Some Projects in Autonomous Robotics

Dieter Fox

University of Washington

Department of Computer Science & Engineering

Robotics and State Estimation Lab Intel Labs Seattle

Robotics Yesterday

Robotics Today

Robot Control

Sensor data

Control system

World model

Actions

Outline

▶ Overview

- ▶ Localization and soccer playing
- Exploration and map building
- Object recognition
- **Discussion**

RoboCup Challenge Design a team of robots that can play soccer!

- Dynamic, adversarial environments
- Real time control and decision making
- Multi-robot collaboration

RoboCup-99: Stockholm, Sweden Final

Challenges of RoboCup vs. Chess

Deep Blue

Robot

- (Semi-) Static
- Deterministic
- Observable
- Turn-based

- > Dynamic
- > Stochastic
- > Partially observable
- > Real-time

Mobile Robot Localization

Bayes Filters for **Robot Localization**

Given:

- Stream of observations $z_{1:t}$ and control $u_{1:t}$
- Sensor model $p(z_t | x_t)$

$$p(z_t | x_t)$$

• Action model $p(x_t | x_{t-1}, u_{t-1})$

$$p(x_{t} | x_{t-1}, u_{t-1})$$

• Prior probability of the system state p(x).

Wanted:

- Estimate the state x of the dynamical system.
- The posterior is estimated recursively:

$$p(x_{t} | z_{1:t}, u_{1:t-1}) = \eta \ p(z_{t} | x_{t}) \int p(x_{t} | x_{t-1}, u_{t-1}) \ p(x_{t-1} | z_{1:t-1}, u_{1:t-2}) \ dx_{t-1}$$

Principle of Mobile Robot Localization

10/28/09

Dieter Fox: Robotics ar

Particle Filters

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Monte Carlo filter, Survival of the fittest,
 Condensation, Bootstrap filter, Particle filter
- Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]
- Computer vision: [Isard and Blake 96, 98]
- Dynamic Bayesian Networks: [Kanazawa et al., 95]d

Sample-based Density Representation

Dieter Fox: Robotics and State Estimation Lab and Intel Labs Seattle

Importance Sampling

Weight samples: w = f/g

Importance Sampling with Resampling: Landmark Detection Example

Dieter Fox: Robotics and State Estimation Lab and Intel Labs Seattle

Distributions

Wanted: samples distributed according to $p(x|z_1, z_2, z_3)$

This is Easy!

We can draw samples from $p(x|z_l)$ by adding noise to the detection parameters.

Importance Sampling with Resampling

Target distribution
$$f: p(x \mid z_1, z_2, ..., z_n) = \frac{\prod_k p(z_k \mid x) \quad p(x)}{p(z_1, z_2, ..., z_n)}$$

Sampling distribution
$$g: p(x | z_l) = \frac{p(z_l | x)p(x)}{p(z_l)}$$

Importance weights w:
$$\frac{f}{g} = \frac{p(x | z_1, z_2, ..., z_n)}{p(x | z_l)} = \frac{p(z_l) \prod_{k \neq l} p(z_k | x)}{p(z_1, z_2, ..., z_n)}$$

Importance Sampling with Resampling

Weighted samples

After resampling

Particle Filters

Sensor Information: Importance Sampling

$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$

Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x | u, x') Bel(x') dx'$$

Sensor Information: Importance Sampling

$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$

Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x | u, x') Bel(x') dx'$$

Particle Filter Algorithm

1. Algorithm **particle_filter**(
$$S_{t-1}$$
, $u_{t-1} z_t$):

$$2. \quad S_t = \emptyset, \quad \eta = 0$$

3. For
$$i = 1...n$$

Generate new samples

- 4. Sample index j(i) from the discrete distribution given by w_{t-1}
- 5. Sample x_t^i from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and u_{t-1}

$$6. w_t^i = p(z_t \mid x_t^i)$$

Compute importance weight

$$\eta = \eta + w_t^i$$

Update normalization factor

8.
$$S_t = S_t \cup \{\langle x_t^i, w_t^i \rangle\}$$

Insert

9. **For**
$$i = 1...n$$

10/28/09

$$10. w_t^i = w_t^i / \eta$$

Normalize weights

Particle Filter Algorithm

$$Bel (x_{t}) = \eta \ p(z_{t} | x_{t}) \int p(x_{t} | x_{t-1}, u_{t-1}) \ Bel (x_{t-1}) \ dx_{t-1}$$

