Classical Planning
Chapter 10
Mausam
(Based on slides of Dan Weld, Marie desJardins)
Planning

• Given
 – a logical description of the initial situation,
 – a logical description of the goal conditions, and
 – a logical description of a set of possible actions,

• find
 – a sequence of actions (a plan of actions) that brings us from the initial situation to a situation in which the goal conditions hold.
Example: BlocksWorld
Planning Input:
State Variables/Propositions

- Types: block —- a, b, c
- (on-table a) (on-table b) (on-table c)
- (clear a) (clear b) (clear c)
- (arm-empty)
- (holding a) (holding b) (holding c)
- (on a b) (on a c) (on b a) (on b c) (on c a) (on c b)

No. of state variables = 16
No. of states = 2^{16}
No. of reachable states = ?
Planning Input: Actions

• pickup a b, pickup a c, …
• place a b, place a c, …
• pickup-table a, pickup-table b, …
• place-table a, place-table b, …

Total: 6 + 6 + 3 + 3 = 18 “ground” actions

Total: 4 action schemata
Planning Input: Actions (contd)

• :action pickup ?b1 ?b2
 :precondition
 (on ?b1 ?b2)
 (clear ?b1)
 (arm-empty)
 :effect
 (holding ?b1)
 (not (on ?b1 ?b2))
 (clear ?b2)
 (not (arm-empty))

• :action pickup-table ?b
 :precondition
 (on-table ?b)
 (clear ?b)
 (arm-empty)
 :effect
 (holding ?b)
 (not (on-table ?b))
 (not (arm-empty))
Planning Input: Initial State

- (on-table a) (on-table b)
- (arm-empty)
- (clear c) (clear b)
- (on c a)

- All other propositions false
 - not mentioned \(\rightarrow\) false
Planning Input: Goal

- (on-table c) AND (on b c) AND (on a b)

- Is this a state?

- In planning a goal is a set of states
Planning Input Representation

• Description of initial state of world
 – Set of propositions

• Description of goal: i.e. set of worlds
 – E.g., Logical conjunction
 – Any world satisfying conjunction is a goal

• Description of available actions
Planning vs. Problem-Solving

Basic difference: **Explicit, logic-based representation**

- **States/Situations**: descriptions of the world by logical formulae
 → agent can explicitly reason about and communicate with the world.

- **Goal conditions** as logical formulae vs. goal test (black box)
 → agent can reflect on its goals.

- **Operators/Actions**: Axioms or transformation on formulae in a logical form
 → agent can gain information about the effects of actions by inspecting the operators.
Classical Planning

• Simplifying assumptions
 – Atomic time
 – Agent is omniscient (no sensing necessary).
 – Agent is sole cause of change
 – Actions have deterministic effects

• STRIPS representation
 – World = set of true propositions (conjunction)
 – Actions:
 • Precondition: (conjunction of positive literals, no functions)
 • Effects (conjunction of literals, no functions)
 – Goal = conjunction of positive literals

 – Is Blocks World in STRIPS?

 – Goals = conjunctions (Rich ^ Famous)
Planning as Search

• Forward Search in ? Space
 – World State Space
 – start from start state; look for a state with goal property
 • dfs/bfs
 • A*

• Backward Search in ? Space
 – Subgoal Space
 – start from goal conjunction; look for subgoal that holds in initial state
 • dfs/bfs/A*

• Local Search in ? Space
 – Plan Space
Forward World-Space Search

Initial State

Goal State
Forward State-Space Search

• **Initial state**: set of positive ground literals (CWA: literals not appearing are false)

• **Actions**:
 – applicable if preconditions satisfied
 – add positive effect literals
 – remove negative effect literals

• **Goal test**: checks whether state satisfies goal

• **Step cost**: typically 1
Heuristics for State-Space Search

• Count number of false goal propositions in current state
 Admissible?
 NO

• Subgoal independence assumption:
 – Cost of solving conjunction is sum of cost of solving each subgoal independently
 – Optimistic: ignores negative interactions
 – Pessimistic: ignores redundancy

 – Admissible? No
 – Can you make this admissible?
Heuristics for State Space Search (contd)

• Delete all preconditions from actions, solve easy relaxed problem, use length
 Admissible?
 YES

• Delete negative effects from actions, solve easier relaxed problem, use length
 Admissible?
 YES (if Goal has only positive literals, true in STRIPS)
Backward Subgoal-Space Search

- Regression planning
- **Problem**: Need to find predecessors of state
- **Problem**: Many possible goal states are equally acceptable.
- From which one does one search?

