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“First, they do an on-line search”
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Example: The 8-puzzleExample: The 8-puzzle

1 2 3
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Example: Route PlanningExample: Route Planning

st
ar

t

end
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Example: N QueensExample: N Queens

4 Queens
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Example: N QueensExample: N Queens

4 Queens
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State-Space Search ProblemsState-Space Search Problems

General problem:
Given a start state, find a path to a goal state

• Can test if a state is a goal
• Given a state, can generate its successor states 

Variants:
• Find any path vs. a least-cost path
• Goal is completely specified, task is just to find the path

– Route planning

• Path doesn’t matter, only finding the goal state
– 8 puzzle, N queens
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Tree Representation of 8-Puzzle Problem SpaceTree Representation of 8-Puzzle Problem Space
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fringe (=  frontier in the textbook) is the set of all leaf nodes available for expansion 
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action = Right

children
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= O(bd ), i.e., exponential in d          
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= O(bd ), i.e., exponential in d          

O(bd )
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Space is the big problem for BFS.   

Example: b = 10, 10,000 nodes/sec, 1KB/node                    

d = 3 1000 nodes, 0.1 sec, 1MB

d = 5 100,000 nodes, 10 secs, 100 MB

d = 9 109 nodes, 31 hours, 1 TB

= O(bd ), i.e., exponential in d          

O(bd )
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(use priority queue)

(used when step costs are unequal)

(small positive constant; 0 cost may cause infinite loop)
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(“GRAPH-SEARCH” in textbook) 



38

(m = maximum depth)

(“GRAPH-SEARCH” in textbook) 
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(may find a solution but least cost solution 
may be on a different branch)
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Increasing path-cost limits instead of depth limits
This is called Iterative lengthening search (exercise 3.17)
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Forwards vs. BackwardsForwards vs. Backwards
st
ar

t

end

Problem: Find the shortest route
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Bidirectional SearchBidirectional Search

Motivation: bd/2 + bd/2 << bd

Can use breadth-first search or uniform-cost search

Hard for implicit goals e.g., goal = “checkmate” in chess
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Repeated StatesRepeated States

Failure to detect repeated states can turn a linear problem into an 
exponential one! (e.g., repeated states in 8 puzzle)

Graph search algorithm: Store expanded nodes in a set called 
closed (or explored) and only add new nodes to the fringe



56

Graph SearchGraph Search
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All these methods are slow (blind)

Can we do better?
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Informed SearchInformed Search
Use problem-specific knowledge to guide search (use “heuristic 

function”)
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Best-first SearchBest-first Search
Generalization of breadth first search
Priority queue of nodes to be explored
Evaluation function f(n) used for each node

Insert initial state into priority queue
While queue not empty

Node = head(queue)
If goal(node) then return node
Insert children of node into pr. queue
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Who’s on (best) first?Who’s on (best) first?

Breadth first search is special case of best first 
• with f(n) = depth(n)

Dijkstra’s Algorithm is best first
• with f(n) = g(n)

where g(n) = sum of edge costs from start 
to n
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Greedy best-first searchGreedy best-first search

Evaluation function f(n) = h(n) (heuristic) = estimate of cost 
from n to goal

e.g., Route finding problems: hSLD(n) = straight-line distance 
from n to destination

Greedy best-first search expands the node that appears to be 
closest to goal
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Example: Lost in 
Romania

Example: Lost in 
Romania

Need: Shortest path from Arad to Bucharest
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Example: Greedily Searching for BucharestExample: Greedily Searching for Bucharest

hSLD(Arad)
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Example: Greedily Searching for BucharestExample: Greedily Searching for Bucharest
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Example: Greedily Searching for BucharestExample: Greedily Searching for Bucharest
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Example: Greedily Searching for BucharestExample: Greedily Searching for Bucharest

Not optimal! 
Arad, Sibiu, Rimnicu Vilcea, Pitesti, Bucharest shorter

Greed 
doesn’t 

pay!
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Properties of Greedy Best-First SearchProperties of Greedy Best-First Search

Complete? No – can get stuck in loops (unless closed list is used)

Time? O(bm), but a good heuristic can give dramatic 
improvement 

Space? O(bm) -- keeps all nodes in memory a la breadth first 
search

Optimal? No, as our example illustrated
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A* Search 
(Hart, Nilsson & Rafael 1968)

A* Search 
(Hart, Nilsson & Rafael 1968)

• Best first search with f(n) = g(n) + h(n)

g(n) = sum of edge costs from start to n 
h(n) = heuristic function = estimate of lowest cost path 

from n to goal

• If h(n) is “admissible” then search will be optimal

Underestimates cost 
of any solution which 
can be reached from node{
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Back in Romania 
Again

Back in Romania 
Again

end

start

Aici noi
energie

iar!
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A* Example for RomaniaA* Example for Romania
f(n) = g(n) + h(n) where

g(n) = sum of edge costs from start to n 

h(n) = hSLD(n) = straight-line distance from n to destination
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A* ExampleA* Example
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A* ExampleA* Example
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A* ExampleA* Example
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A* ExampleA* Example
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A* ExampleA* Example
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Admissible heuristicsAdmissible heuristics

A heuristic h(n) is admissible if 
for every node n,

h(n) ≤ h*(n)
where h*(n) is the true cost to reach the goal state from n.

