Logic in Al
Chapter 7

Mausam

(Based on slides of Dan Weld, Stuart
Russell, Dieter Fox, Henry Kautz...)

Knowledge Representation

e represent knowledge in a manner that facilitates inferencing
(i.e. drawing conclusions) from knowledge.

* Typically based on
— Logic
— Probability
— Logic and Probability

Some KR Languages

Propositional Logic
Predicate Calculus
Frame Systems

Rules with Certainty Factors
Bayesian Belief Networks
Influence Diagrams

Semantic Networks

Concept Description Languages
Non-monotonic Logic

Basic Idea of Logic

* By starting with true assumptions, you can
deduce true conclusions.

© Daniel S. Weld

Truth

*Francis Bacon (1561-1626) *Blaise Pascal (1623-1662)

No pleasure is comparable to the We know the truth, not only by
standing upon the vantage-ground thereason, but also by the heart.
of truth.

*Francois Rabelais (c. 1490-1553)

*Thomas Henry Huxley (1825- Speak the truth and shame the
1895) Devil.

Irrationally held truths may be

;nrcrgfsharmful than reasoned Daniel Webster (1782-1852)

There is nothing so powerful as
truth, and often nothing so
'JOhn KeatS (1795'1821) Strange.
Beauty is truth, truth beauty; that
is all ye know on earth, and all ye
need to know.

© Daniel S. Weld 5

Components of KR

Syntax: defines the sentences in the language
Semantics: defines the “meaning” to sentences
Inference Procedure

— Algorithm

— Sound?
— Complete?

— Complexity
Knowledge Base

Knowledge bases

Inference engine -———— domain-independent algorithms

Knowledge base -s———— domain-specific contant

Knowledge base = set of sentences in a formal language

Declarative approach to building an agent (or other system):
— Tellitwhatit needs to know

Then it can Ask itself what to do - answers should follow from the KB

Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

Or at the implementation level
i.e., data structuresin KB and algorithms that manipulate them

© D. Weld, D. Fox 7

Propositional Logic

Syntax
— Atomic sentences: P, Q, ...

— Connectives: A, V,—, —=
Semantics
— Truth Tables

Inference

— Modus Ponens
— Resolution

— DPLL

— GSAT

Complexity

Propositional Logic: Syntax

Atoms
—P,Q, R, ..
Literals
—P, —P
Sentences

— Any literal is a sentence

—|f S is a sentence
* Then (S A S) is a sentence
* Then (S v S) is a sentence

Conveniences
P> Q sameas—PvQ

Semantics

* Syntax: which arrangements of symbols are legal
— (Def “sentences”)

* Semantics: what the symbols mean in the world

— (Mapping between symbols and worlds)

Inference
Sentences ————————o—0—> Sentences

" on| £ 7
epresentation = =
Q Q

_________ R CCTTTEETEEEEEE ¥-
World % 3
Facts Facts

© Daniel S. Weld

10

Propositional Logic: SEMANTICS

* “Interpretation” (or “possible world”)
— Assignment to each variable either T or F
— Assignment of T or F to each connective via defns

Q Q
T|F T|F
5 T|T|F o T|T|T
F| F|F FITI|F

© Daniel S. Weld 11

Satisfiability, Validity, & Entailment

e Sis satisfiable if it is true in some world
* Sis unsatisfiable if it is false all worlds
e Siswvalid if it is true in all worlds

e S1 entails S2 if wherever S1 is true S2 is also true

© Daniel S. Weld 12

P->Q
R 2> —R
SA (W A =S)
Tv—=T

X =2 X

Examples

© Daniel S. Weld

13

Notation

Implication (syntactic symbol)

—4 U |

Proves: 51 |-, S2if “ie' algorithm says ' S2' from Sl

— Entails: 51 |= 52 if wherever Sl is true S2 is also true

e Sound - > |=

* Complete = 5 |-

© Daniel S. Weld 14

Prop. Logic: Knowledge Engr

1) One of the women is a biology major

2) Lisa is not next to Dave in the ranking
3) Dave is immediately ahead of Jim

4) Jim is immediately ahead of a bio major
5) Mary or Lisa is ranked first

1. Choose Vocabulary Universe: Lisa, Dave, Jim, Mary

LD = "Lisa is immediately ahead of Dave"

D ="Dave is a Bio Major"
2. Choose initial sentences (wffs)

© Daniel S. Weld

15

Reasoning Tasks

 Model finding
KB = background knowledge
S = description of problem
Show (KB A S) is satisfiable
A kind of constraint satisfaction

 Deduction
S = question
Provethat KB | =S

Two approaches:
Rules to derive new formulas from old (inference)
Show (KB A — S) is unsatisfiable

