An Analysis of Methods in Feature Selection and Classification Algorithms for Spam Detection
Andrew Scott Menz
School of Computer Science, Iowa State University
Ames, Iowa 50014
andymenz@cs.iastate.edu
Abstract

The detection of spam email is a problem of growing significance to both corporate and public institutions. The problem is a classic case of two-class text classification and lends itself to many feature selection and machine learning classification algorithms. Optimal feature selection involves areas of text classification including using mutual information to determine key features, choosing an optimal number of features, and choosing an appropriate feature vector type. Once feature selection is complete, there are a wide variety of machine learning algorithms that can be used for classification. Among the classifiers most commonly implemented for this problem are Naïve Bayesian networks and a wide variety of boosting algorithms including AdaBoost.M1. This paper investigates the range and effectiveness of various methods of feature selection and classification algorithms and attempts to find the optimal combination of both.

Spam Email
Spam is unsolicited email generally sent in bulk via large mailing lists. Aside from cluttering inboxes and annoying its recipients, spam also poses more serious moral, legal, and monetary threats. Some spam includes links to pornographic websites which may then be viewed by children, while others are used by con artists and thieves in email scams. Spam also poses a monetary threat to public and corporate institution when email servers are pirated by spammers and used to distribute spam – costing the institution bandwidth and processing power. In addition, dial-up users must pay for the time used to delete spam, and a company’s productivity may be affected by the amount of time each employee spends deleting spam. As these problems pose a serious threat to the effectiveness of electronic mail, a weighted effort has been made towards the detection and elimination of spam email. The most significant of these efforts is the use of machine learning algorithms in spam filtering.

In order to use these machine learning algorithms, the problem of feature selection must first be introduced. The focus of many text classification algorithms is determining the appropriate measure to classify a document. These measures are known as “features” and may include the time the document was written, who wrote it, the document format, individual words, groups of words, or a variety of other properties useful in classifying the document. This research is focused on the selection of single word features, and hereafter the term “feature” is used interchangeably with the term “word.” Naïve approaches to feature selection may include classifying documents according to their inclusion words in a precompiled list of words, or the frequency with which such words appear in a document. For example, such an approach may lead one to construct a filter as follows: if a document contains “XXX” , or 4 instances of “XXX” it is classified as spam. This approach is easily defeated by clever spammers who may fool the filter with tokens such as “—XxX—“. In contrast, a spam filter which is trained on a corpus of email that includes spam and legitimate emails has the ability to determine features of spam which may not be intuitive. For example, the feature “!”, or “ff000” (html for bright red) may be very useful in classifying a message as spam [5]. The goal of feature selection is to choose the features of the document that are most effective in classifying the document. There are several methods for determining the optimal feature selection of a text document, many of which are discussed below.

Once the features are chosen, a machine learning algorithm uses the features to build a classifier to be used in future classification. Several algorithms have been used for spam classification, among the most effective are Naïve Bayesian networks, the J48 algorithm, and any of a number of boosting algorithms [1][2][7]. Boosting uses an ensemble of PAC weak learners for classification. Roughly speaking, a PAC weak learner is any classifier that classifies with accuracy only slightly above 50%. Through combining weak learners, a boosting algorithm is guaranteed to classify within a given margin of error – if given enough time [3]. A Naïve Bayesian network and ADAboost.M1 (a boosting algorithm) were evaluated in this research. More information on the advantages of each algorithm is detailed below.

For this research, several feature selection methods we used to create feature vectors (via the FeatureFinder.java program) which were then passed to machine learning algorithms for classification. Various combinations of feature selection methods and classification algorithms were implemented and their classification accuracy results analyzed.
In the proceeding section, the corpus used for this research is described. Following that is a description of the feature selection methods analyzed in the experiments and a brief description of how these features are implemented in the FeatureFinder program which was used in all tests. The classification algorithms used in testing the feature vectors output by FeatureFinder are defined in the section “Classification Algorithms.” Finally the structure for all experiments is stated and experimental results given.
Corpus
The Ling-Spam corpus used for this research is the same as used by [1] and includes 2893 messages: 2412 legitimate emails and 481 spam emails. The legitimate emails are correspondences from a linguistics forum’s archive, and each spam message was classified by hand to ensure minimum noise in the data. The corpus is useful in that it is sufficiently large to build classifiers of many learning algorithms, and it contains a percentage of spam roughly equal to estimated averages [1]. However, three issues threaten its generality as a corpus of “average” emails. Firstly, the source of the legitimate emails (an archive of message from a linguistics forum) leads to messages that contain an overabundance of fairly uncommon words. As data later in the document shows, a useful feature in determining class in this corpus is the word “linguistic,” a term not commonly seen in average email. Secondly, the corpus is somewhat dated and may not reflect the most recent evolution of spam. Spam cannot be viewed as a static class as spammers are constantly changing the face of spam in order to fool filters. Thirdly, the Ling-Spam corpus does not include the entire email message – only the subject and the body of the message. As a result of this some information which may be useful in classification such as SMTP headers “from”, “to”, etc. are lost. Thus it should be noted that the corpus is useful for evaluating the performance of feature selection and classification algorithms, but not for training real-world classifiers. Despite these shortcomings, Ling-Spam works well for this research as accuracy is determined via cross-validation, rather than though a test corpus of generic emails.

