Learning Periodic Human Motion through Imitation using Eigenposes

by Rawichote Chalodhorn Ph.D.

Humanoid Robotics Lab, Neural System Group, Dept. of Computer Science & Engineering, University of Washington.

The ultimate goal is to learn a complex task by imitation

Tuesday, February 23, 2010

Q: Can we just replay the motion? A: Apparently not!

Problem No.1

The motion pattern needs to be optimized to match the dynamics of the robot.

But! Direct optimization of full-body "high-dimensional" joint angle data is "intractable".

Problem No.2

We bought a commercial robot, but the company just simply doesn't give us the dynamic model. What should we do?

The dynamic model "is not" available!

Research statement

The research goal is to "generate full-body humanoid motions" while the problem of "intractable of high dimensional data" is inherited and the problem of "absences of dynamic model" is presence.

Proposed framework

Presentation outline

Low-dimensional subspaces
Motion optimization algorithm
Motion optimization results
Motion imitation

Lossless motion imitation

Dimension reduction algorithms

Linear Principal components analysis (PCA) [Karhunen and Loève 1940s']

None-Linear PCA [Kirby and Miranda, 1996]

Cocally Linear Embedding (LLE) [Roweis and Saul, 2000]

SOMAP [Tenenbaum et al., 2000]

Gaussian Process Latent Variable Models [Neil D. Lawrence 2003]

Low Dimensional posture space

[Gaussian Process Latent Variable Models]

Courtesy of Keith Grochow

Tuesday, February 23, 2010

The "eigenpose" space

3-D low-dimensional subspaces by linear PCA

Tuesday, February 23, 2010

The "eigenpose" space

3-D low-dimensional subspaces by linear PCA

Action subspace embedding

Map data to cylindrical coordinate system

 $\mathbf{z}_{\theta} = \frac{\Sigma_i(\hat{\mathbf{x}}^i \times \hat{\mathbf{x}}^{i+1})}{\|\Sigma_i(\hat{\mathbf{x}}^i \times \hat{\mathbf{x}}^{i+1})\|}$

Learn 1-D representation of motion in term of motion phase angle:

 $[r,h] = g(\varphi)$

Presentation outline

Low-dimensional subspaces

Motion optimization algorithm

Motion optimization results

Motion imitation

Lossless motion imitation

Optimization strategy

Gyroscope signals

Optimized motion

NARX model-predictor

Nonlinear autoregressive network with exogenous inputs

recurrent neural network

NARX model-predictor

Nonlinear autoregressive network with exogenous inputs

Gyroscope signals prediction

Predictive motion generator

 $a_t^* = \arg\min_{a_t} \Gamma(F(s_t, \dots, s_{t-n}, a_t, \dots, a_{t-n}))$

Maths details

$$a_t^* = \arg\min_{a_t} \Gamma(F(s_t, \dots, s_{t-n}, a_t, \dots, a_{t-n}))$$

$$\Gamma(\omega) = \lambda_x \omega_x^2 + \lambda_y \omega_y^2 + \lambda_z \omega_z^2$$

 $\chi_t^* = \arg\min_{\chi_t \in S} \Gamma(F(\omega_t, \omega_{t-1}, \chi_t, \chi_{t-1}))$

 $S = egin{bmatrix} arphi_s \ r_s \ h_s \end{bmatrix} egin{array}{ll} arphi_{t-1} < arphi_s \leq arphi_{t-1} + arepsilon_{arphi} \ r_a - arepsilon_s \leq r_s \leq r_a + arepsilon_r \ h_a - arepsilon_r \leq r_s \leq r_a + arepsilon_r \ h_a - arepsilon_h \leq h_s \leq h_a + arepsilon_h \ 0 < arepsilon_{arphi} < 2\pi \ [r_a, h_a] = g(arphi_s) \end{array}$

Presentation outline

Low-dimensional subspaces

Motion optimization algorithm

Motion optimization results

Motion imitation

Lossless motion imitation

$\begin{aligned} & \text{Motion-phase optimization} \\ & [r,h] = g(\varphi) \\ & \varphi_t^* = \arg\min_{\varphi_t} \Gamma(F(\omega_t,\omega_{t-1},\varphi_t,\varphi_{t-1})) \end{aligned}$

3-D Eigenposes optimization result

3-D Eigenposes optimization result

3-D Eigenposes optimization result

Presentation outline

Low-dimensional subspaces

Motion optimization algorithm

Motion optimization results

Motion imitation

Lossless motion imitation

Human motion capture mapping

Human skeleton

Robot skeleton

Tuesday, February 23, 2010

Motion scaling

Tuesday, February 23, 2010

Joint trajectories

Action subspace scaling

Normalized joint data mean = 0 standard deviation = 1

Action subspace scaling

Imitate a human walking gait

Imitate a human walking gait

Walking by imitation results

Walking by imitation results

Presentation outline

Low-dimensional subspaces
Motion optimization algorithm
Motion optimization results
Motion imitation

Lossless motion imitation

Human sidestep motion

Accuracy of 3-D eigenposes

Sidestep 3-D eigenposes

Accuracy accumulation along the principal axes

Hyperdimensional cylindrical transformation

For $f \in \mathbb{R}^n$ when n > 3 $f(d_1, d_2, d_3, \dots, d_n)$ $f(x, y, z_1, \dots, z_{n-2})$

Suppose $f \in \mathbb{R}^5$ $f(x, y, z_1, z_2, z_3)$ $f(x, y, z_1) \longrightarrow \begin{array}{l} f(\varphi, r, h_1) \\ f(x, y, z_2) \end{array} \longrightarrow \begin{array}{l} f(\varphi, r, h_2) \\ f(\varphi, r, h_2) \\ f(\varphi, r, h_3) \end{array}$ $\begin{array}{l} \begin{array}{l} 3\text{-D mapping} \\ f(x,y,z) \rightarrow f(\varphi,r,h) \\ \varphi = \arctan(\frac{y}{x}) \\ r = \sqrt{x^2 + y^2} \\ h = z \end{array}$

Thus

 $f(x, y, z_1, \ldots, z_{n-2}) \rightarrow f(\varphi, r, h_1, \ldots, h_{n-2})$

Multiple cylindrical frames

Tuesday, February 23, 2010

Hyperdimensional motion optimization

Hyperdimensional action subspace embedding

 $[r, h_1, h_2, \dots, h_{18}] = g(\varphi)$

Motion-phase optimization

 $\varphi_t^* = \arg\min_{\varphi_t} \Gamma(F(\omega_t, \omega_{t-1}, \varphi_t, \varphi_{t-1}))$

Hyperdimensional optimization result

Conclusion

Stable humanoid motion can be realized through imitation

Compact low-dimensional spaces allows efficient optimization

Oynamic model is not required

Conclusion

Stable humanoid motion can be realized through imitation

Compact low-dimensional spaces allows efficient optimization

Oynamic model is not required

Note:

- Learn directly from the real robot
- Learn none-periodic motion
- Real-time feedback needs to be realized
- Multiple learning modules organization

Last but not least

Last but not least

Last but not least

Thank