#### **CSEP 573**

# Machine Learning II: Unsupervised Learning



"Take a course or something. Learning at your own speed isn't working out."

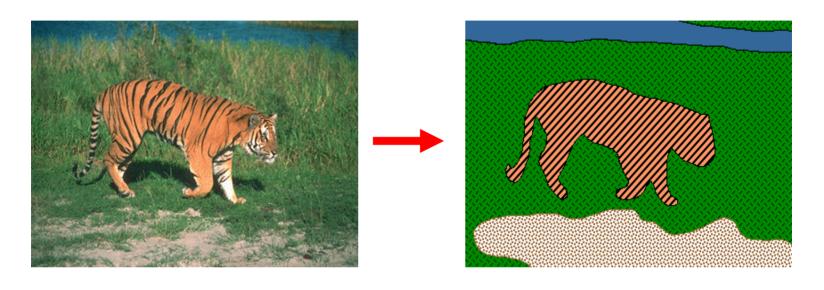
#### Our agenda today

#### Unsupervised Learning and Applications

- Clustering
  - Application: Image Segmentation
- Density Estimation and EM algorithm
- Dimensionality Reduction
  - Principal Component Analysis (PCA)
  - Applications: Image Compression, Face Recognition

Guest Lecture by Rawichote Chalodhorn: Applications of Learning in Robotics

#### Motivation: Image Segmentation in Computer Vision



Goal: Partition an image into its constituent "objects"

#### Idea: Image histograms

How many "orange" pixels are in this image?

- Look at the histogram
- A histogram counts the number of occurrences of each color

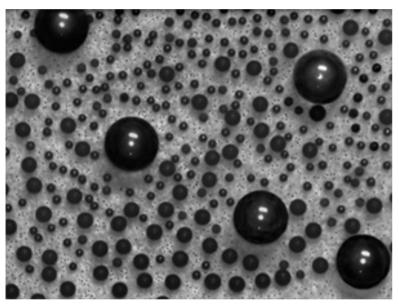


- Given an image  $F[x,y] \to RGB$
- The histogram is  $H_F[c] = |\{(x,y) \mid F[x,y] = c\}|$

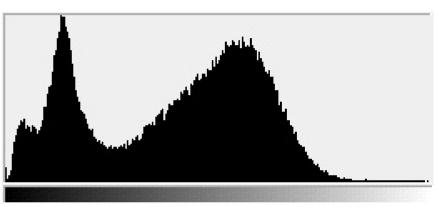
i.e., for each color value c on
the x-axis, plot # of pixels
with that color on y-axis

# Example Histogram of a Grayscale Image

Image



Histogram



Intensity bins

How Many Modes Are There?

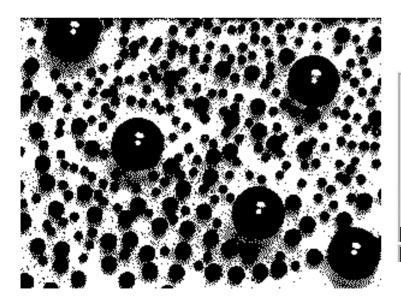
Easy to see, hard to compute

#### Histogram-based segmentation

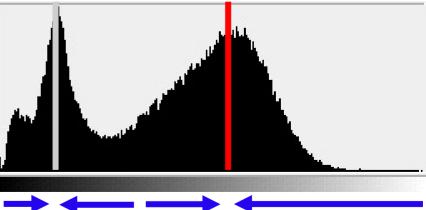
Idea: Break the image into K regions (segments) by

- · reducing the number of colors to K
- · assigning each pixel to the closest color

Here's what our image looks like if we use two colors (intensities)

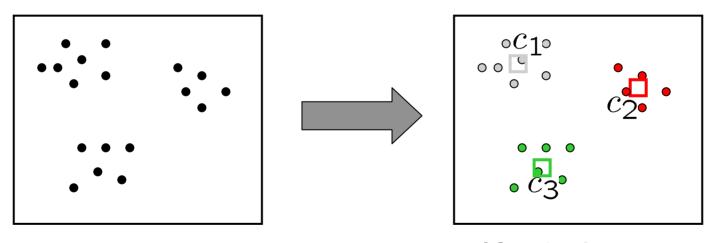


$$K = 2$$



#### Clustering

- · Idea in previous slide can be formalized as clustering
- Problem: Given unlabeled data points  $\{p_1, p_2, ..., p_N\}$ , assign each data point  $p_j$  to one of K clusters
  - points within a cluster are <u>"similar"</u> (according to some metric)
- · Example of unsupervised learning (no label given)