Initial State is completely defined
Regression

- Let G be a KR sentence (e.g. in logic)
- **Relevance**: needs to achieve one subgoal
- **Consistency**: does not undo any other subgoal
- Regressing a goal, G, thru an action, A yields the weakest precondition G’
 - Such that: if G’ is true before A is executed
 - G is guaranteed to be true afterwards

\[G' \text{\.precond} A \text{\.effect} G \]

\[\text{Represents a set of world states} \]

\[\text{Represents a set of world states} \]

© D. Weld, D. Fox
Regression Example

G' ➞ A ➞ G

- :action pickup-table \(?b \)
 - :precondition
 - (on-table \(?b \))
 - (clear \(?b \))
 - (arm-empty)
 - :effect
 - (holding \(?b \))
 - (not (on-table \(?b \)))
 - (not (arm-empty))

Remove positive effects
Add preconditions for A
Complexity of Planning

• Size of Search Space
 – Forward: size of world state space
 – Backward: size of subsets of partial state space!

• Size of World state space
 – exponential in problem representation

• What to do?
 – Informative heuristic that can be computed in polynomial time!
Planning Graph: Basic idea

• Construct a planning graph: encodes constraints on possible plans
• Use this planning graph to compute an informative heuristic (Forward A*)
• Planning graph can be built for each problem in polynomial time
The Planning Graph

Note: a few noops missing for clarity
Graph Expansion

Proposition level 0
initial conditions

Action level i
no-op for each proposition at level i-1
action for each operator instance whose
preconditions exist at level i-1

Proposition level i
effects of each no-op and action at level i
Mutual Exclusion

Two actions are mutex if
• one clobbers the other’s effects or preconditions
• they have mutex preconditions

Two proposition are mutex if
• one is the negation of the other
• all ways of achieving them are mutex
Dinner Date

Initial Conditions: (:and (cleanHands) (quiet))

Goal: (:and (noGarbage) (dinner) (present))

Actions:

(:operator carry :precondition :effect (:and (noGarbage) (:not (cleanHands))))

(:operator dolly :precondition :effect (:and (noGarbage) (:not (quiet))))

(:operator cook :precondition (cleanHands) :effect (dinner))

(:operator wrap :precondition (quiet) :effect (present))
Planning Graph

carry

cleanH
dolly
quiet
cook
wrap
dinner
present

noGarb

0 Prop 1 Action 2 Prop 3 Action 4 Prop
Are there any exclusions?

- carry
- dolly
- quiet
- cook
- wrap
- noGarb
- cleanH
- ¬cleanH
- ¬quiet
- dinner
- present

0 Prop 1 Action 2 Prop 3 Action 4 Prop
Observation 1

Propositions monotonically increase
(always carried forward by no-ops)
Observation 2

Actions monotonically increase
Observation 3

Proposition mutex relationships monotonically decrease
Observation 4

Action mutex relationships monotonically decrease
Observation 5

Planning Graph ‘levels off’.

• After some time k all levels are identical
• Because it’s a finite space, the set of literals never decreases and mutexes don’t reappear.
Properties of Planning Graph

- If goal is absent from last level
 - Goal cannot be achieved!
- If there exists a path to goal
 goal is present in the last level
- If goal is present in last level
 there may not exist any path still
Heuristics based on Planning Graph

• Construct planning graph starting from s

• \(h(s) = \) level at which goal appears non-mutex
 – Admissible?
 – YES

• Relaxed Planning Graph Heuristic
 – Remove negative preconditions build plan. graph
 – Use heuristic as above
 – Admissible? YES
 – More informative? NO
 – Speed: FASTER
• Topmost classical planner until 2009

• State space local search
 – Guided by relaxed planning graph
 – Full bfs to escape plateaus – enforced hill climbing
 – A few other bells and whistles...
SATPlan: Planning as SAT

• Formulate the planning problem as a CSP
• Assume that the plan has k actions
• Create a binary variable for each possible action a:
 – Action(a,i) (TRUE if action a is used at step i)
• Create variables for each proposition that can hold at different points in time:
 – Proposition(p,i) (TRUE if proposition p holds at step i)
Constraints

• XOR: Only one action can be executed at each time step
• At least one action must be executed at each time step
• Constraints describing effects of actions
 – Action(a,i) \rightarrow \text{prec}(a,i-1); Action(a,i) \rightarrow \text{eff}(a,i)
• Maintain action: if an action does not change a prop p, then maintain action for proposition p is true
 – Action(maint_p,i) \rightarrow Action(a1,i) \lor Action(a2,i)\ldots [\text{for all } a_i \text{ that don’t effect } p]
• A proposition is true at step i only if some action (possibly a maintain action) made it true
• Constraints for initial state and goal state
Popular Application
Planning Summary

- Problem solving algorithms that operate on explicit propositional representations of states and actions.
- Make use of specific heuristics.
- STRIPS: restrictive propositional language
- State-space search: forward (progression) / backward (regression) search
- Local search FF; using compilation into SAT
- Partial order planners search space of plans from goal to start, adding actions to achieve goals (did not cover)