
Chapters 3-5
Problem Solving using Search

Chapters 3-5
Problem Solving using Search

CSEP 573

© CSE AI Faculty
“First, they do an on-line search”

2

Example: The 8-puzzleExample: The 8-puzzle

1 2 3

67 5
8 4

1 2 3

87
54 6

3

Example: Route PlanningExample: Route Planning

st
ar

t

end

4

Example: N QueensExample: N Queens

4 Queens

5

Example: N QueensExample: N Queens

4 Queens

6

State-Space Search ProblemsState-Space Search Problems

General problem:
Given a start state, find a path to a goal state

• Can test if a state is a goal
• Given a state, can generate its successor states

Variants:
• Find any path vs. a least-cost path
• Goal is completely specified, task is just to find the path

– Route planning

• Path doesn’t matter, only finding the goal state
– 8 puzzle, N queens

7

Tree Representation of 8-Puzzle Problem SpaceTree Representation of 8-Puzzle Problem Space

8

fringe (= frontier in the textbook) is the set of all leaf nodes available for expansion

9

10

action = Right

children

11

12

13

14

15

16

17

18

19

20

= O(bd), i.e., exponential in d

21

= O(bd), i.e., exponential in d

O(bd)

22

Space is the big problem for BFS.

Example: b = 10, 10,000 nodes/sec, 1KB/node

d = 3 1000 nodes, 0.1 sec, 1MB

d = 5 100,000 nodes, 10 secs, 100 MB

d = 9 109 nodes, 31 hours, 1 TB

= O(bd), i.e., exponential in d

O(bd)

23

(use priority queue)

(used when step costs are unequal)

(small positive constant; 0 cost may cause infinite loop)

24

25

26

27

28

29

30

31

32

33

34

35

36

37

(“GRAPH-SEARCH” in textbook)

38

(m = maximum depth)

(“GRAPH-SEARCH” in textbook)

39

40

(may find a solution but least cost solution
may be on a different branch)

41

42

43

44

45

46

47

48

49

50

51

Increasing path-cost limits instead of depth limits
This is called Iterative lengthening search (exercise 3.17)

52

53

Forwards vs. BackwardsForwards vs. Backwards
st
ar

t

end

Problem: Find the shortest route

54

Bidirectional SearchBidirectional Search

Motivation: bd/2 + bd/2 << bd

Can use breadth-first search or uniform-cost search

Hard for implicit goals e.g., goal = “checkmate” in chess

55

Repeated StatesRepeated States

Failure to detect repeated states can turn a linear problem into an
exponential one! (e.g., repeated states in 8 puzzle)

Graph search algorithm: Store expanded nodes in a set called
closed (or explored) and only add new nodes to the fringe

56

Graph SearchGraph Search

57

All these methods are slow (blind)

Can we do better?

58

Informed SearchInformed Search
Use problem-specific knowledge to guide search (use “heuristic

function”)

59

Best-first SearchBest-first Search
Generalization of breadth first search
Priority queue of nodes to be explored
Evaluation function f(n) used for each node

Insert initial state into priority queue
While queue not empty

Node = head(queue)
If goal(node) then return node
Insert children of node into pr. queue

60

Who’s on (best) first?Who’s on (best) first?

Breadth first search is special case of best first
• with f(n) = depth(n)

Dijkstra’s Algorithm is best first
• with f(n) = g(n)

where g(n) = sum of edge costs from start
to n

61

Greedy best-first searchGreedy best-first search

Evaluation function f(n) = h(n) (heuristic) = estimate of cost
from n to goal

e.g., Route finding problems: hSLD(n) = straight-line distance
from n to destination

Greedy best-first search expands the node that appears to be
closest to goal

62

Example: Lost in
Romania

Example: Lost in
Romania

Need: Shortest path from Arad to Bucharest

63

Example: Greedily Searching for BucharestExample: Greedily Searching for Bucharest

hSLD(Arad)

64

Example: Greedily Searching for BucharestExample: Greedily Searching for Bucharest

65

Example: Greedily Searching for BucharestExample: Greedily Searching for Bucharest

66

Example: Greedily Searching for BucharestExample: Greedily Searching for Bucharest

Not optimal!
Arad, Sibiu, Rimnicu Vilcea, Pitesti, Bucharest shorter

Greed
doesn’t

pay!

