CSEP 573

Chapters 3-5

Problem Solving using Search

Example: The 8-puzzle

1	2	3				
8		4				
7	6	5	\rightarrow	1	2	3
:---	:---	:---				
4	5	6				
7	8					

Example: Route Planning

Example: N Queens

4 Queens

Example: N Queens

4 Queens

State-Space Search Problems

General problem:

Given a start state, find a path to a goal state

- Can test if a state is a goal
- Given a state, can generate its successor states

Variants:

- Find any path vs. a least-cost path
- Goal is completely specified, task is just to find the path
- Route planning
- Path doesn't matter, only finding the goal state
- 8 puzzle, N queens

Tree Representation of 8-Puzzle Problem Space

Implementation: general tree search

function Tree-SEARCH (problem, fringe) returns a solution, or failure fringe $\leftarrow \operatorname{Insert}($ Make-Node(Initial-State[problem]), fringe) loop do
if fringe is empty then return failure
node \leftarrow REmove-Front (fringe)
if Goal-Test[problem] applied to State(node) succeeds return node fringe $\leftarrow \operatorname{Insert}$ All(Expand (node, problem), fringe)
fringe (= frontier in the textbook) is the set of all leaf nodes available for expansion

Implementation: general tree search

function Tree-SEARCH (problem, fringe) returns a solution, or failure fringe $\leftarrow \operatorname{Insert}($ Make-Node(Initial-State[problem]), fringe) loop do
if fringe is empty then return failure
node \leftarrow REmove-Front (fringe)
if Goal-Test[problem] applied to State(node) succeeds return node
fringe $\leftarrow \operatorname{Insert} A l L(E x p a n d(n o d e, ~ p r o b l e m)$, fringe)
function EXPAND(node, problem) returns a set of nodes
successors \leftarrow the empty set
for each action, result in SUCCESSOR-Fn[problem](State%5Bnode%5D) do
$s \leftarrow$ a new NODE
Parent-Node $[s] \leftarrow$ node; Action $[s] \leftarrow$ action; State $[s] \leftarrow$ result
Path-Cost $[s] \leftarrow$ Path-Cost[node] $+\operatorname{Step}-\operatorname{Cost}($ node, action, $s)$
$\operatorname{DEPth}[s] \leftarrow$ Depth $[$ node $]+1$
add s to successors
return successors

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree includes parent, children, depth, path cost $g(x)$
States do not have parents, children, depth, or path cost!

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree includes parent, children, depth, path cost $g(x)$
States do not have parents, children, depth, or path cost!

The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.

Search strategies

A strategy is defined by picking the order of node expansion
Strategies are evaluated along the following dimensions:
completeness-does it always find a solution if one exists? time complexity-number of nodes generated/expanded space complexity-maximum number of nodes in memory optimality-does it always find a least-cost solution?

Time and space complexity are measured in terms of b-maximum branching factor of the search tree
d-depth of the least-cost solution m-maximum depth of the state space (may be ∞)

Uninformed search strategies

Uninformed strategies use only the information available in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening search

Breadth-first search

Expand shallowest unexpanded node
Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node
Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Expand shallowest unexpanded node
Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Complete?? Yes (if b is finite)
Time??

Properties of breadth-first search
Complete?? Yes (if b is finite)
Time?? $\quad b+b^{2}+b^{3}+\ldots+b^{d}=O\left(b^{d}\right)$, i.e., exponential in d Space??

Complete?? Yes (if b is finite)

Time?? $\quad b+b^{2}+b^{3}+\ldots+b^{d}=\mathrm{O}\left(b^{d}\right)$, i.e., exponential in d
Space?? $O\left(b^{d}\right)$ (keeps every node in memory)
Optimal??

Properties of breadth-first search

Complete?? Yes (if b is finite)
Time?? $\quad b+b^{2}+b^{3}+\ldots+b^{d}=O\left(b^{d}\right)$, i.e., exponential in d
Space?? $O\left(b^{d}\right)$ (keeps every node in memory)
Optimal?? Yes (if cost $=1$ per step); not optimal in general
Space is the big problem for BFS.
Example: $b=10,10,000$ nodes/sec, $1 \mathrm{~KB} /$ node
$\mathrm{d}=3 \rightarrow 1000$ nodes, $0.1 \mathrm{sec}, 1 \mathrm{MB}$
$d=5 \rightarrow 100,000$ nodes, 10 secs, 100 MB
$\mathrm{d}=9 \rightarrow 1 \mathbf{1 0}^{9}$ nodes, 31 hours, 1 TB