An admissible heuristic never overestimates the cost to reach the 
goal, i.e., it is optimistic
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Admissible HeuristicsAdmissible Heuristics

Is the Straight Line Distance heuristic hSLD(n) 
admissible? 
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Admissible HeuristicsAdmissible Heuristics

Is the Straight Line Distance heuristic hSLD(n) 
admissible? 

Yes, it never overestimates the actual road distance

Theorem: If h(n) is admissible, A* using TREE-
SEARCH is optimal.
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Optimality of A* (proof)Optimality of A* (proof)
Suppose some suboptimal goal G2 has been generated and is in the 

fringe. Let n be an unexpanded node in the fringe such that n 
is on a shortest path to an optimal goal G.

f(G2)  = g(G2) since h(G2) = 0 
> g(G) since G2 is suboptimal 

f(G)   = g(G) since h(G) = 0 
f(G2)  > f(G) from above 
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Optimality of A* (cont.)Optimality of A* (cont.)
Suppose some suboptimal goal G2 has been generated and is in the 

fringe. Let n be an unexpanded node in the fringe such that n 
is on a shortest path to an optimal goal G.

f(G2) > f(G) from prev slide 
h(n)  ≤ h*(n) since h is admissible
g(n) + h(n) ≤ g(n) + h*(n) 
f(n) ≤ f(G) < f(G2)

Hence f(n) < f(G2) ⇒ A* will never select G2 for expansion.
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Optimality of A*Optimality of A*

A* expands nodes in order of increasing f value
Gradually adds "f-contours" of nodes
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Okay, proof is done!
Time to wake up…

Okay, proof is done!
Time to wake up…

AI rocks!
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Properties of A*Properties of A*

Complete? Yes (unless there are infinitely many nodes 
with f ≤ f(G) )

Time? Exponential (for most heuristic functions in 
practice)

Space? Keeps all generated nodes in memory 
(exponential number of nodes)

Optimal? Yes
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Admissible heuristicsAdmissible heuristics

E.g., for the 8-puzzle, what are some admissible 
heuristic functions? (for # steps to goal state)

h1(n) = ?
h2(n) = ?
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Admissible heuristicsAdmissible heuristics

E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance (no. of squares from 
desired location of each tile)

h1(S) = ? 
h2(S) = ?

S
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Admissible heuristicsAdmissible heuristics
E.g., for the 8-puzzle:
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance (no. of squares from 
desired location of each tile)

h1(S) = ? 8
h2(S) = ? 3+1+2+2+2+3+3+2 = 18
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DominanceDominance
If h2(n) ≥ h1(n) for all n (both admissible) then h2
dominates h1

h2 is better for search
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DominanceDominance
E.g., for 8-puzzle heuristics h1 and h2, typical 

search costs (average number of nodes expanded 
for solution depth d):

d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes 
A*(h2) = 73 nodes 

d=24 IDS = too many nodes
A*(h1) = 39,135 nodes 
A*(h2) = 1,641 nodes



In general, A* not practical for large scale 
problems due to memory requirements 

(all generated nodes in memory)

In general, A* not practical for large scale 
problems due to memory requirements 

(all generated nodes in memory)

Idea: Use iterative deepening
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Iterative-Deepening A*Iterative-Deepening A*
Like iterative-deepening search, but 
cutoff is f cost (= g + h) rather than depth

At each iteration, cutoff is smallest f cost among 
nodes that exceeded cutoff on prev iteration

a

b

c

e

f d
f_L=15

f_L=21
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Back to Admissable HeuristicsBack to Admissable Heuristics
f(x) = g(x) + h(x)
g: cost so far
h: underestimate of remaining costs

Where do heuristics come from?

e.g., hSLD
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Relaxed ProblemsRelaxed Problems
Derive admissible heuristic from exact cost of a solution 

to a relaxed version of problem

• For route planning, what is a relaxed problem?

Cost of optimal solution to relaxed problem ≤
cost of optimal solution for real problem

Relax requirement that car stay on road 
Straight Line Distance becomes optimal cost 
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Heuristics for eight puzzleHeuristics for eight puzzle

7   2   3

8   4
5   1   6

1   2   3

7   8
4   5   6

start goal

What can we relax?