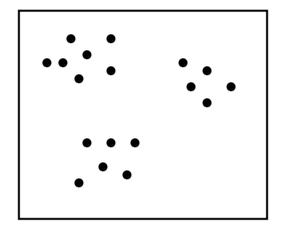
2D data points  $\{p_1, p_2, ...\}$ 

K = 3 clusters

## Why Clustering?

- · Lots of Applications!
  - Biology: Discovering gene clusters with similar expression patterns, grouping homologous DNA sequences, etc.
  - Marketing: Grouping customers with similar traits for segmenting the market, product positioning etc.
  - Vision: Image segmentation, feature learning for recognition,...
  - Search result grouping (e.g, clusty.com)
  - Social network analysis (discovering user communities with similar interests)
  - Crime analysis (identification of "hot spots")
  - Many more!

#### Clustering: The Problem



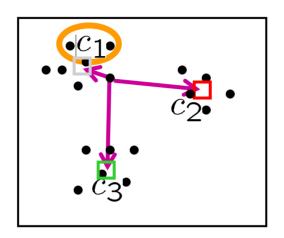
Given: Unlabeled data

Goal: Assign each point to the cluster it is most similar to

Suppose we are given the number of clusters K (= 3 here)

How do we assign each point to a cluster?

# Suppose you are given the cluster centers c<sub>i</sub>

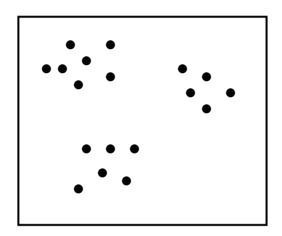


Q: how do you assign points to a cluster?

A: for each point p,

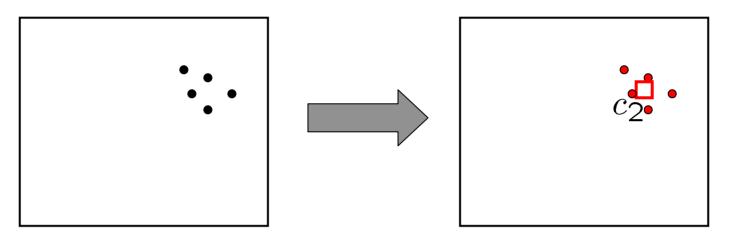
- Compute distance to cluster centers
- Choose the closest c<sub>i</sub>

# Suppose you are given the cluster centers c<sub>i</sub>



But wait...you are not given the cluster centers! How do you find them?

#### Finding the cluster center



Given a cluster of points, we can easily compute its center (How?)

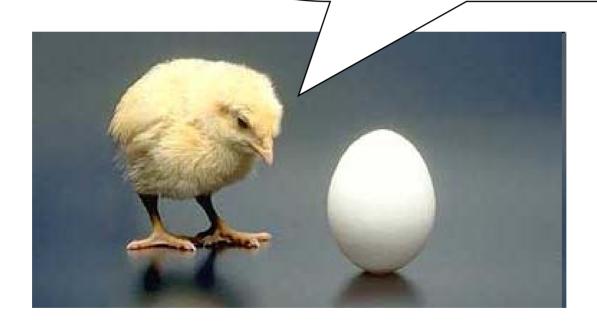
#### A chicken-or-egg problem?

Given cluster centers, we can assign points To find centers, we need points assigned to a cluster



#### A way out of the impasse

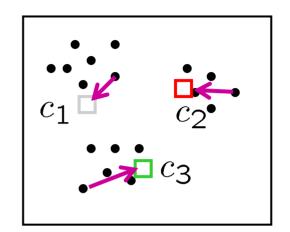
Why not alternate? (between finding centers and assigning points)



#### Alternate between 2 steps

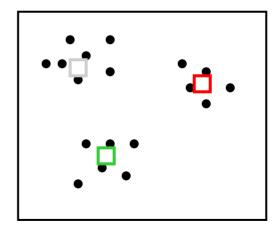
# I. Given current estimate of cluster centers c<sub>i</sub>:

Assign each point p to closest ci



# II. Given current assignment of points to clusters:

Choose  $c_i$  to be the mean of all the points in the cluster



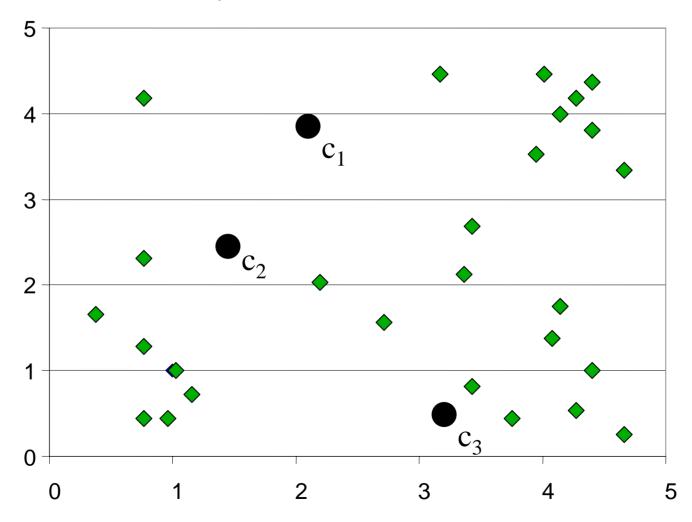
#### K-means clustering

#### Algorithm

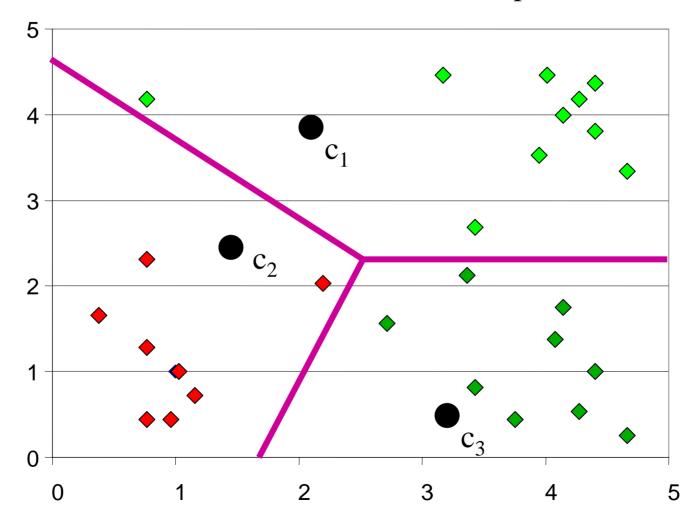
- 1. Randomly initialize the cluster centers,  $c_1, \ldots, c_K$
- 2. Determine cluster membership
  - For each point p, find the closest c<sub>i</sub>
  - Put p into cluster i
- 3. Re-estimate cluster centers
  - Set c<sub>i</sub> to be the mean of points in cluster i
- 4. If ci have changed, go to 2 else done.

Java demo: <a href="http://home.dei.polimi.it/matteucc/Clustering/tutorial\_html/AppletKM.html">http://home.dei.polimi.it/matteucc/Clustering/tutorial\_html/AppletKM.html</a>