© Daniel S. Weld 16

Special Syntactic Forms
* General Form:

((gra—=r) 2 s)) A= (sAt)

* Conjunction Normal Form (CNF)
(wgvrvs)A(=svat)
Set notation: {(—q,r,s), (—=s,—=1t)}
empty clause () = false

* Binary clauses: 1 or 2 literals per clause
(—qvr) (—sv—t)

* Horn clauses: O or 1 positive literal per clause

(wqv—=rvs) (—=sv-—t)

(qAar) =2 s (sat) =2 false

© Daniel S. Weld

17

B w e

Propositional Logic: Inference

A mechanical process for computing new sentences

Backward & Forward Chaining
Resolution (Proof by Contradiction)

GSAT
Davis Putnam

© Daniel S. Weld

18

Inference 1: Forward Chaining

Forward Chaining
Based on rule of modus ponens

If know P1, .., Pn & know (P1A... APn)—>Q

Then can conclude Q

Backward Chaining: search
start from the query and go backwards

© Daniel S. Weld 19

Analysis
* Sound?
e Complete?

Can you prove

{} - Qv-Q

* |f KB has only Horn clauses & query is a single literal
— Forward Chaining is complete
— Runs linear in the size of the KB

Example

P =0
LM = P =
AL = M 2
AN Po=%
AANB = L
A

B

= ¢
LEAM =P
BAL = M
AN Po=%
ANB = L
A

B

Example

= ¢
LAM = P
B AL = M
AN Po=%
ANEB = L
A

B

Example

= ¢
LAM = P
BAL = M
AN Po=%
ANEB = L
A

B

Example

= ¢
LAM = P
BAL == M
AN Po==
ANDB = L
A

B

Example

= ¢
LAM = P
BAL == M
AN Po==
ANDB = L
A

B

Example

= ¢
LAM = P
BAL == M
AN Po==
ANDB = L
A

B

Example

= ¢
LAM = P
BAL == M
ANP = L
ANDB = L
A

B

Example

Example

=6
LAM = P
BAL == M
SN P =%
ANB = L
A

B

B w e

Propositional Logic: Inference

A mechanical process for computing new sentences

Backward & Forward Chaining
Resolution (Proof by Contradiction)

GSAT
Davis Putnam

© Daniel S. Weld

30

By e (PaV Pyy)
1.

Conversion to CNF

Eliminate <, replacing a < S with (o = B) A (8 = a).
(Bi1 = (Pi2V Pay)) A((Pi2V P1) = Big)

Eliminate =, replacing a = 3 with —a v/ 3.

(=B1aV PiaV Pyy) A(—(PigV Ppy) V Byy)

Move — inwards using de Morgan’s rules and double-negation:
(mB11V PiaV Pyy) A((mPia2 A —FP21) V Byy)
Apply distributivity law (\/ over /) and flatten:

(-B1aVPiaVEP) APV B)AN(—FP1 V Byy)

Inference 2: Resolution
[Robinson 1965]

{(pva),(=pvBvy} [RrlavBvy)

Correctness

If S1 |-, S2 then S1 |= S2
Refutation Completeness:

If S is unsatisfiable then S |-5 ()

© Daniel S. Weld 32

Resolution

If the unicorn is mythical, then it is immortal, but if
it 1s not mythical, it is a mammal. If the unicorn is
elither immortal or a mammal, then it is horned.

Prove: the unicorn is horned.

~AyvH —~IvH
() K ()

M = my’rhical (M A) (SA) (=)

I = immortal VV w

A = mammal

H = horned M\ /

0

© Daniel S. Weld 33

Resolution as Search

e States?

* Operators

© Daniel S. Weld

34

Model Finding

* Find assighments to variables that makes a
formula true

e aCSP

Inference 3: Model Enumeration

for (m in truth assignments) {

if (m makes ® true)
then return “Sat!”

}

return “Unsat!”

© Daniel S. Weld

36

Inference 4: DPLL

(Enumeration of Partial Models)
[Davis, Putnam, Loveland & Logemann 1962]
Version 1

dpll_1 (pa) {
if (pa makes F false) return false;
if (pa makes F true) return true;
choose P in F;
if (dpll 1(pa U {P=0})) return true;
return dpll 1(pa U {P=1});

Returns true if F is satisfiable, false otherwise

© Daniel S. Weld 37

(avbvc)
(a v —b)
(a v —C)

(—ma v C)

DPLL Version 1

© Daniel S. Weld

38

(avbvc)
(a v —b)
(a v —C)

(—ma v C)

DPLL Version 1

'

© Daniel S. Weld

39

(Fvbvc)
(F v —b)
(F v —C)
(T v C)

DPLL Version 1

'

© Daniel S. Weld

40

(Fv Fvc)
(FvT)

(F v —C)
(T v C)

DPLL Version 1

© Daniel S. Weld

41

(FvFVF)
(FvT)
(FvT)
(T v F)

DPLL Version 1

© Daniel S. Weld

42

—H -4 + T

DPLL Version 1

© Daniel S. Weld

43

(avbvc)
(a v —b)
(a v —C)

(—ma v C)

DPLL Version 1

© Daniel S. Weld

44

DPLL Version 1

(avbvc)
(a v —b)
(av —C)

(—ma v C)

.

