

CSEP 573 Goals

• To introduce you to a set of key: Concepts & Techniques in AI

• Teach you to identify when & how to use

Heuristic search for problem solving and games Logic for knowledge representation and reasoning Bayesian inference for reasoning under uncertainty Machine learning (for pretty much everything)

AI as Science

Physics: Where did the *physical universe* come from and what laws guide its dynamics?

Biology: How did *biological life* evolve and how do living organisms function?

AI: ?????

AI as Science

Physics: Where did the *physical universe* come from and what laws guide its dynamics?

Biology: How did *biological life* evolve and how do living organisms function?

AI: What is the nature of "*intelligence*" and what constitutes intelligent behavior?

AI as Engineering

- How can we make software and robotic devices more powerful, adaptive, and easier to use?
- Examples:

Speech recognition Natural language understanding Computer vision and image understanding Intelligent user interfaces Data mining Mobile robots, softbots, humanoids Medical expert systems...

Defining AI S	ystems
human-like	rational
Systems that think like humans	Systems that think rationally
Systems that act like humans	Systems that act rationally
	human-like Systems that think like humans Systems that act like humans

History of AI: Foundations

• Logic: rules of rational thought

Aristotle (384-322 BC) – syllogisms Boole (1815-1864) – propositional logic Frege (1848-1925) – first-order logic Hilbert (1962-1943) – "Hilbert's Program" Gödel (1906-1978) – incompleteness Turing (1912-1954) – computability, Turing test Cook (1971) – NP completeness

History of AI: Foundations

Probability & Game Theory

 Cardano (1501-1576) – probabilities (*Liber de Ludo Aleae*)
 Bernoulli (1654-1705) – random variables
 Bayes (1702-1761) – belief update
 von Neumann (1944) – game theory
 Richard Bellman (1957) – Markov decision processes

Knowledge is Power

 Expert systems (1969-1980)
 Dendral – molecular chemistry Mycin – infectious disease R1 – computer configuration

• AI Boom (1975-1985)

LISP machines – single user workstations Japan's 5th Generation Project – massive parallel computing

AI Now

- Probabilistic graphical models Pearl (1988) – Bayesian networks
- Machine learning

Quinlan (1993) – decision trees (C4.5) Vapnik (1992) – Support vector machines (SVMs) Schapire (1996) – Boosting Neal (1996) – Gaussian processes

• Recent progress: Probabilistic relational models, deep networks, active learning, structured prediction, etc.

Notable Examples: Chess (Deep Blue, 1997)

Deep blue wins 2-1-3 (wins-losses-draws)

"I could feel – I could smell – a new kind of intelligence across the table" -Gary

Kasparov

Saying Deep Blue doesn't really think about chess is like saying an airplane doesn't really fly because it doesn't flap its wings.

– Drew McDermott

Natural Language Understanding

Speech Recognition
 "word spotting" feasible today
 continuous speech – inching closer
WWW Information Extraction
 E.g., KnowItAll project
Machine Translation / Understanding
 *The spirit is willing but the flesh is weak. (English)
 The vodka is good but the meat is rotten. (Russian)* (i.e., very much a work in progress...)

Limitations of AI Systems Today

- Today's successful AI systems operate in well-defined domains employ narrow, specialized hard-wired knowledge
- Needed: Ability to

Operate in complex, open-ended dynamic worlds • E.g., Your kitchen vs. GM factory floor Adapt to unforeseen circumstances Learn from new experiences

37

• In this class, we will explore some potentially useful techniques for tackling these problems

Outline

- Agents and environments
- Rationality
- PEAS specification
- Environment types
- Agent types

Rational Agent

"For each possible percept sequence, does whatever action is expected to maximize its performance measure on the basis of evidence perceived so far and built-in knowledge."

Rationality vs. omniscience

 Rationality maximizes *expected* performance
 Omniscience maximizes *actual* performance (but impossible to achieve in reality)

 Rational agents need to use information gathering actions and learning

Autonomy

A rational agent is autonomous if it can learn to compensate for partial or incorrect prior knowledge

Why is this important?

Task Environments

• The "task environment" for an agent is comprised of PEAS (Performance measure, Environment, Actuators, Sensors)

• E.g., Consider the task of designing an automated taxi driver:

Performance measure = ?

Environment = ? Actuators = ?

Sensors =?

For You To Do

- Browse CSEP 573 course web page
- Get on class mailing list
- Read Chapters 3-5 in AIMA text
- HW #1 to be assigned next week (watch course website)