 - For discrete variables, conditional probability table (CPT)= distribution over X_i for each combination of parent values

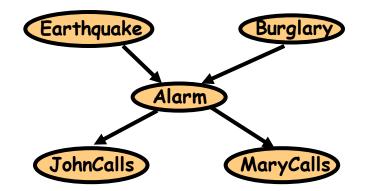
Burglars and Earthquakes

- You are at a "Done with the AI class" party.
- Neighbor John calls to say your home alarm has gone off (but neighbor Mary doesn't).
- Sometimes your alarm is set off by minor earthquakes.
- Question: Is your home being burglarized?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Burglars and Earthquakes



Earthquake Example (cont'd)



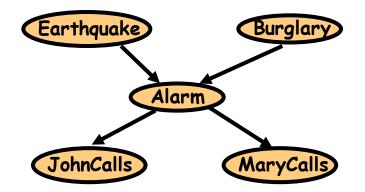
- If we know *Alarm*, no other evidence influences our degree of belief in *JohnCalls*
 - -P(JC|MC,A,E,B) = P(JC|A)
 - also: P(MC|JC,A,E,B) = P(MC|A) and P(E|B) = P(E)
- By the chain rule we have

 $P(JC,MC,A,E,B) = P(JC|MC,A,E,B) \cdot P(MC|A,E,B) \cdot P(A|E,B) \cdot P(E|B) \cdot P(B)$

 $= P(JC|A) \cdot P(MC|A) \cdot P(A|B,E) \cdot P(E) \cdot P(B)$

• Full joint requires only 10 parameters (cf. 32)

Earthquake Example (Global Semantics)



We just proved

 $P(JC,MC,A,E,B) = P(JC|A) \cdot P(MC|A) \cdot P(A|B,E) \cdot P(E) \cdot P(B)$

In general full joint distribution of a Bayes net is defined as

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | Par(X_i))$$

BNs: Qualitative Structure

- Graphical structure of BN reflects conditional independence among variables
- Each variable X is a node in the DAG
- Edges denote direct probabilistic influence

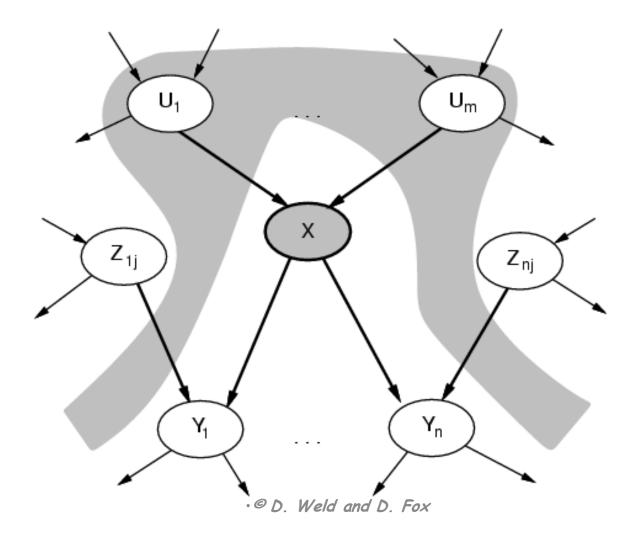
- usually interpreted *causally*

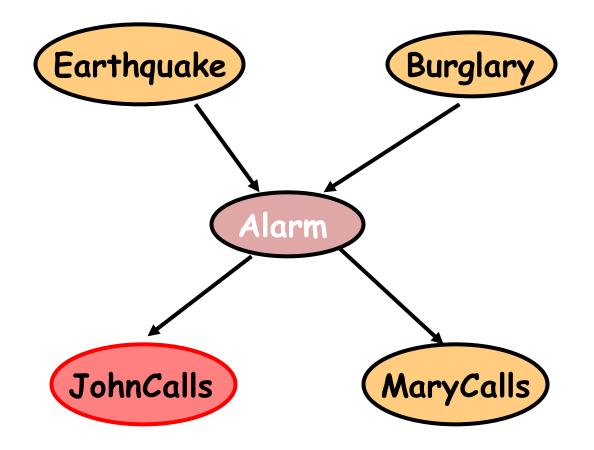
– parents of X are denoted Par(X)

