Uncertainty

Mausam

(Based on slides by UW-AI faculty)
Knowledge Representation

<table>
<thead>
<tr>
<th>KR Language</th>
<th>Ontological Commitment</th>
<th>Epistemological Commitment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositional Logic</td>
<td>facts</td>
<td>true, false, unknown</td>
</tr>
<tr>
<td>First Order Logic</td>
<td>facts, objects, relations</td>
<td>true, false, unknown</td>
</tr>
<tr>
<td>Temporal Logic</td>
<td>facts, objects, relations, times</td>
<td>true, false, unknown</td>
</tr>
<tr>
<td>Probability Theory</td>
<td>facts</td>
<td>degree of belief</td>
</tr>
<tr>
<td>Fuzzy Logic</td>
<td>facts, degree of truth</td>
<td>known interval values</td>
</tr>
</tbody>
</table>

Probabilistic Relational Models
- combine probability and first order logic
Need for Reasoning w/ Uncertainty

• The world is full of uncertainty
 – chance nodes/sensor noise/actuator error/partial info..
 – Logic is brittle
 • can’t encode exceptions to rules
 • can’t encode statistical properties in a domain
 – Computers need to be able to handle uncertainty

• Probability: new foundation for AI (& CS!)

• Massive amounts of data around today
 – Statistics and CS are both about data
 – Statistics lets us summarize and understand it
 – Statistics is the basis for most learning

• Statistics lets data do our work for us
Logic vs. Probability

<table>
<thead>
<tr>
<th>Symbol: Q, R ...</th>
<th>Random variable: Q ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean values: T, F</td>
<td>Domain: you specify e.g. {heads, tails} [1, 6]</td>
</tr>
<tr>
<td>State of the world: Assignment to Q, R ... Z</td>
<td>Atomic event: complete specification of world: Q... Z</td>
</tr>
<tr>
<td></td>
<td>• Mutually exclusive</td>
</tr>
<tr>
<td></td>
<td>• Exhaustive</td>
</tr>
<tr>
<td>Prior probability (aka Unconditional prob: P(Q))</td>
<td>Joint distribution: Prob. of every atomic event</td>
</tr>
</tbody>
</table>
Probability Basics

• Begin with a set S: the **sample space**
 – e.g., 6 possible rolls of a die.

• $x \in S$ is a **sample point/possible world/atomic event**

• A **probability space** or **probability model** is a sample space with an assignment $P(x)$ for every x s.t. $0 \leq P(x) \leq 1$ and $\sum P(x) = 1$

• An **event** A is any subset of S
 – e.g. $A= \text{‘die roll < 4’}$

• A **random variable** is a function from sample points to some range, e.g., the reals or Booleans
Types of Probability Spaces

Propositional or Boolean random variables
e.g., Cavity (do I have a cavity?)

Discrete random variables (finite or infinite)
e.g., Weather is one of \(<\text{sunny, rain, cloudy, snow}>\)
Weather = rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)
e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions
Axioms of Probability Theory

• All probabilities between 0 and 1
 – $0 \leq P(A) \leq 1$
 – $P(\text{true}) = 1$
 – $P(\text{false}) = 0$.

• The probability of disjunction is:

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$
Prior Probability

Prior or unconditional probabilities of propositions
e.g., \(P(Cavity = true) = 0.1 \) and \(P(Weather = sunny) = 0.72 \) correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
\[
P(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle \text{ (normalized, i.e., sums to 1)}
\]

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s
\[
P(Weather, Cavity) = \text{a } 4 \times 2 \text{ matrix of values:}
\]

Joint distribution can answer any question
Conditional probability

• **Conditional or posterior probabilities**

 e.g., \(P(\text{cavity} \mid \text{toothache}) = 0.8 \)

 i.e., given that \text{toothache} is all I know there is 80% chance of cavity

• **Notation for conditional distributions:**

 \(P(\text{Cavity} \mid \text{Toothache}) = 2\)-element vector of \(2\)-element vectors

• If we know more, e.g., \text{cavity} is also given, then we have

 \(P(\text{cavity} \mid \text{toothache}, \text{cavity}) = 1 \)

• New evidence may be irrelevant, allowing simplification:

 \(P(\text{cavity} \mid \text{toothache}, \text{sunny}) = P(\text{cavity} \mid \text{toothache}) = 0.8 \)

• This kind of inference, sanctioned by domain knowledge, is crucial
Conditional Probability

• $P(A \mid B)$ is the probability of A given B
• Assumes that B is the only info known.
• Defined by:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
Chain Rule/Product Rule

- \(P(X_1, \ldots, X_n) = P(X_n | X_1 \ldots X_{n-1})P(X_{n-1} | X_1 \ldots X_{n-2}) \ldots P(X_1) \)
- \(= \prod P(X_i | X_1, \ldots X_{i-1}) \)
Dilemma at the Dentist’s

What is the probability of a cavity given a toothache?
What is the probability of a cavity given the probe catches?
Inference by Enumeration

Start with the joint distribution:

