Adversarial Search
Chapter 5

Mausam
(Based on slides of Stuart Russell, Andrew Parks, Henry Kautz, Linda Shapiro)
Why do AI researchers study game playing?

1. It’s a good reasoning problem, formal and nontrivial.

2. Direct comparison with humans and other computer programs is easy.
What Kinds of Games?

Mainly games of strategy with the following characteristics:

1. Sequence of moves to play
2. Rules that specify possible moves
3. Rules that specify a payment for each move
4. Objective is to maximize your payment
Games vs. Search Problems

- Unpredictable opponent \rightarrow specifying a move for every possible opponent reply
- Time limits \rightarrow unlikely to find goal, must approximate
Two-Player Game

Opponent’s Move

Generate New Position

Game Over?

Generate Successors

Evaluate Successors

Move to Highest-Valued Successor

Game Over?
Games as Adversarial Search

• States:
 – board configurations

• Initial state:
 – the board position and which player will move

• Successor function:
 – returns list of (move, state) pairs, each indicating a legal move and the resulting state

• Terminal test:
 – determines when the game is over

• Utility function:
 – gives a numeric value in terminal states (e.g., -1, 0, +1 for loss, tie, win)
Game Tree (2-player, Deterministic, Turns)

The computer is **Max**. The opponent is **Min**.

At the leaf nodes, the utility function is employed. Big value means good, small is bad.
Mini-Max Terminology

• **move**: a move by both players
• **ply**: a half-move
• **utility function**: the function applied to leaf nodes
• **backed-up value**
 – of a max-position: the value of its largest successor
 – of a min-position: the value of its smallest successor
• **minimax procedure**: search down several levels; at the bottom level apply the utility function, back-up values all the way up to the root node, and that node selects the move.
Minimax

- Perfect play for deterministic games
- Idea: choose move to position with highest minimax value
 = best achievable payoff against best play
- E.g., 2-ply game:

```
MAX

MIN

3

A_1

A_2

A_3

3

12

8

2

4

6

14

5

2
```
Minimax Strategy

• Why do we take the min value every other level of the tree?

• These nodes represent the opponent’s choice of move.

• The computer assumes that the human will choose that move that is of least value to the computer.
Minimax algorithm
Adversarial analogue of DFS

function MINIMAX-DECISION(state) returns an action
 \(v \leftarrow \text{MAX-VALUE}(state) \)
 return the action in SUCCESSORS(state) with value \(v \)

function MAX-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 \(v \leftarrow -\infty \)
 for \(a, s \) in SUCCESSORS(state) do
 \(v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(s)) \)
 return \(v \)

function MIN-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 \(v \leftarrow \infty \)
 for \(a, s \) in SUCCESSORS(state) do
 \(v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(s)) \)
 return \(v \)
Properties of Minimax

• **Complete?**
 – Yes (if tree is finite)

• **Optimal?**
 – Yes (against an optimal opponent)
 – No (does not exploit opponent weakness against suboptimal opponent)

• **Time complexity?**
 – $O(b^m)$

• **Space complexity?**
 – $O(bm)$ (depth-first exploration)
Good Enough?

- **Chess:**
 - branching factor $b \approx 35$
 - game length $m \approx 100$
 - search space $b^m \approx 35^{100} \approx 10^{154}$

- **The Universe:**
 - number of atoms $\approx 10^{78}$
 - age $\approx 10^{18}$ seconds
 - 10^8 moves/sec $\times 10^{78} \times 10^{18} = 10^{104}$

 Exact solution completely infeasible
Alpha-Beta Procedure

• The alpha-beta procedure can speed up a depth-first minimax search.

• Alpha: a lower bound on the value that a max node may ultimately be assigned

 \[v \geq \alpha \]

• Beta: an upper bound on the value that a minimizing node may ultimately be assigned

 \[v \leq \beta \]
Do we need to check this node?
No - this branch is guaranteed to be worse than what max already has.
MinVal(state, alpha, beta) {
 if (terminal(state))
 return utility(state);
 for (s in children(state)) {
 child = MaxVal(s, alpha, beta);
 beta = min(beta, child);
 if (alpha >= beta) return child;
 }
 return beta;
}

\textbf{alpha} = \text{the highest value for \textit{MAX} along the path} \\
\textbf{beta} = \text{the lowest value for \textit{MIN} along the path}
Alpha-Beta

\[
\text{MaxVal}(\text{state, alpha, beta}) \{
\text{if (terminal(state))}
 \text{return utility(state);}
\text{for (s in children(state))}
 \text{child = MinVal(s, alpha, beta);}
 \text{alpha = max(alpha, child);}
 \text{if (alpha>=beta) return child;}
\}
\text{return beta; }
\]

alpha = the highest value for MAX along the path

beta = the lowest value for MIN along the path
α - the best value for max along the path
β - the best value for min along the path
\(\alpha \) - the best value for \textbf{max} along the path

\(\beta \) - the best value for \textbf{min} along the path
\(\alpha\) - the best value for max along the path
\(\beta\) - the best value for min along the path
α - the best value for max along the path
β - the best value for min along the path

β < α prune!
The diagram illustrates the minimax algorithm, with

- \(\alpha \) being the best value for max along the path,
- \(\beta \) being the best value for min along the path.