Original Problem: Tile can move from location A to B if 
A is horizontally or vertically next to B and B is blank
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Heuristics for eight puzzleHeuristics for eight puzzle
7   2   3

8   4
5   1   6

1   2   3

7   8
4   5   6

Relaxed 1: Tile can move from any location A to any location B
Cost = h1 = number of misplaced tiles

Relaxed 2: Tile can move from A to B if A is horizontally or 
vertically next to B   (note: B does not have to be blank)
Cost = h2 = total Manhattan distance

You can try other possible heuristics in your HW #1
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Need for Better HeuristicsNeed for Better Heuristics
Performance of h2 (Manhattan Distance Heuristic)

• 8 Puzzle < 1 second
• 15 Puzzle 1 minute
• 24 Puzzle 65000 years

Can we do better?

Adapted from Richard Korf presentation
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Creating New HeuristicsCreating New Heuristics

Given admissible heuristics h1, h2, …, hm, none of them 
dominating any other, how to choose the best?

Answer: No need to choose only one! Use:
h(n) = max {h1(n), h2(n), …, hn(n)}

h is admissible (why?)
h dominates all hi (by construction)
Can we do better with:

h’(n) = h1(n) + h2(n) + … + hn(n)?
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Pattern DatabasesPattern Databases
Idea: Use solution cost of a subproblem as heuristic. For 

8-puzzle: pick any subset of tiles
E.g., 3, 7, 11, 12

Precompute a table
• Compute optimal cost of solving just these tiles

– This is a lower bound on actual cost with all tiles

• For all possible configurations of these tiles
– Could be several million 

• Use breadth first search back from goal state
– State = position of just these tiles (& blank)

• Admissible heuristic hDB for complete state = cost 
of corresponding sub-problem state in database

Adapted from Richard Korf presentation
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Combining Multiple DatabasesCombining Multiple Databases
Can choose another set of tiles

• Precompute multiple tables
How to combine table values?

• Use the max trick!

E.g. Optimal solutions to Rubik’s cube
• First found w/ IDA* using pattern DB 
heuristics

• Multiple DBs were used (diff subsets of 
cubies)

• Most problems solved optimally in 1 day
• Compare with 574,000 years for IDS

Adapted from Richard Korf presentation
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Drawbacks of Standard Pattern DBsDrawbacks of Standard Pattern DBs

Since we can only take max
• Diminishing returns on additional DBs

Would like to be able to add values
– But not exceed the actual solution cost (to 

ensure admissible heuristic)
– How?

Adapted from Richard Korf presentation
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Disjoint Pattern DBsDisjoint Pattern DBs
Partition tiles into disjoint sets

• For each set, precompute table
• Don’t count moves of tiles not in set

– This makes sure costs are disjoint
– Can be added without overestimating!
– E.g. For 15 puzzle shown, 8 tile DB has 519 million entries
– And 7 tile DB has 58 million

During search
• Look up costs for each set in DB
• Add values to get heuristic function value

• Manhattan distance is a special case of this idea 
where each set is a single tile

Adapted from Richard Korf presentation

9  10  11 12
13 14  15

1   2   3   4
5  6   7   8
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PerformancePerformance
15 Puzzle: 2000x speedup vs Manhattan dist

• IDA* with the two DBs solves 15 Puzzle 
optimally in 30 milliseconds

24 Puzzle: 12 millionx speedup vs Manhattan 
• IDA* can solve random instances in 2 
days.

• Requires 4 DBs as shown
– Each DB has 128 million entries

• Without PDBs: 65000 years

Adapted from Richard Korf presentation
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Next: Local SearchNext: Local Search

How to climb hills
How to reach the top by annealing
How to simulate and profit from evolution
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Local search algorithmsLocal search algorithms
In many optimization problems, the path to the goal 
is irrelevant; the goal state itself is the solution

Find configuration satisfying constraints, 
e.g., n-queens

In such cases, we can use local search algorithms

Keep a single "current" state, try to improve it
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Example: n-queensExample: n-queens
Put n queens on an n × n board with no two 
queens on the same row, column, or diagonal



105

Hill-climbing searchHill-climbing search

"Like climbing Everest in thick fog with amnesia"
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Hill-climbing searchHill-climbing search

Problem: depending on initial state, can get 
stuck in local maxima
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Example: 8-queens problemExample: 8-queens problem

h = number of pairs of queens that are attacking each 
other, either directly or indirectly 

h = 17 for the above state (would like to minimize this)

Heuristic?
(Value function)
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Example: 8-queens problemExample: 8-queens problem

A local minimum with h = 1. Need h = 0
How to find global minimum (or maximum)?
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Simulated AnnealingSimulated Annealing
Idea: escape local maxima by allowing some "bad" 
moves but gradually decrease their frequency
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Properties of simulated annealing Properties of simulated annealing 
One can prove: If T decreases slowly enough, 
then simulated annealing search will find a global 
optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc
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Local Beam SearchLocal Beam Search
Keep track of k states rather than just one

Start with k randomly generated states

At each iteration, all the successors of all k states 
are generated

If any one is a goal state, stop; else select the k
best successors from the complete list and 
repeat.
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Hey, perhaps sex 
can improve 

search?
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Sure – check out ye 
book.
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Genetic AlgorithmsGenetic Algorithms
A successor state is generated by combining two parent states

Start with k randomly generated states (population)

A state is represented as a string over a finite alphabet (often a 
string of 0s and 1s)

Evaluation function (fitness function). Higher values for better 
states.