Uniform-cost search

Expand least-cost unexpanded node (used when step costs are unequal) Implementation:
fringe $=$ queue ordered by path cost (use priority queue)
Equivalent to breadth-first if step costs all equal
Complete?? Yes, if step cost $\geq \epsilon$ (small positive constant; 0 cost may cause infinite loop)
Time?? \# of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left[C^{*} / \epsilon\right]}\right)$ where C^{*} is the cost of the optimal solution

Space?? \# of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left[C^{*} / \epsilon\right]}\right)$
Optimal?? Yes—nodes expanded in increasing order of $g(n)$

Depth-first search

Expand deepest unexpanded node

Implementation:

$$
\text { fringe }=\text { LIFO queue, i.e., put successors at front }
$$

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation: fringe $=$ LIFO queue, i.e., put successors at front

Complete??

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path ("GRAPH-SEARCH" in textbook)
\Rightarrow complete in finite spaces
Time??

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path ("GRAPH-SEARCH" in textbook)
\Rightarrow complete in finite spaces
Time?? $O\left(b^{m}\right)$: terrible if m is much larger than $d \quad$ ($m=$ maximum depth) but if solutions are dense, may be much faster than breadth-first

Space??

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space?? $O(b m)$, i.e., linear space!
Optimal??

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path \Rightarrow complete in finite spaces

Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space?? $O(b m)$, i.e., linear space!
Optimal?? No (may find a solution but least cost solution may be on a different branch)

Depth-limited search

$=$ depth-first search with depth limit l,
i.e., nodes at depth l have no successors

Recursive implementation:
function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail/cutoff Recursive-DLS(Make-Node(Initial-State[$p r_{\text {oblem] }}$), $p r_{\text {oblem, limit) }}$
function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff cutoff-occurred? \leftarrow false
if Goal-Test[problem](State%5Bnode%5D) then return node else if Depth[node] = limit then return cutoff else for each successor in Expand (node, problem) do
result \leftarrow RECURSIVE-DLS(successor, problem, limit)
if result $=$ cutoff then cutoff-occurred? \leftarrow true
else if result \neq failure then return result
if cutoff-occurred? then return cutoff else return failure

Iterative deepening search

function ItERATIVE-DEEPENING-SEARCH ($p r_{\text {oblem }}$) returns a solution inputs: problem, a problem
for depth $\leftarrow 0$ to ∞ do
result \leftarrow DEPTH-LIMITED-SEARCH $($ problem, depth) if result \neq cutoff then return result
end

Iterative deepening search $l=0$
it $=0 \quad$ (A)

Iterative deepening search $l=1$

Iterative deepening search $l=2$

Iterative deepening search $l=3$

Properties of iterative deepening search
Complete??

Complete?? Yes

Time??

Complete?? Yes
Time??

$$
d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)
$$

Space??

Properties of iterative deepening search

Complete?? Yes

Time??

$$
d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)
$$

Space?? $O(b d)$
Optimal??

Complete?? Yes
Time??

$$
d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)
$$

Space?? $O(b d)$
Optimal?? Yes, if step cost $=1$
Can be modified to explore uniform-cost tree Increasing path-cost limits instead of depth limits
This is called Iterative lengthening search (exercise 3.17)

Summary of algorithms

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening
Complete?	Yes*	Yes*	No	Yes, if $l \geq d$	Yes
Time	b^{d}	$b^{\left[C^{*} / \epsilon\right]}$	b^{m}	b^{l}	b^{d}
Space	b^{d}	$b^{\left[C^{*} / \epsilon\right]}$	$b m$	$b l$	$b d$
Optimal?	Yes*	Yes*	No	No	Yes

Forwards vs. Backwards

Problem: Find the shortest route

Bidirectional Search

Motivation: $b^{d / 2}+b^{d / 2} \ll b^{d}$
Can use breadth-first search or uniform-cost search
Hard for implicit goals e.g., goal = "checkmate" in chess

Repeated States

Failure to detect repeated states can turn a linear problem into an exponential one! (e.g., repeated states in 8 puzzle)

Graph search algorithm: Store expanded nodes in a set called closed (or explored) and only add new nodes to the fringe

Graph Search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure closed \leftarrow an empty set fringe $\leftarrow \operatorname{Insert}($ Make-NODE(Initial-State[problem]), fringe) loop do
if fringe is empty then return failure node \leftarrow Remove-Front (fringe)
if Goal-TEST[problem](STATE%5Bnode%5D) then return Solution(node)
if State[node] is not in closed then
add State[node] to closed
fringe $\leftarrow \operatorname{InsERTALL}(E x P A N D($ node, problem $)$, fringe)

All these methods are slow (blind)

Can we do better?