67

Properties of Greedy Best-First SearchProperties of Greedy Best-First Search

Complete? No – can get stuck in loops (unless closed list is used)

Time? O(bm), but a good heuristic can give dramatic
improvement

Space? O(bm) -- keeps all nodes in memory a la breadth first
search

Optimal? No, as our example illustrated

68

A* Search
(Hart, Nilsson & Rafael 1968)

A* Search
(Hart, Nilsson & Rafael 1968)

• Best first search with f(n) = g(n) + h(n)

g(n) = sum of edge costs from start to n
h(n) = heuristic function = estimate of lowest cost path

from n to goal

• If h(n) is “admissible” then search will be optimal

Underestimates cost
of any solution which
can be reached from node{

69

Back in Romania
Again

Back in Romania
Again

end

start

Aici noi
energie

iar!

70

A* Example for RomaniaA* Example for Romania
f(n) = g(n) + h(n) where

g(n) = sum of edge costs from start to n

h(n) = hSLD(n) = straight-line distance from n to destination

71

A* ExampleA* Example

72

A* ExampleA* Example

73

A* ExampleA* Example

74

A* ExampleA* Example

75

A* ExampleA* Example

76

Admissible heuristicsAdmissible heuristics

A heuristic h(n) is admissible if
for every node n,

h(n) ≤ h*(n)
where h*(n) is the true cost to reach the goal state from n.

An admissible heuristic never overestimates the cost to reach the
goal, i.e., it is optimistic

77

Admissible HeuristicsAdmissible Heuristics

Is the Straight Line Distance heuristic hSLD(n)
admissible?

78

Admissible HeuristicsAdmissible Heuristics

Is the Straight Line Distance heuristic hSLD(n)
admissible?

Yes, it never overestimates the actual road distance

Theorem: If h(n) is admissible, A* using TREE-
SEARCH is optimal.

79

Optimality of A* (proof)Optimality of A* (proof)
Suppose some suboptimal goal G2 has been generated and is in the

fringe. Let n be an unexpanded node in the fringe such that n
is on a shortest path to an optimal goal G.

f(G2) = g(G2) since h(G2) = 0
> g(G) since G2 is suboptimal

f(G) = g(G) since h(G) = 0
f(G2) > f(G) from above

80

Optimality of A* (cont.)Optimality of A* (cont.)
Suppose some suboptimal goal G2 has been generated and is in the

fringe. Let n be an unexpanded node in the fringe such that n
is on a shortest path to an optimal goal G.

f(G2) > f(G) from prev slide
h(n) ≤ h*(n) since h is admissible
g(n) + h(n) ≤ g(n) + h*(n)
f(n) ≤ f(G) < f(G2)

Hence f(n) < f(G2) ⇒ A* will never select G2 for expansion.

81

Optimality of A*Optimality of A*

A* expands nodes in order of increasing f value
Gradually adds "f-contours" of nodes

82

Okay, proof is done!
Time to wake up…

Okay, proof is done!
Time to wake up…

AI rocks!

83

Properties of A*Properties of A*

Complete? Yes (unless there are infinitely many nodes
with f ≤ f(G))

Time? Exponential (for most heuristic functions in
practice)

Space? Keeps all generated nodes in memory
(exponential number of nodes)

Optimal? Yes

84

Admissible heuristicsAdmissible heuristics

E.g., for the 8-puzzle, what are some admissible
heuristic functions? (for # steps to goal state)

h1(n) = ?
h2(n) = ?

85

Admissible heuristicsAdmissible heuristics

E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance (no. of squares from
desired location of each tile)

h1(S) = ?
h2(S) = ?

S

86

Admissible heuristicsAdmissible heuristics
E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance (no. of squares from
desired location of each tile)

h1(S) = ? 8
h2(S) = ? 3+1+2+2+2+3+3+2 = 18

87

DominanceDominance
If h2(n) ≥ h1(n) for all n (both admissible) then h2
dominates h1

h2 is better for search

88

DominanceDominance
E.g., for 8-puzzle heuristics h1 and h2, typical

search costs (average number of nodes expanded
for solution depth d):

d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes
A*(h2) = 73 nodes

d=24 IDS = too many nodes
A*(h1) = 39,135 nodes
A*(h2) = 1,641 nodes

In general, A* not practical for large scale
problems due to memory requirements

(all generated nodes in memory)

In general, A* not practical for large scale
problems due to memory requirements

(all generated nodes in memory)

Idea: Use iterative deepening

90

Iterative-Deepening A*Iterative-Deepening A*
Like iterative-deepening search, but
cutoff is f cost (= g + h) rather than depth

At each iteration, cutoff is smallest f cost among
nodes that exceeded cutoff on prev iteration

a

b

c

e

f d
f_L=15

f_L=21

91

Back to Admissable HeuristicsBack to Admissable Heuristics
f(x) = g(x) + h(x)
g: cost so far
h: underestimate of remaining costs

Where do heuristics come from?

e.g., hSLD

92

Relaxed ProblemsRelaxed Problems
Derive admissible heuristic from exact cost of a solution

to a relaxed version of problem

• For route planning, what is a relaxed problem?