Local semantics: X is conditionally independent of all nondescendents given its parents

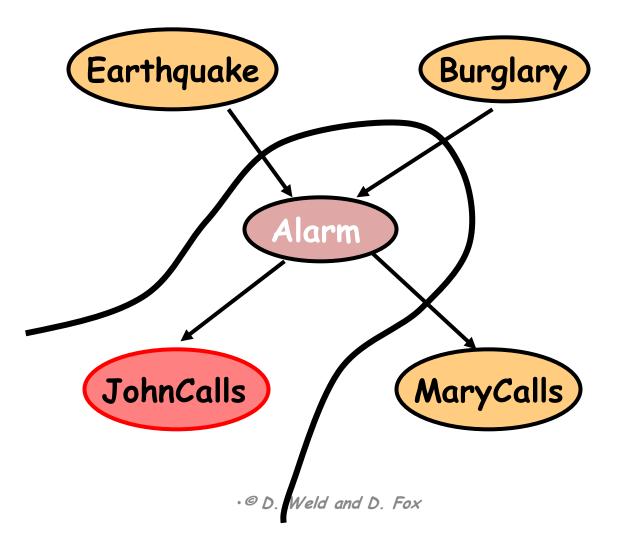
- Graphical test exists for more general independence
- "Markov Blanket"