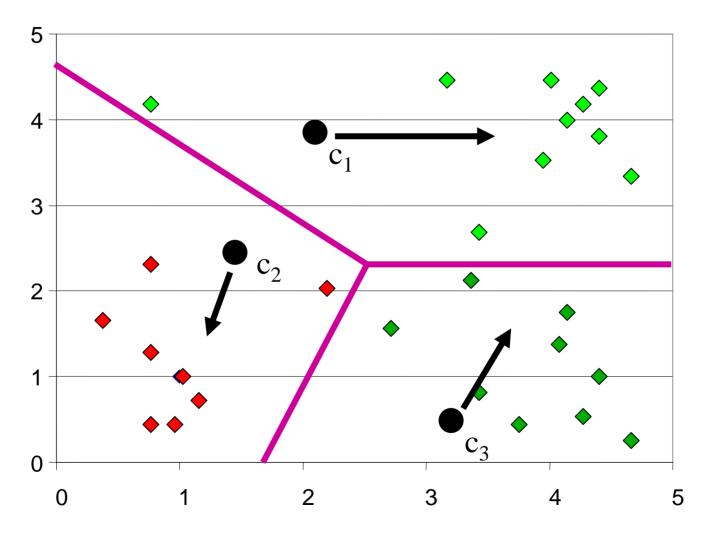
Randomly initialize the cluster centers



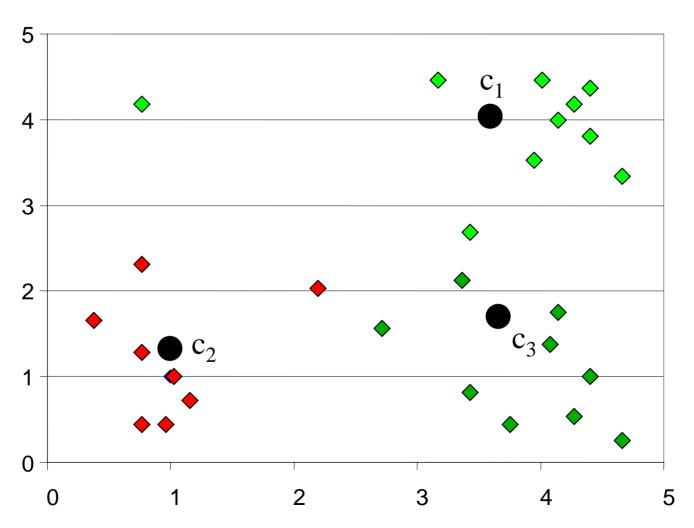
Determine cluster membership



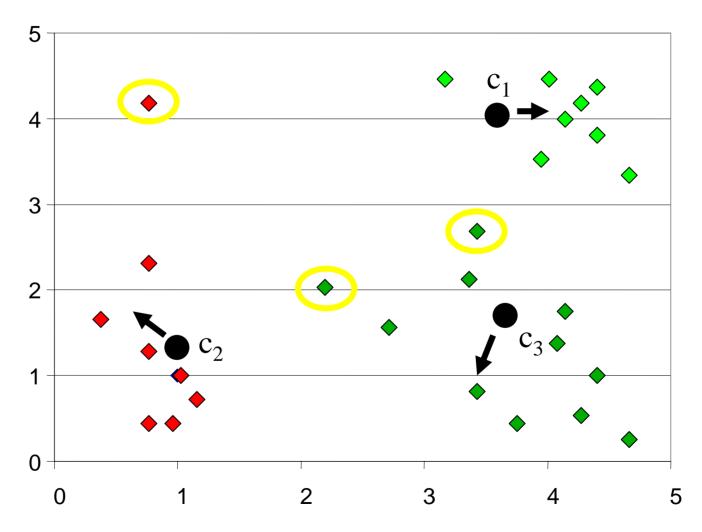
Re-estimate cluster centers



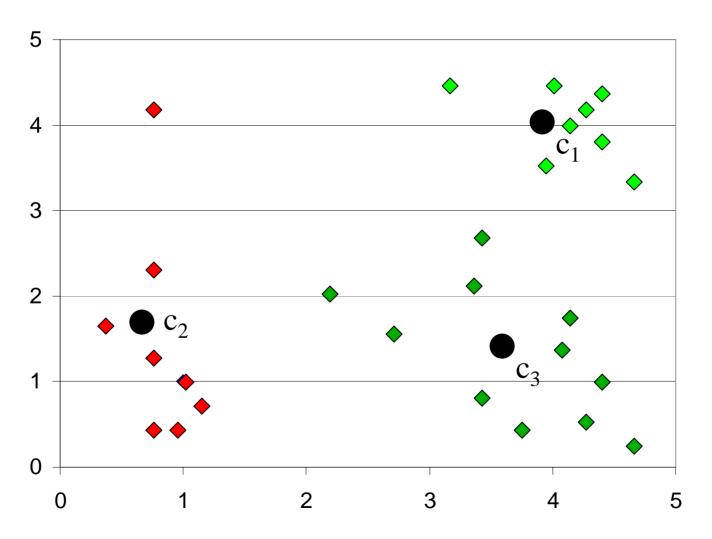
Result of first iteration



Second iteration



Result of second iteration



#### K-means clustering

#### **Properties**

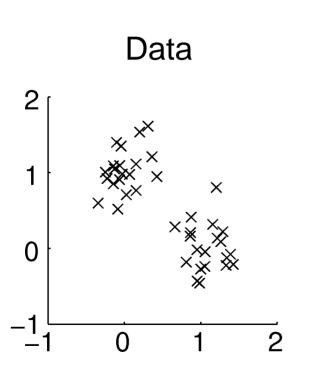
- · Will always converge to some solution
- · Can be a "local minimum"
  - does not always find the global minimum of objective function:

$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p - c_i||^2$$

#### K-means as probability density estimation

K-means can be formalized as estimating the unknown probability density of a data set

- · Model data as a mixture of K Gaussians
- · Estimate not only means but also (co)variances



#### K-Means and the EM Algorithm

- The Expectation Maximization (EM) Algorithm is a general algorithm for unsupervised learning when there are hidden variables (e.g., clusters, non-evidence nodes in Bayesian networks, etc.)
- · Like K-means, it involves iterating between 2 steps:
  - E ("expectation") step that estimates posterior probabilities of hidden variables
  - M ("maximization") step that uses the result of E step to update model parameters
- · Each iteration improves likelihood of data under the model (or keeps it the same)
- · Guaranteed to converge (perhaps to local maximum)

#### Not to be confused with...

#### The Expectation Minimization Algorithm



#### Density estimation using EM

- · EM for Gaussian mixtures (similar to K-means):
  - Initialize K clusters:  $C_1$ , ...,  $C_K$   $(\mu_j, \Sigma_j)$  and  $p(C_j)$  for each cluster j
  - · Repeat until convergence:
    - Estimate which cluster each data point belongs to  $p(C_i | x_i)$  Expectation step
    - Re-estimate cluster parameters  $(\mu_i, \Sigma_i), p(C_i) \implies \text{Maximization step}$

#### EM algorithm: The details

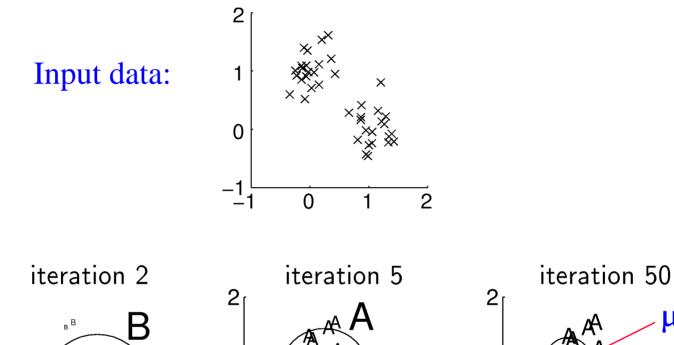
E step: Compute probability of membership in cluster based on output of previous M step  $(p(x_i|C_i) = \text{Gaussian}(\mu_i, \Sigma_i))$ 

$$p(C_{j} | x_{i}) = \frac{p(x_{i} | C_{j}) \cdot p(C_{j})}{p(x_{i})} = \frac{p(x_{i} | C_{j}) \cdot p(C_{j})}{\sum_{j} p(x_{i} | C_{j}) \cdot p(C_{j})}$$

M step: Re-estimate cluster parameters based on output of E step

$$\mu_{j} = \frac{\sum_{i} p(C_{j} | x_{i}) \cdot x_{i}}{\sum_{i} p(C_{j} | x_{i})} \qquad \sum_{j} p(C_{j} | x_{j}) \cdot (x_{i} - \mu_{j})^{T} \qquad \sum_{i} p(C_{j} | x_{i}) \qquad p(C_{j}) = \frac{\sum_{i} p(C_{j} | x_{i})}{N}$$

#### Results from the EM algorithm



 $2\sigma_{\rm B}$ 

 $\mu_{\text{B}}$ 

# Suppose we are not interested in density estimation but want to reduce the dimensionality of our data

Example application: Image compression

#### Redundancy in Images

Most natural images (e.g., images of faces) are highly redundant

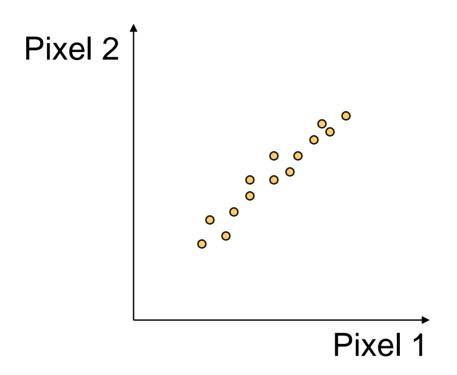
- Nearby pixels tend to have similar intensities and are therefore highly correlated
- · Why?
- Due to physical regularities of natural structures generating the image

Can we use unsupervised learning to capture and reduce this redundancy?