Cost of optimal solution to relaxed problem ≤
cost of optimal solution for real problem

Relax requirement that car stay on road
Straight Line Distance becomes optimal cost

93

Heuristics for eight puzzleHeuristics for eight puzzle

7 2 3

8 4
5 1 6

1 2 3

7 8
4 5 6

start goal

What can we relax?

Original Problem: Tile can move from location A to B if
A is horizontally or vertically next to B and B is blank

94

Heuristics for eight puzzleHeuristics for eight puzzle
7 2 3

8 4
5 1 6

1 2 3

7 8
4 5 6

Relaxed 1: Tile can move from any location A to any location B
Cost = h1 = number of misplaced tiles

Relaxed 2: Tile can move from A to B if A is horizontally or
vertically next to B (note: B does not have to be blank)
Cost = h2 = total Manhattan distance

You can try other possible heuristics in your HW #1

95

Need for Better HeuristicsNeed for Better Heuristics
Performance of h2 (Manhattan Distance Heuristic)

• 8 Puzzle < 1 second
• 15 Puzzle 1 minute
• 24 Puzzle 65000 years

Can we do better?

Adapted from Richard Korf presentation

96

Creating New HeuristicsCreating New Heuristics

Given admissible heuristics h1, h2, …, hm, none of them
dominating any other, how to choose the best?

Answer: No need to choose only one! Use:
h(n) = max {h1(n), h2(n), …, hn(n)}

h is admissible (why?)
h dominates all hi (by construction)
Can we do better with:

h’(n) = h1(n) + h2(n) + … + hn(n)?

97

Pattern DatabasesPattern Databases
Idea: Use solution cost of a subproblem as heuristic. For

8-puzzle: pick any subset of tiles
E.g., 3, 7, 11, 12

Precompute a table
• Compute optimal cost of solving just these tiles

– This is a lower bound on actual cost with all tiles

• For all possible configurations of these tiles
– Could be several million

• Use breadth first search back from goal state
– State = position of just these tiles (& blank)

• Admissible heuristic hDB for complete state = cost
of corresponding sub-problem state in database

Adapted from Richard Korf presentation

98

Combining Multiple DatabasesCombining Multiple Databases
Can choose another set of tiles

• Precompute multiple tables
How to combine table values?

• Use the max trick!

E.g. Optimal solutions to Rubik’s cube
• First found w/ IDA* using pattern DB
heuristics

• Multiple DBs were used (diff subsets of
cubies)

• Most problems solved optimally in 1 day
• Compare with 574,000 years for IDS

Adapted from Richard Korf presentation

99

Drawbacks of Standard Pattern DBsDrawbacks of Standard Pattern DBs

Since we can only take max
• Diminishing returns on additional DBs

Would like to be able to add values
– But not exceed the actual solution cost (to

ensure admissible heuristic)
– How?

Adapted from Richard Korf presentation

100

Disjoint Pattern DBsDisjoint Pattern DBs
Partition tiles into disjoint sets

• For each set, precompute table
• Don’t count moves of tiles not in set

– This makes sure costs are disjoint
– Can be added without overestimating!
– E.g. For 15 puzzle shown, 8 tile DB has 519 million entries
– And 7 tile DB has 58 million

During search
• Look up costs for each set in DB
• Add values to get heuristic function value

• Manhattan distance is a special case of this idea
where each set is a single tile

Adapted from Richard Korf presentation

9 10 11 12
13 14 15

1 2 3 4
5 6 7 8

101

PerformancePerformance
15 Puzzle: 2000x speedup vs Manhattan dist

• IDA* with the two DBs solves 15 Puzzle
optimally in 30 milliseconds

24 Puzzle: 12 millionx speedup vs Manhattan
• IDA* can solve random instances in 2
days.

• Requires 4 DBs as shown
– Each DB has 128 million entries

• Without PDBs: 65000 years

Adapted from Richard Korf presentation

102

Next: Local SearchNext: Local Search

How to climb hills
How to reach the top by annealing
How to simulate and profit from evolution