$$\rightarrow \text{draw } x^{i}_{t-1} \text{ from } Bel(x_{t-1})$$

$$\rightarrow \text{draw } x^{i}_{t} \text{ from } p(x_{t} | x^{i}_{t-1}, u_{t-1})$$

$$\downarrow \text{Importance factor for } x^{i}_{t}:$$

$$w^{i}_{t} = \frac{\text{target distribution}}{\text{proposal distribution}}$$

$$= \frac{\eta \ p(z_{t} | x_{t}) \ p(x_{t} | x_{t-1}, u_{t-1}) \ Bel (x_{t-1})}{p(x_{t} | x_{t-1}, u_{t-1}) \ Bel (x_{t-1})}$$

$$\approx p(z_{t} | x_{t})$$

Resampling

Given: Set S of weighted samples.

• Wanted: Random sample, where the probability of drawing x_i is given by w_i .

 Typically done n times with replacement to generate new sample set S'.

Resampling

- Roulette wheel
- Binary search, log n

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Resampling Algorithm

1. Algorithm **systematic_resampling**(*S*,*n*):

2.
$$S' = \emptyset, c_1 = w^1$$

3. For
$$i = 2...n$$

4.
$$c_i = c_{i-1} + w^i$$

5.
$$u_1 \sim U[0, n^{-1}], i = 1$$
 Initialize threshold

6. For
$$j = 1...n$$

7. While
$$(u_j > c_i)$$

7. While
$$(u_i > c_i)$$
 Skip until next threshold reached

$$8. \qquad i = i+1$$

8.
$$i = i + 1$$

9. $S' = S' \cup \{ x^i, n^{-1} > \}$

10.
$$u_j = u_j + n^{-1}$$

Increment threshold

11. Return S'

Motion Model Reminder

Proximity Sensor Model Reminder

Laser sensor

Sonar sensor

Sample-based Localization (sonar)

Adaptive Sampling

KLD-sampling

• Idea:

- Assume we know the true belief.
- Represent this belief as a multinomial distribution.
- Determine number of samples such that we can guarantee that, with probability (1-d), the KL-distance between the true posterior and the sample-based approximation is less than e.

Observation:

• For fixed *d* and *e*, number of samples only depends on number *k* of bins with support:

$$n = \frac{1}{2\varepsilon} X^{2}(k-1, 1-\delta) \cong \frac{k-1}{2\varepsilon} \left\{ 1 - \frac{2}{9(k-1)} + \sqrt{\frac{2}{9(k-1)}} z_{1-\delta} \right\}^{3}$$

Adaptive Particle Filter Algorithm

```
1. Algorithm adaptive_particle_filter(S_{t-1}, u_{t-1} z_t, \Delta, \varepsilon, \delta):
```

2.
$$S_t = \emptyset$$
, $\alpha = 0$, $n = 0$, $k = 0$, $b = \emptyset$

4. Sample index
$$j(n)$$
 from the discrete distribution given by w_{t-1}

5. Sample
$$x_t^n$$
 from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(n)}$ and u_{t-1}

6.
$$w_t^n = p(z_t | x_t^n)$$
 Compute importance weight

7.
$$\eta = \eta + w_t^n$$
 Update normalization factor

8.
$$S_t = S_t \cup \{ < x_t^n, w_t^n > \}$$
 Insert

If (x_t^n) falls into an empty bin (x_t^n) Update bins with support 9.

10.
$$k=k+1$$
, $b = non-empty$

11.
$$n=n+1$$

11.
$$n=n+1$$
12. While $(n < \frac{1}{2\varepsilon}X^2(k-1,1-\delta))$

13. **For**
$$i = 1...n$$

14.
$$w_t^i = w_t^i / \eta$$

Normalize weights

Example Run Sonar

Example Run Laser

Localization for AIBO robots

Ball Tracking

RoboCup 2004

Outline

- ▶ Overview
- ► Playing soccer with robots
- Exploration and map building
- Object recognition
- **Discussion**

Mapping the Allen Center: Raw Data

Mapping the Allen Center

$$p(x_{t}, m \mid z_{1:t}, u_{1:t}) = \iiint \dots \int p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) dx_{1} dx_{2} \dots dx_{t-1}$$

Coordinated exploration with three robots from unknown start locations

The robots are fully autonomous.