Given Parents, X is Independent of Non-Descendants

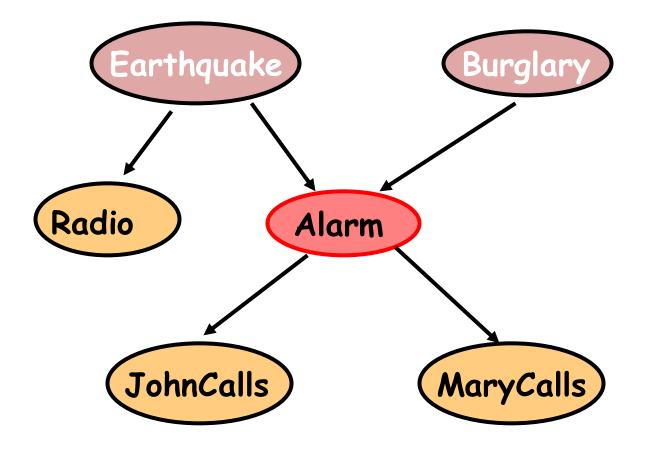


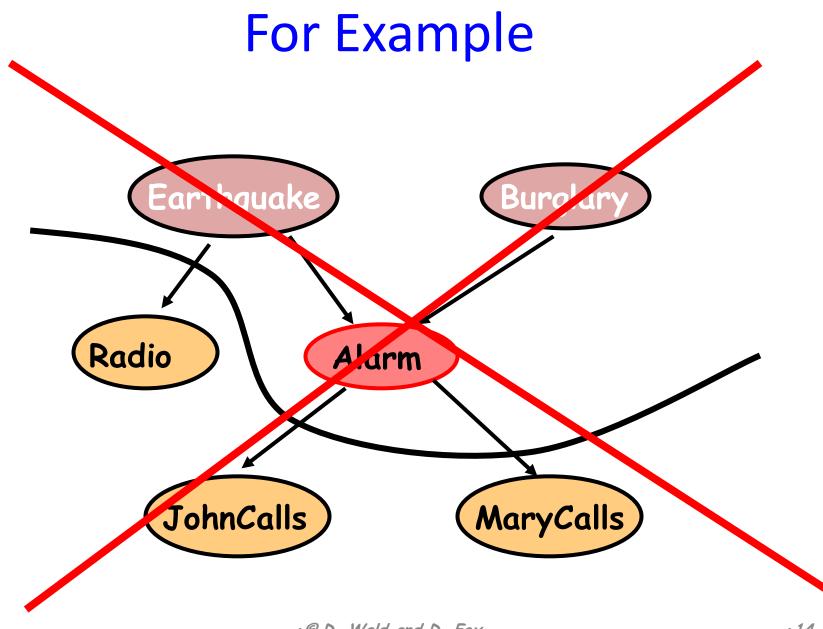


For Example



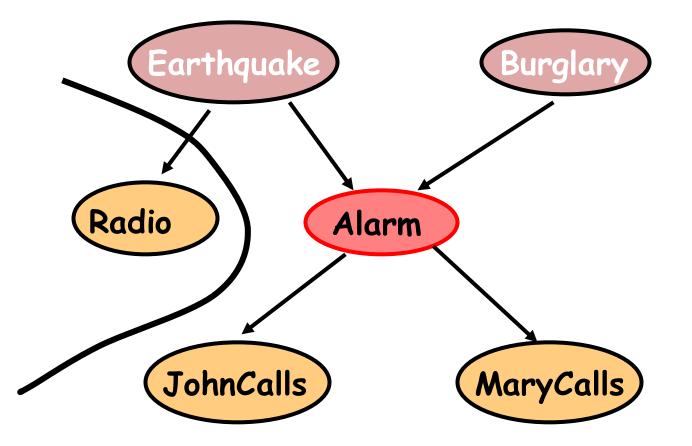
For Example



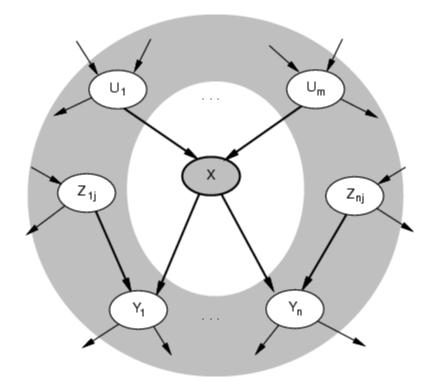


• © D. Weld and D. Fox

For Example

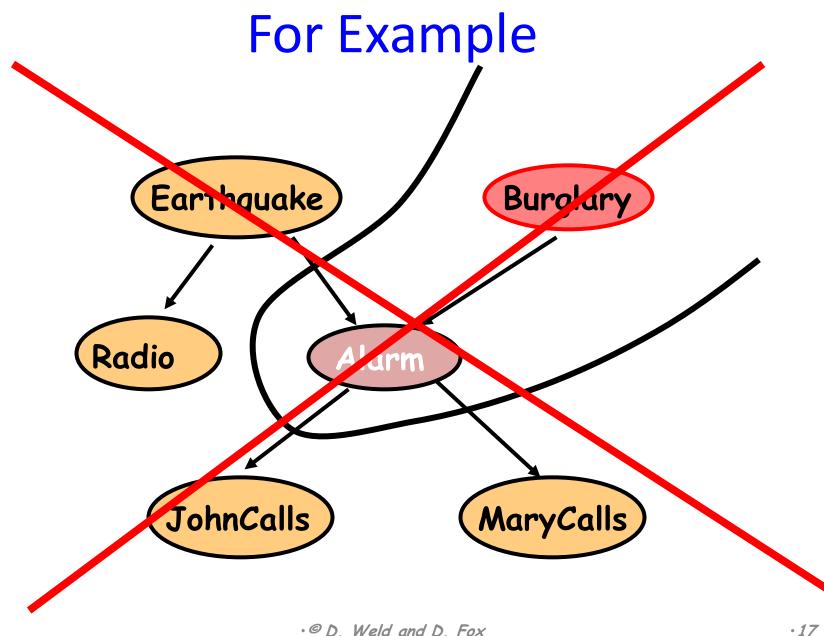


Given Markov Blanket, X is Independent of All Other Nodes

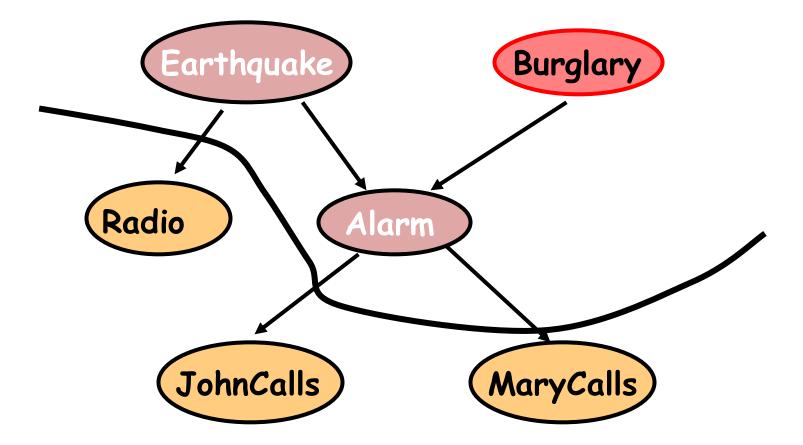


$MB(X) = Par(X) \cup Childs(X) \cup Par(Childs(X))$

• © D. Weld and D. Fox



For Example



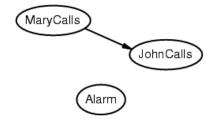
Bayes Net Construction Example

Suppose we choose the ordering M, J, A, B, E

 $\boldsymbol{P}(J \mid M) = \boldsymbol{P}(J)?$

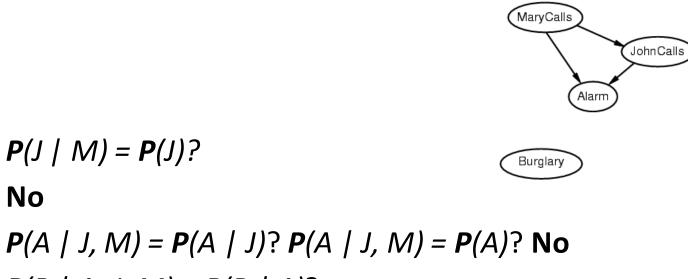
• ^CD. Weld and D. Fox