103

Local search algorithmsLocal search algorithms
In many optimization problems, the path to the goal
is irrelevant; the goal state itself is the solution

Find configuration satisfying constraints,
e.g., n-queens

In such cases, we can use local search algorithms

Keep a single "current" state, try to improve it

104

Example: n-queensExample: n-queens
Put n queens on an n × n board with no two
queens on the same row, column, or diagonal

105

Hill-climbing searchHill-climbing search

"Like climbing Everest in thick fog with amnesia"

106

Hill-climbing searchHill-climbing search

Problem: depending on initial state, can get
stuck in local maxima

107

Example: 8-queens problemExample: 8-queens problem

h = number of pairs of queens that are attacking each
other, either directly or indirectly

h = 17 for the above state (would like to minimize this)

Heuristic?
(Value function)

108

Example: 8-queens problemExample: 8-queens problem

A local minimum with h = 1. Need h = 0
How to find global minimum (or maximum)?

109

Simulated AnnealingSimulated Annealing
Idea: escape local maxima by allowing some "bad"
moves but gradually decrease their frequency

110

Properties of simulated annealing Properties of simulated annealing
One can prove: If T decreases slowly enough,
then simulated annealing search will find a global
optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc

111

Local Beam SearchLocal Beam Search
Keep track of k states rather than just one

Start with k randomly generated states

At each iteration, all the successors of all k states
are generated

If any one is a goal state, stop; else select the k
best successors from the complete list and
repeat.

112

Hey, perhaps sex
can improve

search?

113

Sure – check out ye
book.

114

Genetic AlgorithmsGenetic Algorithms
A successor state is generated by combining two parent states

Start with k randomly generated states (population)

A state is represented as a string over a finite alphabet (often a
string of 0s and 1s)

Evaluation function (fitness function). Higher values for better
states.

Produce the next generation of states by selection, crossover,
and mutation

115

Example: 8-queens problemExample: 8-queens problem

Can we evolve a solution through genetic algorithms?

String
Representation:
16257483

8
7
6
5
4
3
2
1

116

Example: Evolving 8 QueensExample: Evolving 8 Queens

?

Sorry, wrong queens

117

Example: Evolving 8 QueensExample: Evolving 8 Queens

Fitness function: number of non-attacking pairs of queens
(min = 0, max = 8 × 7/2 = 28)

24/(24+23+20+11) = 31% probability of selection for
reproduction

23/(24+23+20+11) = 29% etc

118

Queens crossing overQueens crossing over

Let’s move on to
adversarial games

120

Adversarial GamesAdversarial Games
Programs that can play competitive board
games

Minimax Search

Alpha-Beta Pruning

121

Games OverviewGames Overview

chess, checkers,
go, othello

backgammon,
monopoly

poker,
bridge, scrabbleImperfect

information

Perfect
information

deterministic chance

122

Games & Game TheoryGames & Game Theory

When there is more than one agent, the future is not
easily predictable anymore for the agent

In competitive environments (conflicting goals),
adversarial search becomes necessary

In AI, we usually consider special type of games:
• board games, which can be characterized as

deterministic, turn-taking, two-player, zero-sum
games with perfect information

123

Games as SearchGames as Search

Components:
States:
Initial state:

Successor function:

Terminal test:
Utility function:

124

Games as SearchGames as Search
Components:

States: board configurations
Initial state: the board position and which player
will move
Successor function: returns list of (move, state)
pairs, each indicating a legal move and the resulting
state
Terminal test: determines when the game is over
Utility function: gives a numeric value in terminal
states (e.g., -1, 0, +1 in chess for loss, tie, win)

125

Games as SearchGames as Search
Convention: first player is called MAX,

2nd player is called MIN
MAX moves first and they take turns until game is
over

Winner gets reward, loser gets penalty
Utility values stated from MAX’s perspective
Initial state and legal moves define the game tree
MAX uses game tree to determine next move

126

Tic-Tac-Toe ExampleTic-Tac-Toe Example

127

Optimal Strategy: Minimax SearchOptimal Strategy: Minimax Search

Find the contingent strategy for MAX assuming an
infallible MIN opponent

Assumption: Both players play optimally!
Given a game tree, the optimal strategy can be
determined by using the minimax value of each node
(defined recursively):