All computation is performed on-board.

Shown is the perspective of one robot

Semantic Mapping

Occupancy map

Spatial Labeling

Topological Representation

Learn parameters from labelled maps, apply to new one

Accuracy: 91.2%

$$p(\mathbf{x} \mid \mathbf{z}) = \frac{1}{Z(\mathbf{z})} \exp \left\{ \sum_{c \in C} \mathbf{w}_c^{\mathsf{T}} \mathbf{f}_c(\mathbf{x}_c, \mathbf{z}_c) \right\}$$

Outline

- ▶ Overview
- ► Playing soccer with robots
- Exploration and map building
- ➤ Object recognition
- **Discussion**

Data

Geometric Features

 $f_{geometric} = \begin{bmatrix} \text{distances to neighbors} \\ \text{angles to neighbors} \\ \text{#max range neighbors} \end{bmatrix}$

Visual Features

steerable pyramid
Dieter Fox: Robotics and State Estimation Lab and Intel Labs Seattle

3-d HSV histogram

10/28/09

Example Trace

Going 3D

Google 3D-Warehouse: Contains Thousands of Labeled 3D Sketchup Models

Segmentation

Exemplar Matches

Outline

- ▶ Overview
- Playing soccer with robots
- Exploration and map building
- Object recognition
- ► More recent stuff

Some Thoughts

- Robots will
 - operate in less and less structured environments (military, factory, home, health care, cars, ...)
 - interact and share space with humans
- Robustness must increase while cost must go down
- Key drivers for affordable and robust robots
 - novel sensing technologies
 - advanced statistical estimation and learning algorithms that can handle uncertainty
- Focus will shift from mechanics to silicon ©

3D Laser Mapping

- 3D point clouds enhanced with visual information
- Navteq, Google, Microsoft, ...
- Velodyne: > 50,000 USD

Autonomous Parking

Courtesy W. Burgard

Velodyne: key sensor in DARPA Urban Challenge
 Dieter Fox: Robotics and State Estimation Lab and Intel Labs

Fast Object Instance Recognition [Romea-Berenson-Srinivasa-Ferguson: ICRA-09]

Mobile Manipulation [Berenson-Srinivasa-Ferguson-Kuffner: ICRA-09, Srinivasa-etAl:

Electric Field Sensing / Pretouch [Mayton-LeGrand-Smith: ICRA-10, IROS-07]

- Finger tips measure electric field
- Field changes provide information about nearby objects
- Inspired by electric field sensing in fish

Where we are

We have

- very robust algorithms for mapping and navigation
- rapidly progressing manipulation and object recognition capabilities

Success mostly based on

- algorithmic advances: statistical estimation and machine learning
 - require substantial processing power
- laser range finders
 - still very expensive (2D: 5K, 3D: 5oK)
 - cameras cheap but not yet robust enough

Still limited representations of environments

Insufficient reasoning about semantic places, objects, and people

RGB-D: Adding Depth to Color

- Soon we'll have cheap depth cameras with high resolution and accuracy
- Key industry drivers: Gaming, entertainment
- Two main techniques:
 - Structured light with stereo
 - Time of flight

 Huge impact on gesture recognition, object recognition, mapping, navigation

Gaming

Microsoft Natal promo video

RGB-D: Raw Data

Provides depth typically between 50cm and 5m

3D Mapping

Map

Flythrough

Frontal View (elevated, FOV=60)

Autonomous Object Modeling

- Enable robots to autonomously learn new objects
- Robot picks up objects and builds models of them
- Camera feedback allows inaccurate manipulator

Autonomous Object Modeling

Object Models

Object Models

Smart Gaming Manipulators

Can we build smart manipulators that are cheap enoug

Conclusions

- Multi purpose robots in unstructured environments
 - Robust navigation and mapping
 - Maturing manipulation and object recognition
- Sensing and manipulation hardware still too expensive
 - Statistical algorithms produce robust and adaptive systems
 - New breed of RGB-D cameras can dramatically decrease cost of robust navigation and interaction platforms
- Focus shifts from mechanics to silicon

Summary

- Whenever computers are connected to the real world, there is no such thing as
 - A perfect sensor
 - A deterministic environment
 - A deterministic robot
 - An accurate model
- Probabilistic approaches and machine learning are key to dealing with the real world