The algorithm proceeds as follows:

1. Start at the root node with \(\alpha = -\infty \) and \(\beta = \infty \).
2. Move down the tree, selecting the best value at each level.
3. At the leaves, the values are the terminal values.
4. Backtrack, updating \(\alpha \) and \(\beta \) as needed.

The values at each node represent the best evaluated value so far. The final decision is made at the root node, based on the max or min of the evaluated values.
\(\alpha\) - the best value for \textbf{max} along the path

\(\beta\) - the best value for \textbf{min} along the path
α - the best value for max along the path
β - the best value for min along the path
\[\alpha = -\infty \quad \beta = -29 \]

\[\alpha = -43 \quad \beta = 0 \]

\[\alpha = -43 \quad \beta = -75 \]

\[\alpha = -43 \quad \beta = 0 \]

\[\alpha = -29 \quad \beta = -29 \]

\[\alpha = -37 \quad \beta = -37 \]

\[\alpha = -43 \quad \beta = -43 \]

\[\alpha = -75 \quad \beta = -75 \]

\[\alpha = -21 \quad \beta = -51 \]

\[\alpha = 58 \quad \beta = -46 \]

\[\alpha = -3 \quad \beta = -13 \]

\[\alpha = 26 \quad \beta = 79 \]

\[\beta < \alpha \quad \text{prune!} \]

\[\text{max} \quad \text{min} \]

\[\alpha - \text{the best value for max along the path} \]
\[\beta - \text{the best value for min along the path} \]
α - the best value for max along the path

β - the best value for min along the path

\[\alpha = -43 \quad \beta = -43 \]

\[\alpha = -43 \quad \beta = -37 \]

\[\alpha = -43 \quad \beta = -75 \]
$\alpha = -\frac{43}{0}$

$\beta = \infty$

$\alpha = -\frac{43}{0}$

$\beta = -\frac{21}{0}$

$\alpha = -\frac{43}{0}$

$\beta = 58$

$\alpha = -\frac{43}{0}$

$\beta = \infty$

$\alpha = -\frac{43}{0}$

$\beta = \infty$
α - the best value for max along the path
β - the best value for min along the path

β < α prune!
Properties of α-β

- Pruning does not affect final result. This means that it gets the exact same result as does full minimax.
- Good move ordering improves effectiveness of pruning
- With "perfect ordering," time complexity = $O(b^{m/2})$
 \rightarrow doubles depth of search
- A simple example of reasoning about ‘which computations are relevant’ (a form of metareasoning)
Shallow Search Techniques

1. limited search for a few levels
2. reorder the level-1 successors
3. proceed with α-β minimax search
Good Enough?

- Chess:
 - branching factor $b \approx 35$
 - game length $m \approx 100$
 - search space $b^{m/2} \approx 35^{50} \approx 10^{77}$

- The Universe:
 - number of atoms $\approx 10^{78}$
 - age $\approx 10^{18}$ seconds
 - 10^8 moves/sec $\times 10^{78} \times 10^{18} = 10^{104}$

The universe can play chess - can we?
Cutting off Search

MinimaxCutoff is identical to **MinimaxValue** except

1. *Terminal?* is replaced by *Cutoff?*
2. *Utility* is replaced by *Eval*

Does it work in practice?

\[b^m = 10^6, \quad b=35 \Rightarrow m=4 \]

4-ply lookahead is a hopeless chess player!

- 4-ply \(\approx \) human novice
- 8-ply \(\approx \) typical PC, human master
- 12-ply \(\approx \) Deep Blue, Kasparov
Evaluation Functions

Tic Tac Toe

• Let p be a position in the game
• Define the utility function $f(p)$ by
 – $f(p) =$
 • largest positive number if p is a win for computer
 • smallest negative number if p is a win for opponent
 • $RCDC - RCDO$
 – where $RCDC$ is number of rows, columns and diagonals in which computer could still win
 – and $RCDO$ is number of rows, columns and diagonals in which opponent could still win.
Sample Evaluations

• X = Computer; O = Opponent
Evaluation functions

• For chess/checkers, typically linear weighted sum of features

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

e.g., \(w_1 = 9 \) with

\(f_1(s) = (\text{number of white queens}) - (\text{number of black queens}), \)

etc.
Example: Samuel’s Checker-Playing Program

- It uses a linear evaluation function
 \[f(n) = a_1 x_1(n) + a_2 x_2(n) + \ldots + a_m x_m(n) \]

For example: \(f = 6K + 4M + U \)
- \(K \) = King Advantage
- \(M \) = Man Advantage
- \(U \) = Undenied Mobility Advantage (number of moves that Max where Min has no jump moves)
Samuel’s Checker Player

• In learning mode

 – Computer acts as 2 players: A and B
 – A adjusts its coefficients after every move
 – B uses the static utility function
 – If A wins, its function is given to B
• How does A change its function?