© Daniel S. Weld

DPLL as Search

e Search Space?

* Algorithm?

© Daniel S. Weld

46

Improving DPLL

If literal L, is true, then clause (L, v L, v...) IS true
If clause C, is true, then C, AC, AC, A... has the same
value as C, AC, A....
Therefore: Okay to delete clauses containing true literals!
If literal L, is false, then clause (L, v L, vL,v...) has
the same value as (L, v L, v...)
Therefore: Okay to delete shorten containing false literals!
If literal L, Is false, then clause (L,) Is false
Therefore: the empty clause means false!

© Daniel S. Weld 47

DPLL version 2

dpll 2(F, literal) {
remove clauses containing literal
i1f (F contains no clauses)return true;
shorten clauses containing —literal

if (F contains empty clause)
return false;

choose V 1in F;
if (dpll 2(F, —V))return true;
return dpll 2(F, V);

Partial assignment corresponding to a node is the set of chosen
literals on the path from the root to the node

© Daniel S. Weld

48

(Fvbvc)
(F v —b)
(F v —C)
(T v C)

DPLL Version 2

'

© Daniel S. Weld

49

(b v c)
(=b)
(—cC)

DPLL Version 2

e

© Daniel S. Weld

50

(Fvc)
(T)
(=C)

DPLL Version 2

© Daniel S. Weld

51

(€)

(=C)

DPLL Version 2

© Daniel S. Weld

52

(F)

(T)

DPLL Version 2

© Daniel S. Weld

53

DPLL Version 2

© Daniel S. Weld

54

(FvFVF)
(FvT)
(FvT)
(T v F)

DPLL Version 2

© Daniel S. Weld

55

—H -4 + T

DPLL Version 2

© Daniel S. Weld

56

(avbvc)
(a v —b)
(a v —C)

(—ma v C)

DPLL Version 2

© Daniel S. Weld

57

Benefit

e Can backtrack before getting to leaf

© Daniel S. Weld

58

Structure in Clauses

» Unit Literals
A literal that appears in a singleton clause
{{-b c{—cHa—b e}{d b}{e a —c}}

Might as well set it true! And simplify

{{-b} {a —b e}{d b}
{{d}

e Pure Literals

— A symbol that always appears with same sign

— {{a =b c{—cd —we}{—a—=b eH{d bH{e a —c}}

Might as well set it true! And simplify
{{a=b ¢} (na—bel {ea-c))

© Daniel S. Weld

59

In Other Words

Formula (L) AC, AC, A... IS Only true when literal L is true
Therefore: Branch immediately on unit literals!

May view this as adding
constraint propagation
techniques into play

© Daniel S. Weld 60

In Other Words

Formula (L) AC, AC, A... IS Only true when literal L is true
Therefore: Branch immediately on unit literals!

If literal L does not appear negated in formula F, then setting
L true preserves satisfiability of F

Therefore: Branch immediately on pure literals!

May view this as adding
constraint propagation
techniques into play

© Daniel S. Weld 61

DPLL (previous version)
Davis — Putnam — Loveland — Logemann

dpll (F, literal) {
remove clauses containing literal
i1f (F contains no clauses) return true;

shorten clauses containing —literal
if (F contains empty clause)

-“L--—‘-‘ :—1 —_—— -

choose V in F;
if (dpll(F, —V))return true;
return dpll (F, V) ;

DPLL (for real!)

Davis — Putnam — Loveland — Logemann

dpll (F, literal) {
remove clauses containing literal
i1f (F contains no clauses) return true;

shorten clauses containing —literal
if (F contains empty clause)
return false;

if (F contains a unit or pure L)
return dpll (F, L) ;

choose V in F;
if (dpll(F, —V))return true;
return dpll (F, V) ;

© Daniel S. Weld 63

(avbvc)
(a v —b)
(av —C)

(—ma v C)

DPLL (for real)

© Daniel S. Weld

N

64

DPLL (for real!)