Produce the next generation of states by selection, crossover, 
and mutation
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Example: 8-queens problemExample: 8-queens problem

Can we evolve a solution through genetic algorithms?

String 
Representation:
16257483

8
7
6
5
4
3
2
1
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Example: Evolving 8 QueensExample: Evolving 8 Queens

?

Sorry, wrong queens
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Example: Evolving 8 QueensExample: Evolving 8 Queens

Fitness function: number of non-attacking pairs of queens 
(min = 0, max = 8 × 7/2 = 28)

24/(24+23+20+11) = 31% probability of selection for 
reproduction

23/(24+23+20+11) = 29% etc
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Queens crossing overQueens crossing over



Let’s move on to 
adversarial games



120

Adversarial GamesAdversarial Games
Programs that can play competitive board 
games

Minimax Search

Alpha-Beta Pruning
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Games OverviewGames Overview

chess, checkers, 
go, othello

backgammon, 
monopoly

poker,
bridge, scrabbleImperfect

information

Perfect
information

deterministic chance
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Games & Game TheoryGames & Game Theory

When there is more than one agent, the future is not 
easily predictable anymore for the agent

In competitive environments (conflicting goals), 
adversarial search becomes necessary

In AI, we usually consider special type of games:
• board games, which can be characterized as

deterministic, turn-taking, two-player, zero-sum
games with perfect information
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Games as SearchGames as Search

Components:
States: 
Initial state: 

Successor function:

Terminal test: 
Utility function:
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Games as SearchGames as Search
Components:

States: board configurations
Initial state: the board position and which player 
will move
Successor function: returns list of (move, state) 
pairs, each indicating a legal move and the resulting 
state
Terminal test: determines when the game is over
Utility function: gives a numeric value in terminal 
states (e.g., -1, 0, +1 in chess for loss, tie, win)



125

Games as SearchGames as Search
Convention: first player is called MAX, 

2nd player is called MIN
MAX moves first and they take turns until game is 
over 

Winner gets reward, loser gets penalty
Utility values stated from MAX’s perspective
Initial state and legal moves define the game tree
MAX uses  game tree to determine next move
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Tic-Tac-Toe ExampleTic-Tac-Toe Example
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Optimal Strategy: Minimax SearchOptimal Strategy: Minimax Search

Find the contingent strategy for MAX assuming an 
infallible MIN opponent

Assumption: Both players play optimally!
Given a game tree, the optimal strategy can be 
determined by using the minimax value of each node 
(defined recursively):

MINIMAX-VALUE(n)=
UTILITY(n) If n is a terminal
maxs ∈ succ(n) MINIMAX-VALUE(s) If n is a MAX node
mins ∈ succ(n) MINIMAX-VALUE(s) If n is a MIN node
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Two-Ply Game TreeTwo-Ply Game Tree

“Ply” = move by 1 player
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Two-Ply Game TreeTwo-Ply Game Tree
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Two-Ply Game TreeTwo-Ply Game Tree
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Two-Ply Game TreeTwo-Ply Game Tree

Minimax decision = A1

Minimax maximizes the worst-case outcome for max
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What if MIN does not play optimally?What if MIN does not play optimally?

Definition of optimal play for MAX assumes MIN 
plays optimally

• Maximizes worst-case outcome for MAX

If MIN does not play optimally, MAX will do even 
better (i.e. at least as much or more utility obtained 
than if MIN was optimal) [Exercise 5.7 in textbook]
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Another example 
( 4 ply)
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Choose this 
move
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Minimax AlgorithmMinimax Algorithm
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Properties of minimaxProperties of minimax
Complete? Yes (if tree is finite)

Optimal? Yes (against an optimal opponent)

Time complexity? O(bm)

Space complexity? O(bm) (depth-first 
exploration)
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Good enough?Good enough?
Chess: 

branching factor b ≈ 35
game length m ≈ 100
search space bm ≈ 35100 ≈ 10154

The Universe:
number of atoms ≈ 1078

age ≈ 1021 milliseconds

Can we search more efficiently?



Next Class: 
Wrap up of search
Logic and Reasoning

Next Class: 
Wrap up of search
Logic and Reasoning

To do: 
Homework #1

Sign up for class mailing list
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