Feature Selection
Several methods exist for optimal feature selection of text documents. The program FeatureFinder.java was developed for this research as a tool for implementing and analyzing several of these methods. Among those analyzed in this research are word stemming, stop terms, mutual information feature selection, selecting the optimal number of features, and three types of feature vectors: Boolean, Term Frequency (TF), and Term Frequency – Inverse Document Frequency (TFIDF).

Stemming: Text classification accuracy can often be improved by using a word stemming algorithm. In Porter’s [9] words, stemming is the act of “removing suffixes by automatic means” and is a method with close ties to linguistics [8]. When classifying a document by features, it is often useful to analyze only the root of any given word. For example, a document containing the word “building” and another document containing the word “builder” may be more accurately classified if both messages are flagged as containing the root word “build.” Classification accuracy can often be improved through the use of word stemming; however stemming algorithms are not entirely reliable. In addition, stemming may remove the tense of the word, which may be useful in classification [2]. FeatureFinder implements a variant of Porter’s algorithm for word stemming.

Stop Terms: Another method used in simplifying the task of text classification is stop terms. A stop list is a collection of words that are not used in feature selection (i.e. are ignored in the algorithm). A stop list may include words such as “a”, “as”, “the”, “for”, “and”, etc. that are not useful in classification because of their high frequency in all documents, regardless of class. Stop terms can increase the computational speed of many algorithms, while decreasing memory requirements, but may affect accuracy if the stop list is not carefully chosen. For example, it is not obvious if the term “now”, which may appear frequently in documents of both classes, should be in the stop list. Although mildly helpful from a computational aspect, some researchers argue against the usefulness of this method [2]. FeatureFinder implements stop terms based on program parameters and includes the following stop list: “is”, “a”, “of”, “the”, “an”, “and.”

Mutual Information Based Feature Selection: Once all the data from a corpus is read and stemming and stop terms have been applied to all words, feature selection begins. The goal of feature selection is to choose the most valuable features from all documents where a feature’s value is based on its usefulness in classifying a document in the corpus. The impetus behind finding the best features for classification, rather than using all features for classification, is that using all features requires a great deal of computational time and space. Assume all features are used for classification and there are M messages and N total features. Then the space and time complexity of any algorithm that classifies according to this data is O(M*N) in terms of computational space and time complexity. If, however, some constant number, c, of features is used for classification, then the complexity for time and space becomes O(c*M) = O(M). In practice, minimizing these time and space bounds becomes crucial and can significantly impact the performance of both the feature selection and classification algorithms.

A feature’s value can be measured in several ways; the most common methods involve computing its entropy, or information gain. In this research, the mutual information (MI) was calculated for each feature and the features with the highest MI were selected for use in the feature vector – which in turn is later used for classification. In rough terms, mutual information measures the amount of information feature1 contains about feature2. In this case, feature1 can be viewed as a word in the document, and feature2 can be viewed as the class label of the document (spam/legitimate). Below is a brief description of how FeatureFinder inputs features from the corpus and determines the MI for each feature:

1. Input the corpus and implement word stemming and

stop terms

2. Go through every message and store each feature (word)

fm in F = {f1, f2,…, fN}

3. For each message i, create a Boolean feature vector Vi = {v1, v2,…, vN} where vj = true implies message I contains feature fj .

4. Compute the MI for each feature fm:

MI(fm ,C) =
Σ P(fm=x,C=c} *
log P(fm=x,C=c)/((P(fm=x)*P(C=c))
Where C is the class of the message (either spam or legitimate) and the summation Σ is over x € {true, false},
c € {spam, legitimate}.