Davis — Putnam — Loveland — Logemann

dpll (F, literal) {
remove clauses containing literal
if (F contains no clauses) return true;

shorten clauses containing —literal
if (F contains empty clause)

return false; . 0\0
if (F contains a unit or pure L) \ﬁx\
return dpll(F, L), \(\Q/\)(C@?
choose V in F; @0 ((\0(\
if (dpll(F, —V))return true; Q/\)6 &0(‘
return dpll(F, V); 6\N Qef
} 0\5\ N
¢ @ of°
\(\6(‘ (\“\
\\ \\&
X
KO

© Daniel S. Weld 65

Heuristic Search in DPLL

* Heuristics are used in DPLL to select a (non-
unit, non-pure) proposition for branching

* |dea: identify a most constrained variable
— Likely to create many unit clauses

* MOM’s heuristic:
— Most occurrences in clauses of minimum length

© Daniel S. Weld

66

Success of DPLL

1962 — DPLL invented
1992 — 300 propositions
1997 — 600 propositions (satz)

Additional techniques:
— Learning conflict clauses at backtrack points

— Randomized restarts

— 2002 (zChaff) 1,000,000 propositions —encodings
of hardware verification problems

WalkSat (Take 1)

* Local search (Hill Climbing + Random Walk) over
space of complete truth assignments

—With prob p: flip any variable in any unsatisfied clause
—With prob (1-p): flip best variable in any unsat clause

* best = one which minimizes #unsatisfied clauses

* SAT encodings of N-Queens, scheduling

* Best algorithm for random K-SAT

—Best DPLL: 700 variables
—Walksat: 100,000 variables

Refining Greedy Random Walk

Each flip

— makes some false clauses become true
— breaks some true clauses, that become false

Suppose s1—s2 by flipping x. Then:

#unsat(s2) = #unsat(s1) — make(s1,x) + break(s1,x)
ldea 1: if a choice breaks nothing, it is very likely to
be a good move

ldea 2: near the solution, only the break count
matters

—the make countis usually 1

Walksat (Take 2)

state = random truth assignment;
while ! GoalTest(state) do
clause := random member { C | Cis false in state };
for each x in clause do compute break]x];
if exists x with break[x]=0 then var :=x;
else
with probability p do
var := random member {x | xis in clause };
else
var := arg x min { break[x] | x is in clause };
endif
state[var] := 1 — state[var];
end
return state; | Put everything inside of a restart loop.
Parameters: p, max_flips, max_runs

Random 3-SAT

e Random 3-SAT

Y | — sample uniformly from
700 space of all possible 3-
. clauses

. | — nvariables, I clauses
ﬁ T * Which are the hard

o e instances?

. il — aroundl/n=4.3

71

Random 3-SAT

Varying problem size, n

5,000

Complexity peak appears varables
to be largely invariant of 40004 I ap
algorithm g | 0
S 3,000
— backtracking algorithms like %
Davis-Putnam gz,ooo—
— local search procedures like 2 o Ty
GSAT = 1,000 T, e,
U_Fzgumulsssssssaese!‘ :::u::::!I::II;I::2::::::I::::::::::I:u:::::::
1 2 3 4 5 6 7 B
What’s SO SpeCIal about rafio of clauses to variables

4.37

percent satisfiable

Random 3-SAT

 Complexity peak coincides

75+

50

257

uuuuuuuuui"l:!”r

variables
i 5[:]
iH“H“l.q.l:l

40

Ll il] 2 [:]

b

Lan |
i,
4
1

¥ L]
) t 'L

' L
T::;.p.I:lnzm.:..l:.h:::::a

3

4

5 6 li g

rafio of clauses to vanables

with solubility transition

— |/n< 4.3 problems under-
constrained and SAT

— |/n> 4.3 problems over-
constrained and UNSAT

— |/n=4.3, problems on “knife-
edge” between SAT and
UNSAT

Assignment 2: Graph Subset Mapping

* Given two directed graphs G and G’
— Check if G is a subset mapping to G’

* |.e. construct a one-one mapping (M) from all
nodes of G to some nodes of G’ s.t.
—(n1,n2)in G =2 (M(nl1), M(n2)) in G’

—(n1,n2) not in G =2 (M(n1), M(n2)) not in G’

Graph G Graph G’

4 A C P R
No, because the directionality
of edges doesn’t match.

\- B Q

‘A C P > R)
No, because there is no edge
between A and Cin G whereas
thereis one between Pand Rin G’

N ° Q

J

J

4 -
Yes. A mapping is: M(A) =,
/ M(B)=Q, M(C)=R

> R

A C P The edges from P to other nodes
don‘t mattersince no node in G
got mapped to P.
____B

Q J

SAT Model for Graph Subset Mapping

* |f a mapping exists then SAT formula is satisfiable
* Else unsatisfiable

* The satisfying assignment suggests the mapping M

