Some Projects in Autonomous Robotics

Dieter Fox

University of Washington
Department of Computer Science & Engineering
Robotics and State Estimation Lab
Intel Labs Seattle
Robotics Yesterday
Robotics Today
Robot Control

Sensor data

World model

Control system

Actions

10/28/09

Dieter Fox: Robotics and State Estimation Lab and Intel Labs Seattle
Outline

► Overview

► Localization and soccer playing

► Exploration and map building

► Object recognition

► Discussion
RoboCup Challenge
Design a team of robots that can play soccer!

- Dynamic, adversarial environments
- Real time control and decision making
- Multi-robot collaboration
RoboCup-99: Stockholm, Sweden Final
Challenges of RoboCup vs. Chess

- (Semi-) Static
- Deterministic
- Observable
- Turn-based

- Dynamic
- Stochastic
- Partially observable
- Real-time
Mobile Robot Localization

Where am I?
Bayes Filters for Robot Localization

Given:
- Stream of observations $z_{1:t}$ and control $u_{1:t}$
- Sensor model $p(z_t | x_t)$
- Action model $p(x_t | x_{t-1}, u_{t-1})$
- Prior probability of the system state $p(x)$.

Wanted:
- Estimate the state x of the dynamical system.
- The posterior is estimated recursively:

$$p(x_t | z_{1:t}, u_{1:t-1}) = \eta \ p(z_t | x_t) \int p(x_t | x_{t-1}, u_{t-1}) \ p(x_{t-1} | z_{1:t-1}, u_{1:t-2}) \ dx_{t-1}$$
Principle of Mobile Robot Localization
Particle Filters

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter, Particle filter

- Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]
- Computer vision: [Isard and Blake 96, 98]
- Dynamic Bayesian Networks: [Kanazawa et al., 95]
Sample-based Density Representation
Importance Sampling

Weight samples: $w = \frac{f}{g}$
Importance Sampling with Resampling: Landmark Detection Example
Wanted: samples distributed according to $p(x | z_1, z_2, z_3)$
This is Easy!

We can draw samples from $p(x|z_i)$ by adding noise to the detection parameters.
Importance Sampling with Resampling

Target distribution $f : p(x \mid z_1, z_2, \ldots, z_n) = \frac{\prod_{k} p(z_k \mid x) \ p(x)}{p(z_1, z_2, \ldots, z_n)}$

Sampling distribution $g : p(x \mid z_l) = \frac{p(z_l \mid x) p(x)}{p(z_l)}$

Importance weights $w : \frac{f}{g} = \frac{p(x \mid z_1, z_2, \ldots, z_n)}{p(x \mid z_l)} \ = \ \frac{p(z_l) \prod_{k \neq l} p(z_k \mid x)}{p(z_1, z_2, \ldots, z_n)}$
Importance Sampling with Resampling

Weighted samples

After resampling
Particle Filters
Sensor Information: Importance Sampling

\[Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x) \]
\[w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x) \]
Robot Motion

\[Bel^-(x) \leftarrow \int p(x \mid u, x') Bel(x') \, dx' \]
Sensor Information: Importance Sampling

\[
\begin{align*}
\text{Bel}(x) & \leftarrow \alpha \ p(z \mid x) \ \text{Bel}^-(x) \\
\text{w} & \leftarrow \frac{\alpha \ p(z \mid x) \ \text{Bel}^-(x)}{\text{Bel}^-(x)} = \alpha \ p(z \mid x)
\end{align*}
\]
Robot Motion

\[Bel^{-}(x) \leftarrow \int p(x \mid u, x') Bel(x') \, dx' \]
Particle Filter Algorithm

1. Algorithm `particle_filter(S_{t-1}, u_{t-1}, z_t)`:

2. $S_t = \emptyset, \quad \eta = 0$

3. For $i = 1 \ldots n$

 - **Generate new samples**
 4. Sample index $j(i)$ from the discrete distribution given by w_{t-1}
 5. Sample x_t^i from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and u_{t-1}

 - **Compute importance weight**
 6. $w_t^i = p(z_t | x_t^i)$
 7. $\eta = \eta + w_t^i$

 - **Update normalization factor**
 8. $S_t = S_t \cup \{<x_t^i, w_t^i>\}$

 - **Insert**
 9. For $i = 1 \ldots n$

 - **Normalize weights**
 10. $w_t^i = w_t^i / \eta$
Particle Filter Algorithm

\[\text{Bel} (x_t) = \eta \ p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, u_{t-1}) \ \text{Bel} (x_{t-1}) \ dx_{t-1} \]