Feature Vector Size: Once the MI for each feature has been calculated it is possible to take the top X features (X in the naturals) to create the format for the feature vectors. A feature vectors F has the form {f1, f2,…, fX} where f1 corresponds to the feature with the greatest MI, and fX corresponds to the feature with the Xth greatest MI. The values that any fi can take are described in the proceeding section. Choosing the optimal number of features to use in the feature vector is another problem that must be considered. In experiments performed by [11], performance of classification algorithms increased as the number of features used decreased from the total number of features for several forms of feature selection, except mutual information. That is, classification using a number of features fewer than the total, where features are chosen by mutual information value, was not necessarily better in terms of classification accuracy. This research tests these results by analyzing performance of classifiers using fewer than the total number of features available.

Feature Vector Type: Another variant in constructing the feature vector is the type of feature vector used. [2] mentions three types of feature vectors that can be used: Boolean, Term Frequency (TF), and Term Frequency – Inverse Document Frequency (TFIDF) feature vectors. Recall from the previous section that FeatureFinder uses one feature vector F = {f1, f2,…, fX} per message. Using Boolean feature vectors, f1 = true implies that the message to which this feature vector corresponds contains at least one instance of the feature f1 . TF feature vectors use fi € Naturals to denote the number of times feature fi appears in that message. TF-IDF feature vectors use fi € Reals where fi is the inverse document frequency of the feature with the ith greatest MI:
fi = log(|D| / TF(fi))
where |D| is the total number of documents and TF(fi) is the number of time feature fi appears in all documents.

Once the Boolean feature vectors have been calculated, they may be written to a file and then used by a classification algorithm. For TF and TF-IDF feature vectors FeatureFinder has the ability to discretize the feature vectors’ values into 2-value attributes before writing the output data to a file. Discretizing the feature vectors into 2 nominal values decreases the time complexity of the classifiers and may even improve classification accuracy. FeatureFinder allows the user to choose which type of feature vector to use and whether output data should be discretized before being written in Weka’s .arff format. Discretization is done via Weka’s DiscretizeFilter class.
Classification Algorithms
Once feature selection is finished, classification algorithms may then be run on the modified data. Three algorithms commonly used in spam detection research are Naïve Bayesian networks and various boosting algorithms. For this research two classifiers were used: Naïve Bayesian, and ADABoost.M1 using Naïve Bayesian weak learners. The Naïve Bayesian algorithm was chosen because of its simplicity and success in other classification problems. The Naïve Bayesian algorithm makes the assumption that all feature probabilities are conditionally independent of other features (excluding the class). Although this assumption is somewhat unfounded for this environment (as words often have a strong dependency on other words in their neighborhood), the success of Naïve Bayesian networks in other classification problems makes it worthy of consideration. The boosting algorithm ADABoost.M1 can be used to test the effectiveness of boosting algorithms in spam filtering. ADABoost.M1 uses an ensemble of PAC weak learners (in this case Naïve Bayesian) to classify data. The performance of ADABoost.M1 has been shown to exceed or meet that of various other boosting algorithms [10], thus making it a good choice for this research.
Performance Measure
The means of measuring the performance of a spam classification algorithm requires some understanding of the environment of the classifier. For example, the accuracy of a typical distribution classifier is can be determined by C/T where C = the number of instances correctly classified, and T = total number of instances. In spam classification, misclassifying a legitimate email may be more harmful than misclassifying a spam email. For instance, if a filter uses a classifier to determine which emails to delete, a legitimate message that is misclassified and deleted is more harmful to the filter’s user than a spam email that is not deleted. Methods involving weighted performance measures have been used in other research (see [1] and [2] for a more in-depth discussion of the technique), but are not used in this experiment. Instead, the assumption is made that misclassification of either spam or legitimate email is equally erroneous.
Experiment
The focus of this research was to establish the difference in performance between the various methods of feature selection and classification discussed above. First, FeatureFinder was run on the Ling-Spam corpus using a specific combination of feature selection methods. The output from FeatureFinder was then sent to the two classification algorithms and their accuracy was analyzed. Below is a list of abbreviation for the feature selection and classification algorithms used in this research. The meaning of these abbreviations (which are used in the remainder of this document) should be intuitive.