Suppose we choose the ordering M, J, A, B, E



P(J | M) = P(J)?No P(A | J, M) = P(A | J)? P(A | M)? P(A)?

Suppose we choose the ordering M, J, A, B, E



P(B | A, J, M) = P(B | A)?P(B | A, J, M) = P(B)?

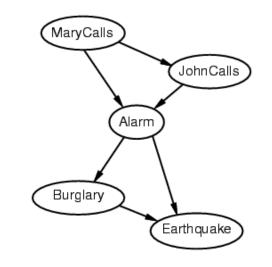
Suppose we choose the ordering M, J, A, B, E

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No P(B | A, J, M) = P(B | A)? Yes P(B | A, J, M) = P(B)? No P(E | B, A, J, M) = P(E | A)?P(E | B, A, J, M) = P(E | A, B)?

Suppose we choose the ordering M, J, A, B, E

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No P(B | A, J, M) = P(B | A)? Yes P(B | A, J, M) = P(B)? No P(E | B, A, J, M) = P(E | A)? No P(E | B, A, J, M) = P(E | A, B)? Yes .@D Weld and D. Fox

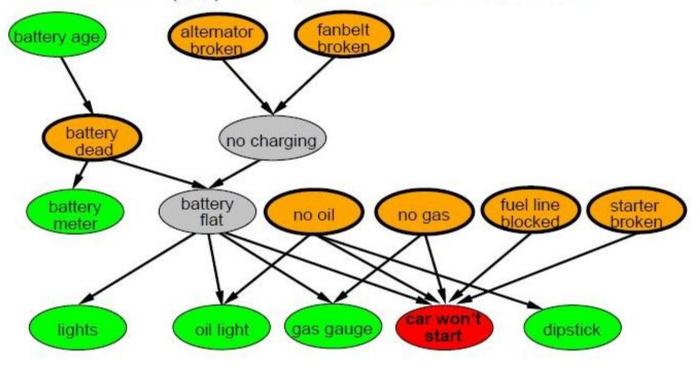
Example contd.