- draw \(x_{t-1}^i \) from \(\text{Bel}(x_{t-1}) \)
- draw \(x_t^i \) from \(p(x_t \mid x_{t-1}^i, u_{t-1}) \)
- Importance factor for \(x_t^i \):

\[
\begin{align*}
\omega_t^i &= \frac{\text{target distribution}}{\text{proposal distribution}} \\
&= \frac{\eta \ p(z_t \mid x_t) \ p(x_t \mid x_{t-1}, u_{t-1}) \ \text{Bel} (x_{t-1})}{p(x_t \mid x_{t-1}, u_{t-1}) \ \text{Bel} (x_{t-1})} \\
&\propto p(z_t \mid x_t)
\end{align*}
\]
Resampling

- **Given**: Set S of weighted samples.

- **Wanted**: Random sample, where the probability of drawing x_i is given by w_i.

- Typically done n times with replacement to generate new sample set S'.
Resampling

- Roulette wheel
- Binary search, log n
- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance
Resampling Algorithm

1. Algorithm systematic_resampling(S,n):

2. $S' = \emptyset$, $c_1 = w^1$
3. For $i = 2 \ldots n$ \hspace{1cm} Generate cdf
4. $c_i = c_{i-1} + w^i$
5. $u_1 \sim U[0,n^{-1}]$, $i = 1$ \hspace{1cm} Initialize threshold
6. For $j = 1 \ldots n$ \hspace{1cm} Draw samples …
7. While ($u_j > c_i$) \hspace{1cm} Skip until next threshold reached
8. \hspace{1cm} $i = i + 1$
9. \hspace{1cm} $S' = S' \cup \{x^i,n^{-1}\}$ \hspace{1cm} Insert
10. \hspace{1cm} $u_j = u_j + n^{-1}$ \hspace{1cm} Increment threshold

11. Return S'

Also called stochastic universal sampling
Motion Model Reminder

Start

10 meters
Proximity Sensor Model Reminder

Laser sensor

Sonar sensor
Sample-based Localization (sonar)
Adaptive Sampling
KLD-sampling

• **Idea:**
 • Assume we know the true belief.
 • Represent this belief as a multinomial distribution.
 • Determine number of samples such that we can guarantee that, with probability $(1 - \delta)$, the KL-distance between the true posterior and the sample-based approximation is less than ϵ.

• **Observation:**
 • For fixed δ and ϵ, number of samples only depends on number k of bins with support:
 \[
n = \frac{1}{2\epsilon} X^2(k-1,1-\delta) \equiv \frac{k-1}{2\epsilon} \left\{ 1 - \frac{2}{9(k-1)} + \sqrt{\frac{2}{9(k-1)}} z_{1-\delta} \right\}^3
 \]
Adaptive Particle Filter Algorithm

1. Algorithm \texttt{adaptive_particle_filter}(S_{t-1}, u_{t-1}, z_t, \Delta, \epsilon, \delta):
2. \quad S_t = \emptyset, \quad \alpha = 0, \quad n = 0, \quad k = 0, \quad b = \emptyset
3. \quad \textbf{Do} \quad \textbf{Generate new samples}
4. \quad \textbf{Sample index } j(n) \textbf{ from the discrete distribution given by } w_{t-1}
5. \quad \textbf{Sample } x^n_i \textbf{ from } p(x_i | x_{i-1}, u_{t-1}) \textbf{ using } x^{j(n)}_{t-1} \textbf{ and } u_{t-1}
6. \quad w^n_i = p(z_t | x^n_i) \quad \textbf{Compute importance weight}
7. \quad \eta = \eta + w^n_i \quad \textbf{Update normalization factor}
8. \quad S_t = S_t \cup \{< x^n_i, w^n_i >\} \quad \textbf{Insert}
9. \quad \textbf{If } (x^n_i \text{ falls into an empty bin } b) \quad \textbf{Update bins with support}
10. \quad k = k + 1, \quad b = \text{non-empty}
11. \quad n = n + 1
12. \quad \textbf{While } (n < \frac{1}{2\epsilon} X^2(k - 1, 1 - \delta))
13. \quad \textbf{For } i = 1 \ldots n
14. \quad w^i_t = w^i_t / \eta \quad \textbf{Normalize weights}
Example Run Sonar
Example Run Laser
Localization for AIBO robots
Ball Tracking
RoboCup 2004
Outline

► Overview

► Playing soccer with robots

► Exploration and map building

► Object recognition

► Discussion
Mapping the Allen Center: Raw Data
Mapping the Allen Center

\[p(x_t, m \mid z_{1:t}, u_{1:t}) = \int \ldots \int p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) \, dx_1 \, dx_2 \ldots dx_{t-1} \]
Coordinated exploration with three robots from unknown start locations

The robots are fully autonomous. All computation is performed on-board.