Feature Selection

Feature Vector Type - {B, TF, TFIDF}

Discretization – {T / F}

Stemming - {T / F}

Stop Terms – {T / F}

Feature Vector Size – [1, N] where N = total feature count

Classification

NaiveBayes – weka.classifiers.NaiveBayes

ADAboost – weka.classifiers.AdaBoostM1 (using

NaiveBayes weak learners)

In order to determine the accuracy differences using combinations of these methods, the experiments conducted in this research used a somewhat arbitrary baseline of methods for the sake of comparison. The baseline for feature selection is:
Feature Vector Type = B

Discretization = T

Stemming = F

Stop Terms = F

Feature Vector Size = 500

Note that Feature Vector Size = 500 is not necessarily the optimal feature vector size, but appeared to give modest results (see method used in [7]).

Experimental Results
Below are the results of some of the more significant tests performed using the given configurations in FeatureFinder and then classifying separately with both classification algorithms. All classification algorithms use 10-fold cross validation, and ADAboost uses an ensemble of NaiveBayes learners with a maximum of 10 boost iterations. Note that only feature selection methods that varied from the baseline are listed below, and data for classification algorithms represents unweighted accuracy on cross validation. More complete output data can be found in the program documentation.

0. Baseline

Feature Vector Type = B
Discretization = T
Stemming = F

Stop Terms = F

Feature Vector Size = 500

NaiveBayes

95.1557 %

ADAboost

98.9619 %

1. Feature Vector Type = TF

NaiveBayes

95.5017 %

ADAboost

97.5779 %

2. Feature Vector Type = TFIDF

NaiveBayes

95.5017 %

ADAboost

97.5779 %

3. Stemming = T

NaiveBayes

94.1176 %

ADAboost

95.5017 %

4. Stop Terms = T

NaiveBayes

95.1557 %

ADAboost

98.9619 %

5. Feature Vector Size = 1000

NaiveBayes

94.8097 %

ADAboost

95.8478 %

6. Feature Vector Size = 750

NaiveBayes

94.4637 %

ADAboost

94.4637 %

7. Feature Vector Size = 250

NaiveBayes

95.8478 %

ADAboost

98.9619 %

8. Feature Vector Size = 100

NaiveBayes

95.5017 %

ADAboost

97.2318 %

9. Feature Vector Size = 50

NaiveBayes

96.5398 %

ADAboost

97.9239 %

10. Feature Vector Size = 20

NaiveBayes

97.2318 %

ADAboost

97.5779 %

11. Feature Vector Type = TF

Feature Vector Size = 20
NaiveBayes

96.8858 %
ADAboost

96.5398 %
12. Feature Vector Type = TFIDF

Feature Vector Size = 20
NaiveBayes

96.8858 %
ADAboost

96.5398 %

13. Stemming = T

Feature Vector Size = 20
NaiveBayes

96.8858 %
ADAboost

96.8858 %

Feature Vector Type: Boolean feature vectors outperformed TF and TF-IDF vectors in all tests performed, regardless of the configuration of feature selection used. In fact, TF and TF-IDF feature vectors yielded exactly the same cross-validation accuracy results for both NaiveBayes and ADAboost in nearly all tests. This data was surprising since the TF and TF-IDF vectors (when not nominalized) should contain more information about each document than the simpler Boolean feature vectors. One possible explanation for this is that the MI for each feature is calculated using Boolean features vectors, which may bias the selection of features for the final feature vector in favor of a Boolean format.

Discretization: Discretization improved the accuracy of both classifiers for TF and TF-IDF feature vectors in all tests performed. This, too, is surprising as discretization reduces the amount of information the feature vector contains about a document. Again, this may be explained by the use of Boolean feature vectors used to calculate the MI for each feature. Since 2-value discretization was used, discretizing TF and TF-IDF feature vectors in this manner essentially turned them into Boolean feature vectors – which were shown to produce higher accuracy.

Word Stemming: Word stemming reduced the accuracy of classification for both classifiers in all tests. This may be due in part to the relative simplicity of Porter’s stemming algorithm which is not entirely reliable. A more complicated and complete stemming algorithm may help increase the accuracy gain for this method.

Stop Terms: Even with feature vectors of relatively small size (< 100), the use of a stop list had no effect on the accuracy of classification in any of the tests performed. This is likely due to the fact that FeatureFinder uses a small, safe stop list that does not include features likely to appear in any final feature vector. That is, none of the words in the stop list are likely to be used in classification, and thus the stop list has no impact on the classification accuracy of the final feature vector. In addition, the expected decrease in run time for FeatureFinder using the stop list was negligible – again due to the small size of the stop list used.