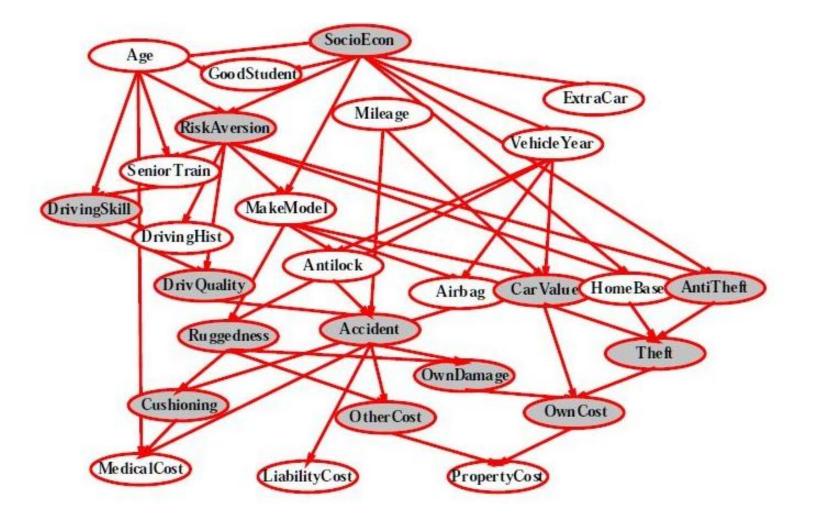
- Deciding conditional independence is hard in noncausal directions
- (Causal models and conditional independence seem hardwired for humans!)
- Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

Example: Car Diagnosis

Initial evidence: car won't start Testable variables (green), "broken, so fix it" variables (orange) Hidden variables (gray) ensure sparse structure, reduce parameters



Example: Car Insurance



Compact Conditionals

CPT grows exponentially with number of parents CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case: X = f(Parents(X)) for some function f

E.g., numerical relationships among continuous variables $\frac{\partial Level}{\partial t} = \text{ inflow} + \text{ precipitation - outflow - evaporation}$

Compact Conditionals

Noisy-OR distributions model multiple noninteracting causes

1) Parents $U_1 \dots U_k$ include all causes (can add leak node)

2) Independent failure probability q_i for each cause alone

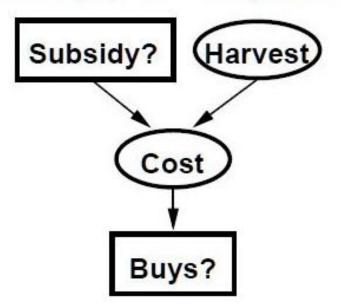
 $\Rightarrow P(X|U_1...U_j,\neg U_{j+1}...\neg U_k) = 1 - \prod_{i=1}^j q_i$

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
Т	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Number of parameters linear in number of parents

Hybrid (discrete+cont) Networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)



Option 1: discretization—possibly large errors, large CPTs Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., Cost)

2) Discrete variable, continuous parents (e.g., Buys?)

#1: Continuous Child Variables

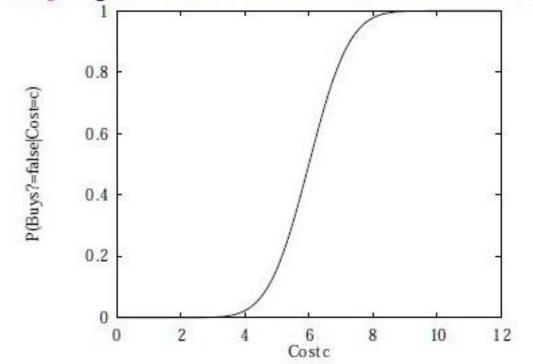
Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

$$\begin{split} P(Cost = c | Harvest = h, Subsidy? = true) \\ = N(a_th + b_t, \sigma_t)(c) \\ = \frac{1}{\sigma_t \sqrt{2\pi}} exp\left(-\frac{1}{2} \left(\frac{c - (a_th + b_t)}{\sigma_t}\right)^2\right) \end{split}$$