Shown is the perspective of one robot
Semantic Mapping

- Learn parameters from labelled maps, apply to new one
- Accuracy: 91.2%

\[
p(x | z) = \frac{1}{Z(z)} \exp \left\{ \sum_{c \in C} w_c^T f_c(x_c, z_c) \right\}
\]
Outline

► Overview

► Playing soccer with robots

► Exploration and map building

► Object recognition

► Discussion
Data
Geometric Features

\[f_{\text{geometric}} = \begin{bmatrix} \text{distances to neighbors} \\ \text{angles to neighbors} \\ \text{max range neighbors} \end{bmatrix} \]
Visual Features

steerable pyramid

3-d RGB histogram

3-d HSV histogram
Example Trace
Google 3D-Warehouse: Contains Thousands of Labeled 3D Sketchup Models
Segmentation
Exemplar Matches

Car

Person

Tree
Outline

► Overview

► Playing soccer with robots

► Exploration and map building

► Object recognition

► More recent stuff
Some Thoughts

- Robots will
 - operate in less and less structured environments (military, factory, home, health care, cars, ...)
 - interact and share space with humans
- Robustness must increase while cost must go down
- Key drivers for affordable and robust robots
 - novel sensing technologies
 - advanced statistical estimation and learning algorithms that can handle uncertainty
- Focus will shift from mechanics to silicon 😊
3D Laser Mapping

- 3D point clouds enhanced with visual information
- Navteq, Google, Microsoft, ...
- Velodyne: > 50,000 USD
Autonomous Parking

- Velodyne: key sensor in DARPA Urban Challenge

Courtesy W. Burgard
Fast Object Instance Recognition

[Romea-Berenson-Srinivasa-Ferguson: ICRA-09]
Mobile Manipulation

[Berenson-Srinivasa-Ferguson-Kuffner: ICRA-09, Srinivasa-etAl: ARJ-10]
Electric Field Sensing / Pretouch

- Finger tips measure electric field
- Field changes provide information about nearby objects
- Inspired by electric field sensing in fish
Where we are

- **We have**
 - very robust algorithms for mapping and navigation
 - rapidly progressing manipulation and object recognition capabilities

- **Success mostly based on**
 - algorithmic advances: statistical estimation and machine learning
 - require substantial processing power
 - laser range finders
 - still very expensive (2D: 5K, 3D: 50K)
 - cameras cheap but not yet robust enough

- **Still limited representations of environments**
 - Insufficient reasoning about semantic places, objects, and people
 Soon we’ll have cheap depth cameras with high resolution and accuracy

Key industry drivers: Gaming, entertainment

Two main techniques:
 ▪ Structured light with stereo
 ▪ Time of flight

Huge impact on gesture recognition, object recognition, mapping, navigation
Gaming

Microsoft Natal promo video
RGB-D: Raw Data

Provides depth typically between 50cm and 5m
3D Mapping
Flythrough

Frontal View (elevated, FOV=60)
Enable robots to autonomously learn new objects
Robot picks up objects and builds models of them
Camera feedback allows inaccurate manipulator
Autonomous Object Modeling
Object Models
Object Models
Smart Gaming Manipulators

Can we build smart manipulators that are cheap enough?
Conclusions

- **Multi purpose robots in unstructured environments**
 - Robust navigation and mapping
 - Maturing manipulation and object recognition

- **Sensing and manipulation hardware still too expensive**
 - Statistical algorithms produce robust and adaptive systems
 - New breed of RGB-D cameras can dramatically decrease cost of robust navigation and interaction platforms

- **Focus shifts from mechanics to silicon**
Summary

- Whenever computers are connected to the real world, there is no such thing as
 - A perfect sensor
 - A deterministic environment
 - A deterministic robot
 - An accurate model

- Probabilistic approaches and machine learning are key to dealing with the real world