Informed Search

Use problem-specific knowledge to guide search (use "heuristic function")

Best-first Search

Generalization of breadth first search
Priority queue of nodes to be explored
Evaluation function $\mathbf{f}(\mathbf{n})$ used for each node

Insert initial state into priority queue
While queue not empty
Node = head(queue)
If goal(node) then return node Insert children of node into pr. queue

Who's on (best) first?

Breadth first search is special case of best first

- with $f(n)=\operatorname{depth}(n)$

Dijkstra's Algorithm is best first

- with $\mathbf{f}(\mathbf{n})=\mathbf{g}(\mathbf{n})$
where $g(n)=$ sum of edge costs from start to n

Greedy best-first search

Evaluation function $f(n)=\boldsymbol{h}(n)$ (heuristic) = estimate of cost from \boldsymbol{n} to goal
e.g., Route finding problems: $\boldsymbol{h}_{\text {SLD }}(n)=$ straight-line distance from \boldsymbol{n} to destination

Greedy best-first search expands the node that appears to be closest to goal

Example: Lost in Romania

Need: Shortest path from Arad to Bucharest

Straight-line distance
to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsova 151
Lasi 226
Lig며 244
Mehadia 241
Neamt 234
Oradear 360
Pitesti 10
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Uraiceni
Vaslui
199
Zerind 374

Example: Greedily Searching for Bucharest

Properties of Greedy Best-First Search

Complete? No - can get stuck in loops (unless closed list is used)
Time? $O\left(b^{m}\right)$, but a good heuristic can give dramatic improvement

Space? $O\left(b^{m}\right)$-- keeps all nodes in memory a la breadth first search

Optimal? No, as our example illustrated

A* Search

(Hart, Nilsson \& Rafael 1968)

- Best first search with $\mathbf{f (n)}=\mathbf{g}(\mathbf{n})+h(n)$
$\mathbf{g}(\mathrm{n})=$ sum of edge costs from start to \mathbf{n}
$h(n)=$ heuristic function $=$ estimate of lowest cost path from n to goal
- If $\mathbf{h (n)}$ is "admissible" then search will be optimal
$\uparrow\left\{\begin{array}{l}\text { Underestimates cost } \\ \text { of any solution which } \\ \text { can be reached from node }\end{array}\right.$

A* Example for Romania

$f(n)=g(n)+h(n)$ where
$g(n)=$ sum of edge costs from start to n
$h(n)=h_{S L D}(n)=$ straight-line distance from n to destination

A* Example

Admissible heuristics

A heuristic $h(n)$ is admissible if
for every node n,

$$
h(n) \leq h^{*}(n)
$$

where $h^{*}(n)$ is the true cost to reach the goal state from n.

An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic

Admissible Heuristics

Is the Straight Line Distance heuristic $\boldsymbol{h}_{\text {SLD }}(\mathbf{n})$ admissible?

Admissible Heuristics

Is the Straight Line Distance heuristic $\boldsymbol{h}_{\text {SLD }}(\mathbf{n})$ admissible?

Yes, it never overestimates the actual road distance

Theorem: If $\boldsymbol{h}(n)$ is admissible, A^{*} using TREESEARCH is optimal.

Optimality of \mathbf{A}^{*} (proof)

Suppose some suboptimal goal G_{2} has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

$$
\begin{aligned}
f\left(G_{2}\right)= & g\left(G_{2}\right) \\
& >g(G) \\
f(G)= & g(G) \\
f\left(G_{2}\right) & >f(G)
\end{aligned}
$$

Optimality of \mathbf{A}^{*} (cont.)

Suppose some suboptimal goal G_{2} has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

$f\left(G_{2}\right)>f(G) \quad$ from prev slide $h(n) \leq h *(n) \quad$ since h is admissible
$g(n)+h(n) \leq g(n)+h^{*}(n)$
$f(n) \leq f(G)<f\left(G_{2}\right)$
Hence $f(n)<f\left(G_{2}\right) \Rightarrow A^{*}$ will never select G_{2} for expansion.