#2 Discrete child – cont. parents

Probability of Buys? given Cost should be a "soft" threshold:

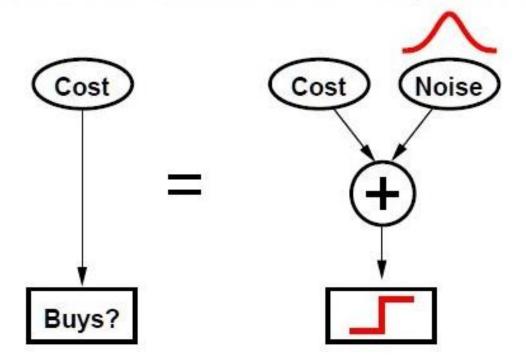


Probit distribution uses integral of Gaussian:

 $\begin{array}{l} \Phi(x) = I_{-\infty}^x N(0,1)(x) dx \\ P(Buys? = true \mid Cost = c) = \Phi((-c + \mu)/\sigma) \end{array}$

Why probit?

- 1. It's sort of the right shape
- 2. Can view as hard threshold whose location is subject to noise

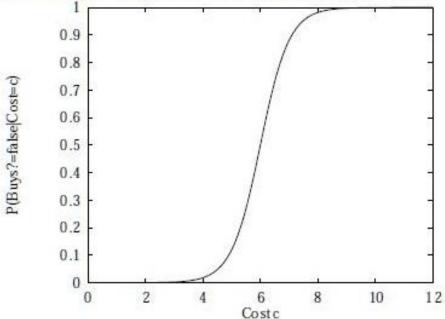


Sigmoid Function

Sigmoid (or logit) distribution also used in neural networks:

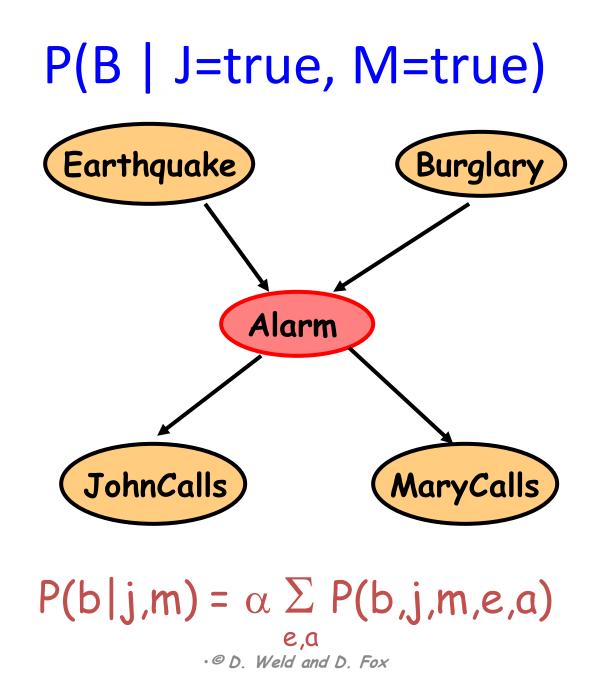
$$P(Buys? = true \mid Cost = c) = \frac{1}{1 + exp(-2\frac{-c+\mu}{\sigma})}$$