1. Coefficient replacement

$$\Delta(node) = \text{backed-up value}(node) - \text{initial value}(node)$$

- if $\Delta > 0$ then terms that contributed **positively** are given more weight and terms that contributed negatively get less weight
- if $\Delta < 0$ then terms that contributed **negatively** are given more weight and terms that contributed positively get less weight
Samuel’s Checker Player

• How does A change its function?
 2. Term Replacement
 38 terms altogether
 16 used in the utility function at any one time

Terms that **consistently correlate low** with the function value are removed and added to the end of the term queue.

They are replaced by terms from the front of the term queue.
Additional Refinements

• **Waiting for Quiescence**: continue the search until no drastic change occurs from one level to the next.

• **Secondary Search**: after choosing a move, search a few more levels beneath it to be sure it still looks good.

• **Openings/Endgames**: for some parts of the game (especially initial and end moves), keep a catalog of best moves to make.
Chess: Rich history of cumulative ideas

- Minimax search, evaluation function learning (1950).
- Alpha-Beta search (1966).
- Transposition Tables (1967).
- Iterative deepening DFS (1975).
- End game data bases, singular extensions (1977, 1980)
- Parallel search and evaluation (1983, 1985)
- Circuitry (1987)
Chess game tree

Initial position

20 positions after White's first move

400 positions after one move by each side

Opening stage: Databases for opening moves usually cover the first 5-15 moves

Databases for all 5 and some 6 piece endgames

Endgame stage

Middlegame stage:
Moves in the middlegame are selected by carrying out a large search guided by the minimax algorithm.

The search tree fans out at an average of 30-40 moves at each position in the tree.
Horizon Effect

The problem with abruptly stopping a search at a fixed depth is called the 'horizon effect'
Problem with fixed depth Searches

if we only search n moves ahead, it may be possible that the catastrophe can be delayed by a sequence of moves that do not make any progress

also works in other direction (good moves may not be found)
Quiescence Search

This involves searching past the terminal search nodes (depth of 0) and testing all the non-quiescent or 'violent' moves until the situation becomes calm, and only then apply the evaluator.

Enables programs to detect long capture sequences and calculate whether or not they are worth initiating.

Expand searches to avoid evaluating a position where tactical disruption is in progress.
End-Game Databases

• Ken Thompson - all 5 piece end-games
• Lewis Stiller - all 6 piece end-games
 – Refuted common chess wisdom: many positions thought to be ties were really forced wins -- 90% for white
 – Is perfect chess a win for white?
The MONSTER

White wins in 255 moves
(Stiller, 1991)
Deterministic Games in Practice

• Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used a precomputed endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 444 billion positions. Checkers is now solved!

• Chess: Deep Blue defeated human world champion Garry Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply. Current programs are even better, if less historic!

• Othello: human champions refuse to compete against computers, who are too good.

• Go: human champions refuse to compete against computers, who are too bad. In Go, $b > 300$, so most programs use pattern knowledge bases to suggest plausible moves, along with aggressive pruning.
Game of Go

human champions refuse to compete against computers, because software is too bad.

<table>
<thead>
<tr>
<th></th>
<th>Chess</th>
<th>Go</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of board</td>
<td>8 x 8</td>
<td>19 x 19</td>
</tr>
<tr>
<td>Average no. of moves per game</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>Avg branching factor per turn</td>
<td>35</td>
<td>235</td>
</tr>
<tr>
<td>Additional complexity</td>
<td></td>
<td>Players can pass</td>
</tr>
</tbody>
</table>
Recent Successes in Go

- MoGo defeated a human expert in 9x9 Go
- Still far away from 19x19 Go.

- Hot area of research
- Leading to development of novel techniques
 – Monte Carlo tree search (UCT)
Other Games

<table>
<thead>
<tr>
<th>Perfect Information</th>
<th>Deterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td>chess, checkers, go, othello</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Imperfect Information</th>
<th>Chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>stratego</td>
<td>bridge, poker, scrabble</td>
</tr>
<tr>
<td>backgammon, monopoly</td>
<td></td>
</tr>
</tbody>
</table>
Games of Chance

- What about games that involve chance, such as
 - rolling dice
 - picking a card
- Use three kinds of nodes:
 - max nodes
 - min nodes
 - chance nodes
Games of Chance
Expectiminimax

\[\text{expectimax}(c) = \sum P(d_i) \max \text{ backed-up-value}(s) \]
\[\text{expectimin}(c') = \sum P(d_i) \min \text{ backed-up-value}(s) \]

\[\text{chance node with max children} \]

\[S(c,d_i) \]
Example Tree with Chance

max

chance

min

chance

max

leaf 3 5 1 4 1 2 4 5
Complexity

• Instead of $O(b^m)$, it is $O(b^m n^m)$ where n is the number of chance outcomes.

• Since the complexity is higher (both time and space), we cannot search as deeply.

• Pruning algorithms may be applied.
Imperfect Information

- E.g. card games, where opponents’ initial cards unknown
- Idea: For all deals consistent with what you can see
 - compute the minimax value of available actions for each of possible deals
 - compute the expected value over all deals
Summary

• Games are fun to work on!

• They illustrate several important points about AI.

• Perfection is unattainable → must approximate.

• Game playing programs have shown the world what AI can do.