Optimality of \mathbf{A}^{*}

A^{*} expands nodes in order of increasing f value Gradually adds " f-contours" of nodes

Okay, proof is done! Time to wake up...

Properties of A^{*}

Complete? Yes (unless there are infinitely many nodes with $\mathrm{f} \leq \mathrm{f}(\mathrm{G})$)

Time? Exponential (for most heuristic functions in practice)

Space? Keeps all generated nodes in memory (exponential number of nodes)

Optimal? Yes

Admissible heuristics

E.g., for the 8 -puzzle, what are some admissible heuristic functions? (for \# steps to goal state)
$h_{1}(n)=$?
$h_{2}(n)=$?

Start State

Goal State

Admissible heuristics

E.g., for the 8-puzzle:
$h_{1}(n)=$ number of misplaced tiles
$h_{2}(n)=$ total Manhattan distance (no. of squares from desired location of each tile)

$$
\begin{aligned}
& \underline{h}_{1}(\mathrm{~S})=? \\
& \underline{h}_{2}(\mathrm{~S})=?
\end{aligned}
$$

Start State
s

Goal State

Admissible heuristics

E.g., for the 8-puzzle:
$h_{1}(n)=$ number of misplaced tiles
$h_{2}(n)=$ total Manhattan distance (no. of squares from desired location of each tile)

$h_{1}(S)=? 8$
$\underline{h}_{2}(S)=? 3+1+2+2+2+3+3+2=18$

Goal State

Dominance

If $h_{2}(n) \geq h_{1}(n)$ for all n (both admissible) then h_{2} dominates h_{1}
h_{2} is better for search

Dominance

E.g., for 8 -puzzle heuristics h_{1} and h_{2}, typical search costs (average number of nodes expanded for solution depth d):
$d=12$ IDS $=3,644,035$ nodes $A^{*}\left(h_{1}\right)=227$ nodes
$A^{*}\left(h_{2}\right)=73$ nodes
$d=24$ IDS = too many nodes
$A^{*}\left(h_{1}\right)=39,135$ nodes
$A^{*}\left(h_{2}\right)=1,641$ nodes

In general. A* not practical for large scale problems due to memory requirements (all generated nodes in memory)

Idea: Use iterative deepening

Iterative-Deepening \mathbf{A}^{*}

Like iterative-deepening search, but cutoff is f cost $(=g+h)$ rather than depth

At each iteration, cutoff is smallest f cost among nodes that exceeded cutoff on prev iteration

Back to Admissable Heuristics

$$
f(x)=g(x)+h(x)
$$

g: cost so far
h : underestimate of remaining costs

Where do heuristics come from?

Relaxed Problems

Derive admissible heuristic from exact cost of a solution to a relaxed version of problem

- For route planning, what is a relaxed problem?

Relax requirement that car stay on road \rightarrow Straight Line Distance becomes optimal cost

Cost of optimal solution to relaxed problem \leq cost of optimal solution for real problem

Heuristics for eight puzzle

7 2 3 5 1 6 8 4 start \rightarrow1 2 3 4 5 6 7 8 stal			
goal			

What can we relax?

Original Problem: Tile can move from location A to B if A is horizontally or vertically next to B and B is blank

Heuristics for eight puzzle

7	2	3
5	1	6
8	4	

\rightarrow| 1 | 2 | 3 |
| :---: | :---: | :---: |
| 4 | 5 | 6 |
| 7 | 8 | |

Relaxed 1: Tile can move from any location A to any location B
Cost $=h_{1}=$ number of misplaced tiles

Relaxed 2: Tile can move from A to B if A is horizontally or vertically next to B (note: B does not have to be blank)
Cost $=h_{2}=$ total Manhattan distance

You can try other possible heuristics in your HW \#1

Need for Better Heuristics

Performance of h_{2} (Manhattan Distance Heuristic)

- 8 Puzzle
- 15 Puzzle
- 24 Puzzle
< 1 second
1 minute
65000 years

Can we do better?

Creating New Heuristics

Given admissible heuristics $h_{1}, h_{2}, \ldots, h_{m}$, none of them dominating any other, how to choose the best?