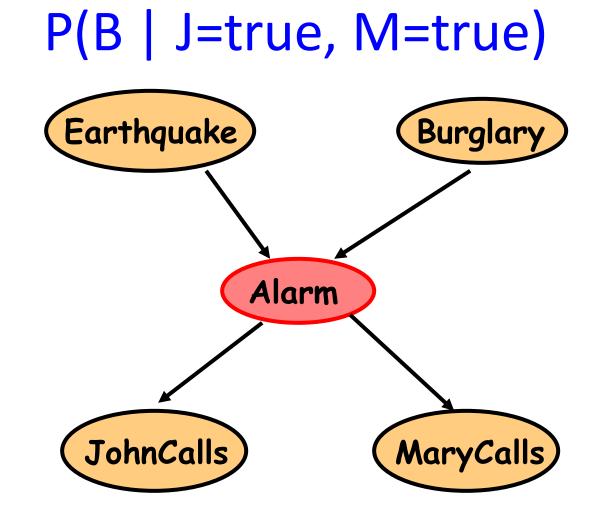
Sigmoid has similar shape to probit but much longer tails:



Inference in BNs

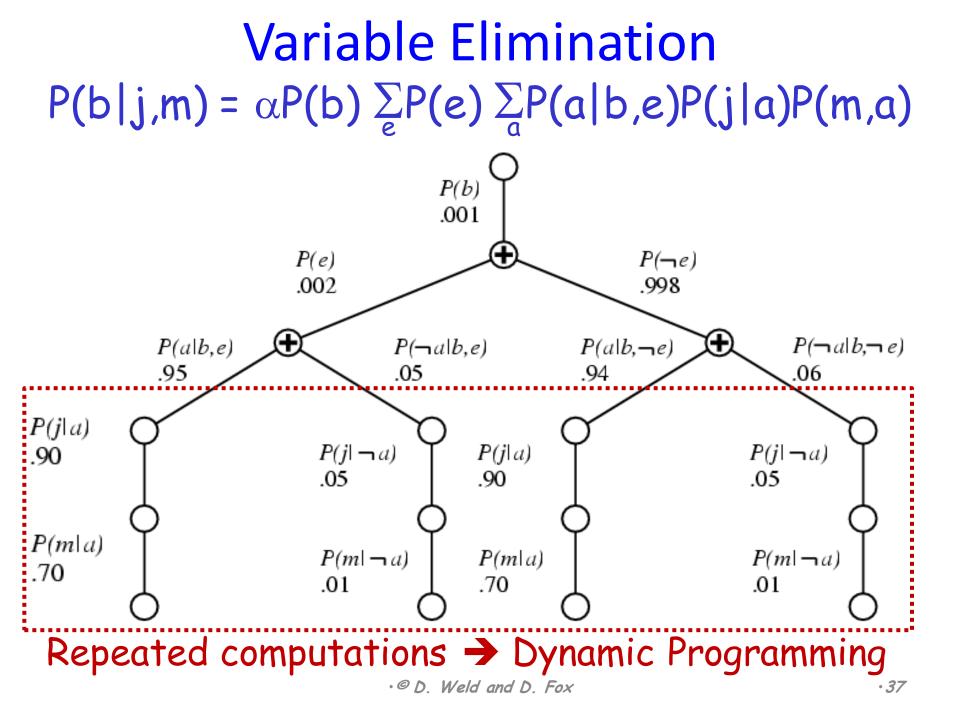
- •The graphical independence representation
 - -yields efficient inference schemes
- •We generally want to compute
 - -Marginal probability: Pr(Z),
 - -Pr(Z | E) where E is (conjunctive) evidence
 - Z: query variable(s),
 - E: evidence variable(s)
 - everything else: hidden variable
- Computations organized by network topology





$P(b|j,m) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a|b,e) P(j|a) P(m|a)$

• [©] D. Weld and D. Fox



Variable Elimination

• A *factor* is a function from some set of variables into a specific value: e.g., *f*(*E*,*A*,*N*1)