MINIMAX-VALUE(n)=
UTILITY(n) If n is a terminal
maxs ∈ succ(n) MINIMAX-VALUE(s) If n is a MAX node
mins ∈ succ(n) MINIMAX-VALUE(s) If n is a MIN node

128

Two-Ply Game TreeTwo-Ply Game Tree

“Ply” = move by 1 player

129

Two-Ply Game TreeTwo-Ply Game Tree

130

Two-Ply Game TreeTwo-Ply Game Tree

131

Two-Ply Game TreeTwo-Ply Game Tree

Minimax decision = A1

Minimax maximizes the worst-case outcome for max

132

What if MIN does not play optimally?What if MIN does not play optimally?

Definition of optimal play for MAX assumes MIN
plays optimally

• Maximizes worst-case outcome for MAX

If MIN does not play optimally, MAX will do even
better (i.e. at least as much or more utility obtained
than if MIN was optimal) [Exercise 5.7 in textbook]

133

Another example
(4 ply)

134

135

136

137

138

139

Choose this
move

140

Minimax AlgorithmMinimax Algorithm

141

Properties of minimaxProperties of minimax
Complete? Yes (if tree is finite)

Optimal? Yes (against an optimal opponent)

Time complexity? O(bm)

Space complexity? O(bm) (depth-first
exploration)

142

Good enough?Good enough?
Chess:

branching factor b ≈ 35
game length m ≈ 100
search space bm ≈ 35100 ≈ 10154

The Universe:
number of atoms ≈ 1078

age ≈ 1021 milliseconds

Can we search more efficiently?

Next Class:
Wrap up of search
Logic and Reasoning

Next Class:
Wrap up of search
Logic and Reasoning

To do:
Homework #1

Sign up for class mailing list

	Chapters 3-5��Problem Solving using Search
	Example: The 8-puzzle
	Example: Route Planning
	Example: N Queens
	Example: N Queens
	State-Space Search Problems
	Tree Representation of 8-Puzzle Problem Space
	Forwards vs. Backwards
	Bidirectional Search
	Repeated States
	Graph Search
	Informed Search
	Best-first Search
	Who’s on (best) first?
	Greedy best-first search
	Example: Lost in Romania
	Example: Greedily Searching for Bucharest
	Example: Greedily Searching for Bucharest
	Example: Greedily Searching for Bucharest
	Example: Greedily Searching for Bucharest
	Properties of Greedy Best-First Search
	A* Search �(Hart, Nilsson & Rafael 1968)�
	Back in Romania Again
	A* Example for Romania
	A* Example
	A* Example
	A* Example
	A* Example
	A* Example
	Admissible heuristics
	Admissible Heuristics
	Admissible Heuristics
	Optimality of A* (proof)
	Optimality of A* (cont.)
	Optimality of A*
	Okay, proof is done!�Time to wake up…
	Properties of A*
	Admissible heuristics
	Admissible heuristics
	Admissible heuristics
	Dominance
	Dominance
	In general, A* not practical for large scale problems due to memory requirements �(all generated nodes in memory)
	Iterative-Deepening A*
	Back to Admissable Heuristics
	Relaxed Problems
	Heuristics for eight puzzle
	Heuristics for eight puzzle
	Need for Better Heuristics
	Creating New Heuristics
	Pattern Databases
	Combining Multiple Databases
	Drawbacks of Standard Pattern DBs
	Disjoint Pattern DBs
	Performance
	Next: Local Search
	Local search algorithms
	Example: n-queens
	Hill-climbing search
	Hill-climbing search
	Example: 8-queens problem
	Example: 8-queens problem
	Simulated Annealing
	Properties of simulated annealing
	Local Beam Search
	Genetic Algorithms
	Example: 8-queens problem
	Example: Evolving 8 Queens
	Example: Evolving 8 Queens
	Queens crossing over
	Adversarial Games
	Games Overview
	Games & Game Theory
	Games as Search
	Games as Search
	Games as Search
	Tic-Tac-Toe Example
	Optimal Strategy: Minimax Search
	Two-Ply Game Tree
	Two-Ply Game Tree
	Two-Ply Game Tree
	Two-Ply Game Tree
	What if MIN does not play optimally?
	Minimax Algorithm
	Properties of minimax
	Good enough?
	Next Class: �Wrap up of search�Logic and Reasoning

