Informed search algorithms

Chapter 3
(Based on Slides by Stuart Russell, Richard Korf and UW-AI faculty)
Informed (Heuristic) Search

Idea: be **smart** about what paths to try.
Blind Search vs. Informed Search

• What’s the difference?

• How do we formally specify this?

A node is selected for expansion based on an evaluation function that estimates cost to goal.
General Tree Search Paradigm

function tree-search(root-node)
 fringe ← successors(root-node)
 while (notempty(fringe))
 {node ← remove-first(fringe)
 state ← state(node)
 if goal-test(state) return solution(node)
 fringe ← insert-all(successors(node),fringe) }
 return failure
end tree-search
function tree-search(root-node)
 fringe ← successors(root-node)
 explored ← empty
 while (notempty(fringe))
 {node ← remove-first(fringe)
 state ← state(node)
 if goal-test(state) return solution(node)
 fringe ← insert-all(successors(node), fringe, if node not in explored)
 explored ← insert(node, explored)
 }
 return failure
end tree-search
Best-First Search

- Use an evaluation function $f(n)$ for node n.
- Always choose the node from fringe that has the lowest f value.
Best-first search

• A search strategy is defined by picking the order of node expansion
• Idea: use an evaluation function $f(n)$ for each node
 – estimate of "desirability"

 → Expand most desirable unexpanded node

• Implementation:
 Order the nodes in fringe in decreasing order of desirability

• Special cases:
 – greedy best-first search
 – A* search
Romania with step costs in km

<table>
<thead>
<tr>
<th>Location</th>
<th>Distance to Bucharest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Dobrota</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>10</td>
</tr>
<tr>
<td>Rimnicu Vâlcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Greedy best-first search

• Evaluation function \(f(n) = h(n) \) (heuristic)
 = estimate of cost from \(n \) to \textit{goal}

• e.g., \(h_{SLD}(n) \) = straight-line distance from \(n \) to Bucharest

• Greedy best-first search expands the node that \textit{appears} to be closest to goal
Properties of greedy best-first search

- **Complete?**
- No – can get stuck in loops, e.g., Iasi → Neamt → Iasi → Neamt →
- **Time?**
- $O(b^m)$, but a good heuristic can give dramatic improvement
- **Space?**
- $O(b^m)$ -- keeps all nodes in memory
- **Optimal?**
- No
A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function $f(n) = g(n) + h(n)$
 - $g(n) = \text{cost so far to reach } n$
 - $h(n) = \text{estimated cost from } n \text{ to goal}$
 - $f(n) = \text{estimated total cost of path through } n \text{ to goal}$
A* for Romanian Shortest Path
Admissible heuristics

• A heuristic \(h(n) \) is **admissible** if for every node \(n \),
\[h(n) \leq h^*(n), \]
where \(h^*(n) \) is the true cost to reach the goal state from \(n \).

• An admissible heuristic **never overestimates** the cost to reach the goal, i.e., it is **optimistic**

• Example: \(h_{SLD}(n) \) (never overestimates the actual road distance)

• **Theorem**: If \(h(n) \) is admissible, A* using **TREE-SEARCH** is optimal
Consistent Heuristics

• $h(n)$ is consistent if
 – for every node n
 – for every successor n' due to legal action a
 – $h(n) \leq c(n,a,n') + h(n')$

• Every consistent heuristic is also admissible.

• **Theorem**: If $h(n)$ is consistent, A^* using `GRAPH-SEARCH` is optimal
Properties of A*

• Complete? Yes (unless there are infinitely many nodes with $f \leq f(G)$)

• Time? Exponential

• Space? Keeps all nodes in memory

• Optimal? Yes (depending upon search algo and heuristic property)

http://www.youtube.com/watch?v=huJEgJ82360
Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n) =$ number of misplaced tiles
- $h_2(n) =$ total Manhattan distance
 (i.e., no. of squares from desired location of each tile)

\[
\begin{align*}
\text{Start State} & \\
7 & 2 & 4 \\
5 & 6 & \\
8 & 3 & 1 \\
\end{align*}
\]

\[
\begin{align*}
\text{Goal State} & \\
1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8 \\
\end{align*}
\]

- $h_1(S) =$?
- $h_2(S) =$?
Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance
 (i.e., no. of squares from desired location of each tile)

- $h_1(S) = 8$
- $h_2(S) = 3+1+2+2+2+3+3+2 = 18$
Dominance

- If $h_2(n) \geq h_1(n)$ for all n (both admissible) then h_2 dominates h_1
- h_2 is better for search

- Typical search costs (average number of node expanded):

 - $d=12$
 IDS = 3,644,035 nodes
 $A^*(h_1) = 227$ nodes
 $A^*(h_2) = 73$ nodes
 - $d=24$
 IDS = too many nodes
 $A^*(h_1) = 39,135$ nodes
 $A^*(h_2) = 1,641$ nodes
Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem.

- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem.

- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.

- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.
Memory Problem?

• Iterative deepening A*
 – Similar to ID search
Non-optimal variations

• Use more informative, but inadmissible heuristics

• Weighted A*
 – $f(n) = g(n) + w.h(n)$ where $w > 1$
 – Typically $w = 5$.
 – Solution quality bounded by w for admissible h
Sizes of Problem Spaces

<table>
<thead>
<tr>
<th>Problem</th>
<th>Nodes</th>
<th>Brute-Force Search Time (10 million nodes/second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Puzzle</td>
<td>10^5</td>
<td>.01 seconds</td>
</tr>
<tr>
<td>2^3 Rubik’s Cube</td>
<td>10^6</td>
<td>.2 seconds</td>
</tr>
<tr>
<td>15 Puzzle</td>
<td>10^{13}</td>
<td>6 days</td>
</tr>
<tr>
<td>3^3 Rubik’s Cube</td>
<td>10^{19}</td>
<td>68,000 years</td>
</tr>
<tr>
<td>24 Puzzle</td>
<td>10^{25}</td>
<td>12 billion years</td>
</tr>
</tbody>
</table>
Performance of IDA* on 15 Puzzle

• Random 15 puzzle instances were first solved optimally using IDA* with Manhattan distance heuristic (Korf, 1985).
• Optimal solution lengths average 53 moves.
• 400 million nodes generated on average.
• Average solution time is about 50 seconds on current machines.
Limitation of Manhattan Distance

• To solve a 24-Puzzle instance, IDA* with Manhattan distance would take about 65,000 years on average.
• Assumes that each tile moves independently
• In fact, tiles interfere with each other.
• Accounting for these interactions is the key to more accurate heuristic functions.
Example: Linear Conflict

Manhattan distance is 2+2=4 moves
Example: Linear Conflict

Manhattan distance is 2+2=4 moves
Example: Linear Conflict

Manhattan distance is $2+2=4$ moves
Example: Linear Conflict

Manhattan distance is 2+2=4 moves
Example: Linear Conflict

Manhattan distance is 2+2=4 moves
Example: Linear Conflict

Manhattan distance is 2+2=4 moves
Example: Linear Conflict

Manhattan distance is $2+2=4$ moves, but linear conflict adds 2 additional moves.
Linear Conflict Heuristic

• Hansson, Mayer, and Yung, 1991
• Given two tiles in their goal row, but reversed in position, additional vertical moves can be added to Manhattan distance.
• Still not accurate enough to solve 24-Puzzle
• We can generalize this idea further.
More Complex Tile Interactions

M.d. is 19 moves, but 31 moves are needed.

M.d. is 20 moves, but 28 moves are needed.

M.d. is 17 moves, but 27 moves are needed.
Pattern Database Heuristics

- Culberson and Schaeffer, 1996
- A pattern database is a complete set of such positions, with associated number of moves.
- e.g. a 7-tile pattern database for the Fifteen Puzzle contains 519 million entries.
Heuristics from Pattern Databases

31 moves is a lower bound on the total number of moves needed to solve this particular state.
Combining Multiple Databases

- 31 moves needed to solve red tiles
- 22 moves need to solve blue tiles

Overall heuristic is maximum of 31 moves.
Additive Pattern Databases

- Culberson and Schaeffer counted all moves needed to correctly position the pattern tiles.
- In contrast, we count only moves of the pattern tiles, ignoring non-pattern moves.
- If no tile belongs to more than one pattern, then we can add their heuristic values.
- Manhattan distance is a special case of this, where each pattern contains a single tile.
Example Additive Databases

The 7-tile database contains 58 million entries. The 8-tile database contains 519 million entries.
Computing the Heuristic

Overall heuristic is sum, or 20+25=45 moves

20 moves needed to solve red tiles

25 moves needed to solve blue tiles
Performance on 15 Puzzle

• IDA* with a heuristic based on these additive pattern databases can optimally solve random 15 puzzle instances in less than 29 milliseconds on average.
• This is about 1700 times faster than with Manhattan distance on the same machine.
Assignment 1

- Flashlight Problem
- Do not use pattern database heuristics