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Robotics Today
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Robot Control

Sensor data

== Control system

World model

Actions
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Outline

» Overview

— Loczllizztlon cnd socear olzyisie)
» Exploration and map: building
» Object recognition

» DIScussion
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RoboCup Challenge

Design a team of robots
that can play soccer!

Dynamic, adversarial environments
Real time control and decision making
Multi-robot collaboration
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RoboCup-99: Stockholm, Sweden
Final
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Challenges of RoboCup vs.

Deep Blue Robot

® (Semi-) Static > Dynamic

® Deterministic > Stochastic

® Observable > Partially observable
® Jurn-based > Real-time
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Mobile Robot Localization

N

Where am 1?
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Bayes Filters for
Robot Localization

°* Given:
® Stream ofi observations z,.. and control u;.;
S SENSOIMOUE!
I Neiles) splejelsl
® Prior: probability, of the system state p(x).

® Wanted:
® Estimate the state x of the dynamical system.
® [he posterior is estimated recursively:

p(x, | z,,u,) =1 pz,|x) JP(X; X oUy) DXy | 2ty y) A
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Principle of Mobile
Robot Localization

Bel(s)
10/28/09 Dieter Fox: Robotics a




Particle Filters

Represent belief by random samples
Estimation of non-Gaussian, nonlinear processes

Monte Carlo filter, Survival of the fittest,
Condensation, Bootstrap filter, Particle filter

Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]
Computer vision: [Isard and Blake 96, 98]
Dynamic Bayesian Networks: [Kanazawa et al., 95]d




Sample-based Density Representation




Importance Sampling
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Importance Sampling with Resampling:
Landmark Detection Example




Distributions

Wanted: samples distributed according to p(x| z,,
Zy, 23)




This is Easy!

We can draw samples from p(x|z,) by adding noise to
the detection parameters.
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Importance Sampling with

Resampling

Target distribution f : p(x| z,, z,,...,2,) =

Hp(zk |x)  p(x)

p(z,,2y50s2,)

p(z; | x)p(x)

Sampling distribution g: p(x|z,) =

p(z))

f _ p(x|z,25,0052,)

pz) [ ]z 1 %)

k#l

Importance weights w :

g p(x|z)

p(z,25500,2,)
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Importance Sampling with
Resampling

Weighted samples After resampling
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Particle Filters




Sensor Information: Importance Sampling
Bel(x) <« « p(z]|x)Bel (x)
o p(z|x) Bel (x)

w — Bl (x) = a p(z|x)
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Robot Motion

Bel (x) <« jp(x|u,x')Bel(x') dx'
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Sensor Information: Importance Sampling

Bel(x) <« « p(z]|x)Bel (x)
o p(z|x) Bel (x)
Bel (x)

w

= ap(z|x)
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Robot Motion

Bel (x) <« jp(x|u,x')Bel(x') dx'




Particle Filter Algorithm

1. Algorithm particle_filter( S, ;, u,; z,):
2. §=0, n=0

3. For i=1...n Generate new samples

4 Sample index j(i) from the discrete distribution given by w,
5 Samplex’ from p(x, |x,_,u,,) using x/¥ and u,_,

6 w = p(z, | x)) Compute importance weight
7. n=n+w, Update normalization factor
8. S =S ui<x,w >} Insert

9. For i=1...n

10. w =w /n Normalize weights
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Particle Filter Algorithm

Bel (x) = 1 p(z,|x,) | p(x, |x,.1,.,) Bel (x,.) ds,.

— draw x' , from Bel(X,_,)

— draw x', from p(x, | x'_,u, )

— Importance factor for x'

: target distribution
w, =

proposal distribution
npzlx) plx |x_,u,.,) Bel (x_)
p(x, | x,_,u, ) Bel (x, )
< p(z,]x,)
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Resampling

® Given: Set S of weighted samples.

e Wanted : Random sample, where the
probability of drawing Xx; is given by w..

e Typically done n times with replacement to
generate new sample set S”.
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Resampling

® Stochastic universal sampling
® Roulette wheel ® Systematic resampling
® Binary search, log n ® Linear time complexity
® Easy to implement, low variance
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Resampling Algorithm

1. Algorithm systematic_resampling(S,n):

2. §'=@,c, =

3. For i=2...n Generate cdf

4. c,=c,_,+ w

5. u,~U[0,n'],i=1 Initialize threshold

6. For j=1...n Draw samples ...
7. While (u; >¢,) Skip until next threshold reached
8. i=i+1

0. = S'U{< x',n! >] Insert

10. u,=u;+n" Increment threshold

11. Return §’

L= B =R ") <7} | TYROIOUCTCO UTlTu U CTCT oI rniacrurT =g garryg
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Motion Model Reminder
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Sample-based Localization (sonar)







Adaptive Sampling
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KLD-sampling

* Idea:
* Assume we know the true belief.
* Represent this belief as a multinomial distribution.