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬ toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>catch</td>
<td>¬ catch</td>
</tr>
<tr>
<td>cavity</td>
<td>.108</td>
<td>.012</td>
</tr>
<tr>
<td>¬ cavity</td>
<td>.016</td>
<td>.064</td>
</tr>
</tbody>
</table>

For any proposition \(\phi \), sum the atomic events where it is true:

\[
P(\phi) = \sum_{\omega : \omega \models \phi} P(\omega)
\]

\[
P(\text{toothache}) = .108 + .012 + .016 + .064 = .20 \text{ or } 20\%
\]
Inference by Enumeration

Start with the joint distribution:

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>(\neg \text{toothache})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neg \text{catch})</td>
<td>.108</td>
<td>.012</td>
</tr>
<tr>
<td>(\text{catch})</td>
<td>.016</td>
<td>.064</td>
</tr>
<tr>
<td>(\text{cavity})</td>
<td>.144</td>
<td>.576</td>
</tr>
<tr>
<td>(\neg \text{cavity})</td>
<td>.072</td>
<td>.008</td>
</tr>
</tbody>
</table>

For any proposition \(\phi \), sum the atomic events where it is true:

\[
P(\phi) = \sum_{\omega: \omega \models \phi} P(\omega)
\]

\[
P(\text{toothache} \lor \text{cavity}) = .20 + .072 + .008 = .28
\]
Inference by Enumeration

Start with the joint distribution:

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬ toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>.108</td>
<td>.012</td>
</tr>
<tr>
<td>¬ catch</td>
<td>.072</td>
<td>.008</td>
</tr>
<tr>
<td>cavity</td>
<td>.016</td>
<td>.064</td>
</tr>
<tr>
<td>¬ cavity</td>
<td>.144</td>
<td>.576</td>
</tr>
</tbody>
</table>

Can also compute conditional probabilities:

\[
P(\neg \text{cavity}|\text{toothache}) = \frac{P(\neg \text{cavity} \land \text{toothache})}{P(\text{toothache})} = \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4
\]
Complexity of Enumeration

- Worst case time: $O(d^n)$
 - Where $d = \text{max arity}$
 - And $n = \text{number of random variables}$
- Space complexity also $O(d^n)$
 - Size of joint distribution

- Prohibitive!
Independence

• A and B are *independent* iff:

\[P(A | B) = P(A) \]
\[P(B | A) = P(B) \]

• Therefore, if A and B are independent:

\[P(A | B) = \frac{P(A \land B)}{P(B)} = P(A) \]
\[P(A \land B) = P(A)P(B) \]
Independence

\[A \text{ and } B \text{ are independent iff } \]
\[P(A|B) = P(A) \quad \text{or} \quad P(B|A) = P(B) \quad \text{or} \quad P(A, B) = P(A)P(B) \]

32 entries reduced to 12; for \(n \) independent biased coins, \(2^n \to n \)

Complete independence is powerful but rare

What to do if it doesn’t hold?
Conditional Independence

\[P(\text{Toothache}, \text{Cavity}, \text{Catch}) \text{ has } 2^3 - 1 = 7 \text{ independent entries} \]

If I have a cavity, the probability that the probe catches in it doesn’t depend on whether I have a toothache:

\[(1) \quad P(\text{catch}|\text{toothache}, \text{cavity}) = P(\text{catch}|\text{cavity}) \]

The same independence holds if I haven’t got a cavity:

\[(2) \quad P(\text{catch}|\text{toothache}, \neg\text{cavity}) = P(\text{catch}|\neg\text{cavity}) \]

Catch is conditionally independent of Toothache given Cavity:

\[P(\text{Catch}|\text{Toothache}, \text{Cavity}) = P(\text{Catch}|\text{Cavity}) \]

Instead of 7 entries, only need 5
Conditional Independence II

\[P(\text{catch} \mid \text{toothache}, \text{cavity}) = P(\text{catch} \mid \text{cavity}) \]
\[P(\text{catch} \mid \text{toothache}, \neg \text{cavity}) = P(\text{catch} \mid \neg \text{cavity}) \]

Equivalent statements:
\[P(\text{Toothache} \mid \text{Catch}, \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) \]
\[P(\text{Toothache}, \text{Catch} \mid \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) P(\text{Catch} \mid \text{Cavity}) \]

Why only 5 entries in table?

Write out full joint distribution using chain rule:
\[P(\text{Toothache}, \text{Catch}, \text{Cavity}) \]
\[= P(\text{Toothache} \mid \text{Catch}, \text{Cavity}) P(\text{Catch}, \text{Cavity}) \]
\[= P(\text{Toothache} \mid \text{Catch}, \text{Cavity}) P(\text{Catch} \mid \text{Cavity}) P(\text{Cavity}) \]
\[= P(\text{Toothache} \mid \text{Cavity}) P(\text{Catch} \mid \text{Cavity}) P(\text{Cavity}) \]

I.e., \(2 + 2 + 1 = 5\) independent numbers (equations 1 and 2 remove 2)
Power of Cond. Independence

- Often, using conditional independence reduces the storage complexity of the joint distribution from exponential to linear!!