Answer: No need to choose only one! Use:

$$
h(n)=\max \left\{h_{1}(n), h_{2}(n), \ldots, h_{n}(n)\right\}
$$

h is admissible (why?)
h dominates all h_{i} (by construction)
Can we do better with:

$$
h^{\prime}(n)=h_{1}(n)+h_{2}(n)+\ldots+h_{n}(n) ?
$$

Pattern Databases

Idea: Use solution cost of a subproblem as heuristic. For 8-puzzle: pick any subset of tiles

$$
\text { E.g., 3, 7, 11, } 12
$$

Precompute a table

- Compute optimal cost of solving just these tiles
- This is a lower bound on actual cost with all tiles
- For all possible configurations of these tiles
- Could be several million
- Use breadth first search back from goal state
- State $=$ position of just these tiles (\& blank)
- Admissible heuristic h_{DB} for complete state = cost of corresponding sub-problem state in database

Combining Multiple Databases

Can choose another set of tiles

- Precompute multiple tables

How to combine table values?

- Use the max trick!
E.g. Optimal solutions to Rubik's cube
- First found w/ IDA* using pattern DB heuristics
- Multiple DBs were used (diff subsets of cubies)
- Most problems solved optimally in 1 day
- Compare with 574,000 years for IDS

Drawbacks of Standard Pattern DBs

Since we can only take max

- Diminishing returns on additional DBs

Would like to be able to add values

- But not exceed the actual solution cost (to ensure admissible heuristic)
- How?

Disjoint Pattern DBs

Partition tiles into disjoint sets

- For each set, precompute table
- Don't count moves of tiles not in set
- This makes sure costs are disjoint
- Can be added without overestimating!

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

- E.g. For 15 puzzle shown, 8 tile DB has 519 million entries
- And 7 tile DB has 58 million

During search

- Look up costs for each set in DB
- Add values to get heuristic function value
- Manhattan distance is a special case of this idea where each set is a single tile

Performance

15 Puzzle: 2000x speedup vs Manhattan dist

- IDA* with the two DBs solves 15 Puzzle optimally in 30 milliseconds

24 Puzzle: 12 millionx speedup vs Manhattan

- IDA* can solve random instances in 2 days.
- Requires 4 DBs as shown
- Each DB has 128 million entries
- Without PDBs: 65000 years

Next: Local Search

How to climb hills
How to reach the top by annealing
How to simulate and profit from evolution

Local search algorithms

In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution

Find configuration satisfying constraints,
e.g., n-queens

In such cases, we can use local search algorithms
Keep a single "current" state, try to improve it

Example: n-queens

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Hill-climbing search

"Like climbing Everest in thick fog with amnesia"

function Hill-Climbing(problem) returns a state that is a local maximum inputs: problem, a problem
local variables: current, a node neighbor, a node
current \leftarrow Make-Node(Initial-State[problem]) loop do
neighbor \leftarrow a highest-valued successor of current
if Value[neighbor] \leq Value[current] then return State[current]
current \leftarrow neighbor

Hill-climbing search

Problem: depending on initial state, can get stuck in local maxima

Example: 8-queens problem

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	W//	13	16	13	16
$\sqrt{4}$	14	17	15	$\sqrt{W} 4$	14	16	16
17	W4	16	18	15	$\sqrt{1 /}$	15	\sqrt{W}
18	14	Wh/	15	15	14	N/	16
14	14	13	17	12	14	12	18

$h=$ number of pairs of queens that are attacking each other, either directly or indirectly
$h=17$ for the above state (would like to minimize this)

Example: 8-queens problem

A local minimum with $h=1$. Need $h=0$
How to find global minimum (or maximum)?

Simulated Annealing

Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

```
function Simulated-ANNEALING(problem, schedule) returns a solution state
    inputs: problem, a problem
            schedule, a mapping from time to "temperature"
    local variables: current, a node
        next, a node
            T, a "temperature" controlling prob. of downward steps
    current }\leftarrow\mathrm{ MAKE-NODE(InitiAL-State[problem])
    for }t\leftarrow1\mathrm{ to }\infty\mathrm{ do
        T\leftarrowschedule[t]
        if T=0 then return current
        next \leftarrow a randomly selected successor of current
```



```
            if }\DeltaE>0\mathrm{ then current }\leftarrow\mathrm{ next
            else current }\leftarrow\mathrm{ next only with probability e}\mp@subsup{e}{}{\DeltaE/T
```


Properties of simulated annealing

One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc

Local Beam Search

Keep track of k states rather than just one

Start with k randomly generated states

At each iteration, all the successors of all k states are generated

If any one is a goal state, stop; else select the k best successors from the complete list and repeat.