Feature Vector Size: Modifying the feature vector size proved to be the most useful tool in improving classification accuracy. It was found that for this particular data set, the optimal feature vector size for both classifiers was around 250 - 500 (~95%, ~98%). Interestingly, both classifiers performed very well (~ 97%) for feature vectors as small as 20. This verifies the argument that for some systems, the optimal number of features to use is less than the total number of features available [2]. It was also noted during experimentation that despite a significant increase in run time of both classification algorithms on large (> 1000) feature vectors, accuracy decreased - whereas very small feature vectors yielded low run times and fairly accurate classifiers.

Classification Algorithms: As expected, ADAboost outperformed NaiveBayes in every test, regardless of feature selection configurations. It is interesting to note that the margin by which ADAboost increased accuracy over NaiveBayes for very small feature vectors decreased to almost 0, whereas the accuracy of ADAboost was significantly higher than NaiveBayes for larger feature vectors. The success of NaïveBayes on small feature vectors can be attributed to its assumption that all features are mutually independent. For large feature vectors, there is a high likelihood that two words in the vector are dependent. This likelihood decreases for small feature vectors since any two words are less likely to be within each other’s neighborhood in the document, thus their dependency is decreased, and the NaiveBayes assumption is justified.

Optimal Configuration: In this experiment it was found that the optimal accuracy was obtained using 250 Boolean feature vectors, with no application of word stemming or stop terms, and classifying with ADAboost. This configuration yielded an unweighted cross validation accuracy of 98.96%, which is comparable to results obtained by [1], [2], [5], [6], and [7].
Conclusion

In conclusion, the use of a boosting algorithm and the finding of optimal feature vector size seem to be crucial steps in accurately classifying spam email. One surprising theme plucked from the test data is that higher complexity does not necessarily yield higher accuracy. For example, Boolean feature vectors contain less information about a document than TF and TFIDF feature vectors, but seem to be more useful in successful classification. Yet when TF and TF-IDF feature vectors are used, accuracy can be increased by simplifying them with discretization. Also, the addition of word stemming and stop terms requires additional algorithm complexity, yet does little to improve classification accuracy. One contrary to this theme is that the use of multiple weak learners often yields accuracy greater than that obtained with a single weak learner. In this case, ADAboost using an ensemble of NaiveBayes classifiers significantly improved accuracy over a single NaiveBayes classifier, at the expense of computational time.

This research exposes some basic principles for creating an optimal spam filter, but leaves several areas for investigation. Among them are the use of a more sophisticated stemming algorithm and the use of different boosting algorithms. One other interesting extension of this research involves the study of algorithms to determine the optimal number of features for a given data set. Much research has already been conducted in this field which could significantly improve the performance of existing spam filtering techniques.
References

[1] I.Androutsopoulos, G. Paliouras, V. Karkaletsis, G. Sakkis, C.D. Spyropoulos, P.Stamatopoulos, “Learning to Filter Spam E-Mail: A Comparison of a Naive Bayesian and a Memory-Based Approach” in

Proceedings of the Workshop on Machine Learning and Textual Information Access, 4th European Conference on Principles and Practice of Knowledge Discovery in Databases, pages 1-13

[2] X. Carreras, L. Marquez, “Boosting Trees for Anti-Spam Email Filtering” in Proceedings of RANLP-01, 4th International Conference on Recent Advances in Natural Language Processing.
[3] R. Meir, G. Rätsch, “An introduction to boosting and leveraging” in Advanced Lectures on Machine Learning, LNCS, pages 119-184.
[4] M. Zaffalon, M. Hutter, “Robust Feature Selection by Mutual Information Distributions”
[5] P. Graham, “A Plan for Spam” [web page] August 2002; http://www.paulgraham.com/spam.html, [Accessed 23 May 2003]

[6] P. Graham “Better Bayesian Filtering” [web page] January 2003; http://www.paulgraham.com/better.html, [Accessed 23 May 2003]
[7] M. Sahami, S. Dumais, D. Heckerman, Horvitz, “A Bayesian Approach to Filtering Junk E-Mail” in Learning for Text Categorization Workshop. AAAI Technical Report WS-98-05.
[8] W. Kraaij and R. Pohlmann, "Viewing Stemming as Recall Enhancement" in Proceedings of ACM-SIGIR96, pages 40-48, 1996
[9] M.F. Porter, “An algorithm for suffix stripping” ; Program, 14 (3), pages 130-137
[10] Y. Freund, R. E. Schapire, “Experiments with a New Boosting Algorithm”; AT&T Research
[11] Y. Yang, J. O. Pedersen, “A Comparative Study of

Feature Selection in Text Categorization” in Proceedings of the Fourteenth International Conference on Machine Learning, 1997