* Determine number of samples such that we can guarantee
that, with probability (1- d), the KL-distance between the
true posterior and the sample-based approximation is less
than e.

* Observation:

* For fixed d and e, number of samples only depends on
number k& of bins with supp{;yrt:

1 k—1 2 2 }3
ok —1) \9(k-1)

2

n=—=X*k-1,1-8)=—
2€ 2€
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Adaptive Particle Filter Algorithm

1. Algorithm adaptive_particle_filter( S, ;, u,; z, A,€,0 ):
2. 8,=0, a=0, n=0, k=0, b=

3. Do Generate new samples

4, Sample index j(n) from the discrete distribution given by w,
5. Samplex! from p(x, |x,_.u,_,) using x/\" and u,,

6. w, =p(z,|x) Compute importance weight
7. n=n+w, Update normalization factor
8. S =5 ui{<x ,w' >} Insert

9. If ( x; falls into an empty bin b) Update bins with support
10. k=k+1, b = non-empty

11. n=n+1

1
12. While (7 < EXz(k—l,l—b“))

13. For i=1...n
14. w,=w/n Normalize weights




Example Run Sonar




xample Run Laser




Localization for AIBO robots
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Ball Tracking
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RoboCup 2004
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Outline

» Overview.

» Playing soccer with robots

~ Exolorztiorn i iz oulldisie)
» Object recognition

» DIScussion
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Mapping the Allen Center: Raw: Data
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Mapping the Allen Center

px,.mlz,u,)= II - -jp(x1:r omlz,,u,)dxdx,..dx,_
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Coordinated exploration with three robots
from unknown start locations

The robots are fully autonomous.
All computation is performed on—board.

Shown is the perspective of one robot
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Semantic Mapping
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Accuracy: 91.2%
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Outline

» Overview

» Playing soccer with robots

» Exploration and map: building
~ Ogjact racagrlitior

» DIScussion
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image number:910
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Geometric Features
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Visual Features

serable pyramid %gd HSV histogram
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Example Trace

image number: 2152
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Going 3D
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Google 3D-Warehouse: Contains Thousands
of lLabeled 3D Sketchup Models
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Segmentation
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Exemplar Matches
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Lab andiIntel Labs Seattle
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Outline

» Overview.
» Playing soccer with robots
» Exploration and map: building

» Object recognition

~ Mora racapit stuff
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= Robots will

operate in less and less structured environments
(military, factory, home, health care, cars, ...)

interact and share space with humans
= Robustness must increase while cost must go down

» Key drivers for affordable and robust robots
novel sensing technologies

advanced statistical estimation and learning algorithms
that can handle uncertainty

= Focus will shift from mechanics to silicon ©



= 3D point clouds enhanced with visual information
= Navteq, Google, Microsoft, ...
= Velodyne: > 5o,000 USD
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Courtesy
W. Burgard

= Velodyne: key sensor in DARPA Urban Challenge
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[Mayton LeGrand-Smith: ICRA-10,

= Finger tips measure electric field

= Field changes provide information about nearby objects

= Inspired by electric field sensing in fish

Dieter Fox: Robotics and State Estimation Lab and Intel Labs
10/28/09 Seattle 66



= We have

very robust algorithms for mapping and navigation
rapidly progressing manipulation and object recognition capabilities

= Success mostly based on

algorithmic advances: statistical estimation and machine learning
require substantial processing power

laser range finders
still very expensive (2D: 5K, 3D: 5oK)
cameras cheap but not yet robust enough

» Still imited representations of environments
Insufficient reasoning about semantic places, objects, and people



Soon we'll have cheap depth cameras with high

resolution and accuracy

Key industry drivers: Gaming, entertainment

Two main techniques:
Structured light with stereo

Time of flight

Huge impact on gesture recognition, object
recognition, mapping, navigation



Microsoft Natal promo video



RGB-D: Raw Data

Provides depth typically between 50cm and 5m



3D Mapping







Flythrough

Frontal View (elevated, FOV=60)
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» Enable robots to autonomously learn new objects
= Robot picks up objects and builds models of them
= Camera feedback allows inaccurate manipulator



Autonomous O b] ect Mod e]ing]







Object Models




Can we build smart manipulators that are cheap enoug



= Multi purpose robots in unstructured environments

Robust navigation and mapping
Maturing manipulation and object recognition

= Sensing and manipulation hardware still too expensive

Statistical algorithms produce robust and adaptive systems

New breed of RGB-D cameras can dramatically decrease cost of
robust navigation and interaction platforms

» Focus shifts from mechanics to silicon



Summary.

® \\/henever computers are connected to the
real world, there is no such thing as

®'A perfect sensor.

®'A deterministic environment
®'A deterministic robot

® An accurate model

® Probabilistic approaches and machine learning
are key to dealing with the real world
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