FeatureFinder Documentation

FeatureFinder.java is designed to convert the Ling-Spam corpus into feature vectors based on a variety of feature selection methods which the user controls. These feature vectors are then stored in .arff format for easy classification by Weka classifiers. Below are some basic notes on using FeatureFinder and a brief description of the codebase. Note that the code is documented very well, so this document does not go into great detail on the inner workings of the code. All code, except the Utilities class, was written by Andy Menz.

Using FeatureFinder
1. Compile FeatureFinder using:

javac FeatureFinder.java

2. Make sure that the Ling-Spam directory is in the same directory as FeatureFinder.class and is in this
order "Ling-Spam/lingspam_public/bare/part#" where # in [1,10]
3. To see a list of the parameters and their uses run:

java FeatureFinder
4. Run FeatureFinder.class with any valid parameters, e.g.:

java FeatureFinder –Td –ns –stop -250 test123

5. View diagnostic data file “diagnostic_<file_name>.txt” with SpamDiagnostic tool.

See SpamDiagnostic documentation for more details.

6. Run any Weka classifier on the output file “<file_name>.arff”
Parameters
There are several parameters that affect the way FeatureFinder determines the feature vectors and thus the .arff file. Below is a description of each parameter and its use.

Note: The first parameter is required, all others are optional. However, if you use an optional parameter, you must also use all parameters before that parameter. That is, you can’t skip a parameter.

FeatureFinder <feature_vector> [<stem>] [<stop_terms>] [<num_features>] [<file_name>]
 <feature_vector> is the type of feature vector to use

-b = (boolean) feature represented by 1/0 (either a word is in a message or it isn't) (default)

-t = (TF) feature vector counts how many times a word is in a message

-td = (TF, Discretized) same as –t but output data is two-class discretized

-T = (TF-IDF) feature vector uses TF * IDF (inverse document frequency)

-Td = (TF-IDF, Discretized) same as –T but output data is two-class discretized
[<stem>] determines whether words are stemmed or not

-s = features (words) are stemmed

-ns = features (words) are NOT stemmed (default)

[<stop_terms>] determines whether stop terms are used or not

-stop = use stop terms

-nstop = stop terms NOT used

 [<num_features>] is the number of features to use when creating the .arff file

-# = where # is the number of features to use (-500 default)

 [<file_name>] is the name used for the relation and the .arff file

e.g. test123

Note: <file_name> is a string that must contain no spaces

Note: Do not include the .arff extension – FeatureFinder does this automatically
Output
FeatureFinder outputs two files, one for use in Weka classifiers and another which contains diagnostic data.

<file_name>.arff – the resulting feature vectors in .arff format

diagnostic_<file_name>.arff – diagnostic data which can be read with the SpamDiagnostic tool
Classes
Below are two of the three classes used in FeatureFinder including some variables, methods, and a brief description. Note that the code is very well documented so the information below if very brief. The Utilities class, which handles file read/write, was taken from a previous course.
class FeatureFinder – the main class

public static void main(String args[]) - the main method

private static String stem(String sWord) – removes suffix’s using Porters algorithm

see http://telemat.det.unifi.it/book/2001/wchange/download/stem_porter.html

private static boolean stopTerm(String sWord) – returns true is sWord is a stop term

private static double logBase2(double dNumber) – converts dNumber to log base 2

private static void dprint(String sMsg) – prints debug statements if DEBUG = true

private static boolean analyzeArguments(String[] args) – takes the program arguments and sets

class variables to the appropriate values. Also prints parameter values to screen.

static boolean collectInitialFeatures() – reads all messages from the Ling-Spam corpus and creates

a hashtable of all features

static void createBOOLFeatureVectorForAllMsgs() – creates a boolean feature vector for all msgs

static void createTFFeatureVectorForAllMsgs() – creates TF feature vector for all msgs

static void calculateAllFeatureMI() – calculates the MI for all features

static Vector sortFeaturesByMI() – determines the top X features (X = feature vector size)

static void saveTopFeatures(Vector vBestFeatures) – saves the X features with highest MI

static void buildNewFeatureStructures(Vector vBestFeatures) – uses the top X features to create a

new hashtable of features

static void buildARFF() – uses the final feature vector to create a .arff file. Converts feature

values to boolean using 2-value discretization if necessary.

private static void saveDiagnosticData() – saves diagnostic data to a file which can be opened with

SpamDiagnostic.exe. See SpamDiagnostic documentation for more details.
class Diagnostic – makes a diagnostic file for use with SpamDiagnostic program

public static void writeToFile() – write diagnostic data to a file