- Conditional independence is the most basic & robust form of knowledge about uncertain environments.
Bayes Rule

\[P(x, y) = P(x \mid y)P(y) = P(y \mid x)P(x) \]

\[P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}} \]

Useful for assessing **diagnostic** probability from **causal** probability:

\[P(Cause \mid Effect) = \frac{P(Effect \mid Cause)P(Cause)}{P(Effect)} \]
Computing Diagnostic Prob. from Causal Prob.

\[P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)} \]

E.g. let \(M \) be meningitis, \(S \) be stiff neck

\[P(M) = 0.0001, \]
\[P(S) = 0.1, \]
\[P(S|M) = 0.8 \]

\[P(M|S) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008 \]

Note: posterior probability of meningitis still very small!
Other forms of Bayes Rule

\[P(x \mid y) = \frac{P(y \mid x) \, P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}} \]

\[P(x \mid y) = \frac{P(y \mid x) \, P(x)}{\sum_{x} P(y \mid x) \, P(x)} \]

\[P(x \mid y) = \alpha P(y \mid x) P(x) \]

posterior \(\propto\) likelihood \cdot prior
Conditional Bayes Rule

\[P(x \mid y, z) = \frac{P(y \mid x, z) \ P(x \mid z)}{P(y \mid z)} \]

\[P(x \mid y, z) = \frac{P(y \mid x, z) \ P(x, z)}{\sum_x P(y \mid x, z) \ P(x \mid z)} \]

\[P(x \mid y, z) = \alpha P(y \mid x, z) P(x \mid z) \]
Bayes’ Rule & Cond. Independence

\[P(Cavity|toothache \land catch) = \alpha P(toothache \land catch|Cavity)P(Cavity) \]
\[= \alpha P(toothache|Cavity)P(catch|Cavity)P(Cavity) \]

This is an example of a *naive Bayes* model:

\[P(Cause, Effect_1, \ldots, Effect_n) = P(Cause) \prod_i P(Effect_i|Cause) \]

Total number of parameters is *linear* in \(n \)
Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is $P(\text{doorOpen} \mid z)$?
Causal vs. Diagnostic Reasoning

• \(P(open | z) \) is diagnostic.
• \(P(z | open) \) is causal.
• Often causal knowledge is easier to obtain.
• Bayes rule allows us to use causal knowledge:

\[
P(open | z) = \frac{P(z | open)P(open)}{P(z)}
\]
Example

- $P(z|\text{open}) = 0.6 \quad P(z|\neg\text{open}) = 0.3$
- $P(\text{open}) = P(\neg\text{open}) = 0.5$

$$P(\text{open} \mid z) = \frac{P(z \mid \text{open})P(\text{open})}{P(z \mid \text{open})P(\text{open}) + P(z \mid \neg\text{open})P(\neg\text{open})}$$

$$P(\text{open} \mid z) = \frac{0.6 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{2}{3} = 0.67$$

- z raises the probability that the door is open.
Combining Evidence

• Suppose our robot obtains another observation z_2.

• How can we integrate this new information?

• More generally, how can we estimate $P(x|z_1...z_n)$?
Recursive Bayesian Updating

$$P(x \mid z_1, \ldots, z_n) = \frac{P(z_n \mid x, z_1, \ldots, z_{n-1}) P(x \mid z_1, \ldots, z_{n-1})}{P(z_n \mid z_1, \ldots, z_{n-1})}$$

Markov assumption: z_n is independent of z_1, \ldots, z_{n-1} if we know x.

$$P(x \mid z_1, \ldots, z_n) = \frac{P(z_n \mid x, z_1, \ldots, z_{n-1}) P(x \mid z_1, \ldots, z_{n-1})}{P(z_n \mid z_1, \ldots, z_{n-1})}$$

$$= \frac{P(z_n \mid x) P(x \mid z_1, \ldots, z_{n-1})}{P(z_n \mid z_1, \ldots, z_{n-1})}$$

$$= \alpha P(z_n \mid x) P(x \mid z_1, \ldots, z_{n-1})$$

$$= \alpha_{1\ldots n} \prod_{i=1}^{n} P(z_i \mid x) P(x)$$
Example: Second Measurement

- \(P(z_2|\text{open}) = 0.5 \) \hspace{1cm} \(P(z_2|\neg\text{open}) = 0.6 \)
- \(P(\text{open}|z_1) = 2/3 \)

\[
P(\text{open}|z_2, z_1) = \frac{P(z_2|\text{open}) \cdot P(\text{open}|z_1)}{P(z_2|\text{open}) \cdot P(\text{open}|z_1) + P(z_2|\neg\text{open}) \cdot P(\neg\text{open}|z_1)}
\]

\[
= \frac{1 \cdot \frac{2}{3}}{1 \cdot \frac{2}{3} + \frac{5}{3} \cdot \frac{1}{3}} = \frac{5}{8} = 0.625
\]

- \(z_2 \) lowers the probability that the door is open.
These calculations seem laborious to do for each problem domain – is there a general representation scheme for probabilistic inference?

Yes – Bayesian Networks