Genetic Algorithms

A successor state is generated by combining two parent states
Start with k randomly generated states (population)
A state is represented as a string over a finite alphabet (often a string of Os and 1s)

Evaluation function (fitness function). Higher values for better states.

Produce the next generation of states by selection, crossover, and mutation

Example: 8-queens problem

Can we evolve a solution through genetic algorithms?

Example: Evolving 8 Queens

Sorry, wrong queens

Example: Evolving 8 Queens

Fitness function: number of non-attacking pairs of queens $(\min =0, \max =8 \times 7 / 2=28)$
$24 /(24+23+20+11)=31 \%$ probability of selection for reproduction
$23 /(24+23+20+11)=29 \%$ etc

Queens crossing over

Adversarial Games

Programs that can play competitive board games

Minimax Search

Alpha-Beta Pruning

Games Overview

deterministic chance

Perfect information
 Imperfect information

chess, checkers, go, othello	backgammon, monopoly
	poker, bridge, scrabble

Games \& Game Theory

When there is more than one agent, the future is not easily predictable anymore for the agent

In competitive environments (conflicting goals), adversarial search becomes necessary

In AI, we usually consider special type of games:

- board games, which can be characterized as deterministic, turn-taking, two-player, zero-sum games with perfect information

Games as Search

Components:

- States:
- Initial state:
- Successor function:
- Terminal test:
- Utility function:

Games as Search

Components:

- States: board configurations
- Initial state: the board position and which player will move
- Successor function: returns list of (move, state) pairs, each indicating a legal move and the resulting state
- Terminal test: determines when the game is over
- Utility function: gives a numeric value in terminal states (e.g., -1, 0, +1 in chess for loss, tie, win)

Games as Search

Convention: first player is called MAX, 2nd player is called MIN
MAX moves first and they take turns until game is over
Winner gets reward, loser gets penalty
Utility values stated from MAX's perspective
Initial state and legal moves define the game tree
MAX uses game tree to determine next move

Tic-Tac-Toe Example

Optimal Strategy: Minimax Search

Find the contingent strategy for MAX assuming an infallible MIN opponent
Assumption: Both players play optimally!
Given a game tree, the optimal strategy can be determined by using the minimax value of each node (defined recursively):

MINIMAX-VALUE(n)=
UTILITY(n) If n is a terminal
$\max _{s \in \operatorname{succ}(n)}$ MINIMAX-VALUE(s) If n is a MAX node $\min _{s \in \operatorname{succ}(n)}$ MINIMAX-VALUE(s) If n is a MIN node

Two-Ply Game Tree

"Ply" = move by 1 player

Two-Ply Game Tree

Two-Ply Game Tree

Two-Ply Game Tree

Minimax decision $=\mathrm{A}_{1}$

MAX

Minimax maximizes the worst-case outcome for max

What if MIN does not play optimally?

Definition of optimal play for MAX assumes MIN plays optimally

- Maximizes worst-case outcome for MAX

If MIN does not play optimally, MAX will do even better (i.e. at least as much or more utility obtained than if MIN was optimal) [Exercise 5.7 in textbook]

Another example max 0
(4 ply)

Minimax Algorithm

function Minimax-Decision(state) returns an action

```
\(v \leftarrow\) Max-Value(state)
```

return the action in Successors(state) with value v
function MAX-VALUE(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
$v \leftarrow-\infty$
for a, s in SUCCESSORS(state) do
$v \leftarrow \operatorname{Max}(v, \operatorname{Min}-\operatorname{Value}(s))$
return v
function Min-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
$v \leftarrow \infty$
for a, s in SUCCESSORS(state) do $v \leftarrow \operatorname{Min}(v, \operatorname{Max}-\operatorname{Value}(s))$
return v

Properties of minimax

Complete? Yes (if tree is finite)
Optimal? Yes (against an optimal opponent)

Time complexity? $O\left(b^{m}\right)$

Space complexity? O(bm) (depth-first exploration)

Good enough?

Chess:

- branching factor $b \approx 35$
- game length m ≈ 100
- search space $b^{m} \approx 35^{100} \approx 10^{154}$

The Universe:

- number of atoms $\approx 10^{78}$
- age $\approx 10^{21}$ milliseconds

Can we search more efficiently?

Next Class: Wrap up of search Logic and Reasoning

To do:
Homework \#1
Sign up for class mailing list