-CPTs are factors, e.g., P(A/E,B) function of A,E,B

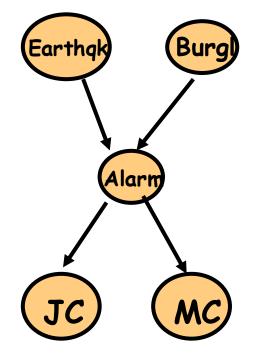
- •VE works by *eliminating* all variables in turn until there is a factor with only query variable
- •To eliminate a variable:
 - -*join* all factors containing that variable (like DB)
 - -*sum out* the influence of the variable on new factor
 - -exploits product form of joint distribution

= f4(J)

- $= \sum_{A} P(J|A) f3(A)$
- $= \sum_{A} P(J|A) \sum_{M} P(M|A) f2(A)$
- = $\Sigma_{A}P(J|A) \Sigma_{M}P(M|A) \Sigma_{B}P(B) f1(A,B)$
- = $\Sigma_{A}P(J|A) \Sigma_{M}P(M|A) \Sigma_{B}P(B) \Sigma_{E}P(A|B,E)P(E)$
- $= \sum_{M,A,B,E} P(J|A)P(M|A) P(B)P(A|B,E)P(E)$
- = $\Sigma_{M,A,B,E} P(J,M,A,B,E)$

P(J)

Example of VE: P(JC)



Notes on VE

- Each operation is a simple multiplication of factors and summing out a variable
- Complexity determined by size of largest factor
 - -in our example, 3 vars (not 5)
 - -linear in number of vars,
 - exponential in largest factor elimination ordering greatly impacts factor size
 - -optimal elimination orderings: NP-hard
 - -heuristics, special structure (e.g., polytrees)
- Practically, inference is much more tractable using structure of this sort .@ D. Weld and D. Fox .40

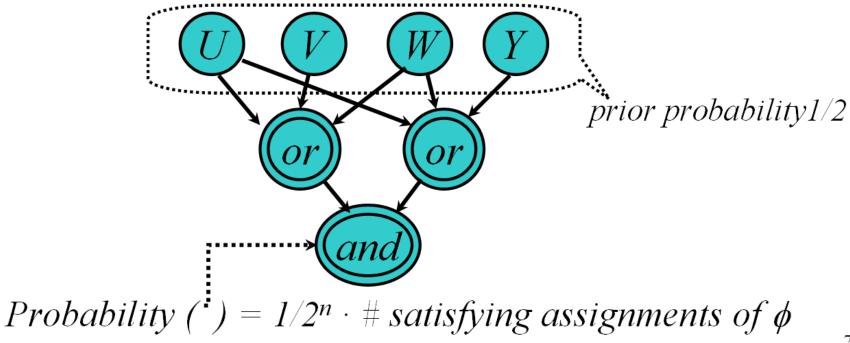
- = $\Sigma_{M,A,B,E}$ P(J,M,A,B,E)
- $= \sum_{M,A,B,E} P(J|A)P(B)P(A|B,E)P(E)P(M|A)$
- = $\Sigma_{A}P(J|A) \Sigma_{B}P(B) \Sigma_{E}P(A|B,E)P(E) \Sigma_{M}P(M|A)$
- = $\Sigma_{A}P(J|A) \Sigma_{B}P(B) \Sigma_{F}P(A|B,E)P(E)$
- = $\Sigma_A P(J|A) \Sigma_B P(B) f1(A,B)$

- $= \sum_{A} P(J|A) f2(A)$
- = f3(J)M is irrelevant to the computation Thm: Y is irrelevant unless $Y \in Ancestors(Z \cup E)$

Reducing 3-SAT to Bayes Nets

Theorem: Inference in a multi-connected Bayesian network is NP-hard.

Boolean 3CNF formula $\phi = (u \lor \overline{v} \lor w) \land (\overline{u} \lor \overline{w} \lor y)$



Complexity of Exact Inference

- Exact inference is NP hard
 - 3-SAT to Bayes Net Inference
 - It can count no. of assignments for 3-SAT: #P complete
- Inference in tree-structured Bayesian network
 - Polynomial time
 - compare with inference in CSPs
- Approximate Inference
 - Sampling based techniques