#### A Simple 2D Example



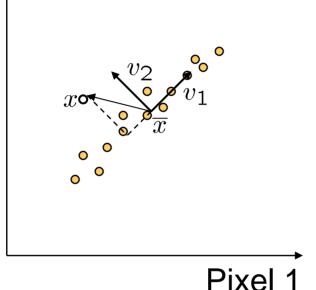
Suppose pixel 1 and pixel 2 are two neighboring pixels

- What does the plot above suggest?
- The two pixels are highly correlated for this data set of images

#### Linear subspaces



 $\overline{x}$  is the mean of the orange points



Suppose we fit a line v<sub>1</sub> Let v<sub>2</sub> be orthogonal to v<sub>1</sub>

Convert an input **x** into **v**<sub>1</sub>, **v**<sub>2</sub> coordinates

$$\mathbf{x} \to ((\mathbf{x} - \overline{x}) \cdot \mathbf{v}_1, (\mathbf{x} - \overline{x}) \cdot \mathbf{v}_2)$$

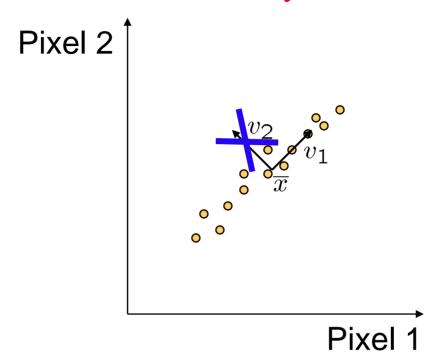
What does the  $\mathbf{v}_1$  coordinate measure?

- position along v<sub>1</sub> axis
- use it to specify which point it is

What does the **v**<sub>2</sub> coordinate measure?

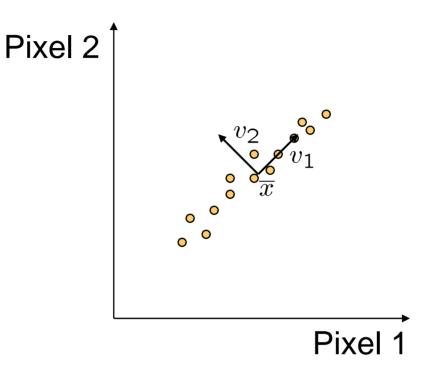
- distance to line (position along v<sub>2</sub> axis)
- near 0 for these pts

#### Dimensionality reduction



- We can represent the points with only their v₁ coordinates
  - since v<sub>2</sub> coordinates are all essentially 0
- Reduce dimensionality of data from 2D to 1D
- This makes it cheaper to store and compare points
- Bigger deal for higher dimensional inputs (like images!)

#### How do we find $v_1$ , $v_2$ , ...?



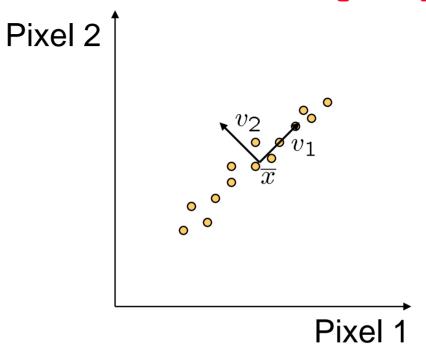
Consider the variation along some direction **v** for all of the *N* points:

$$var(\mathbf{v}) = 1/N \sum_{\text{orange point } \mathbf{x}} \|(\mathbf{x} - \overline{\mathbf{x}})^{\mathbf{T}} \mathbf{v}\|^{2}$$

What unit vector  $\mathbf{v}$  maximizes var?  $\mathbf{v}_1 = \max_{\mathbf{v}} \{var(\mathbf{v})\}$ 

 $\mathbf{v_2}$  is then the unit vector orthogonal to  $\mathbf{v_1}$ 

#### How do we find $v_1$ , $v_2$ , ...?

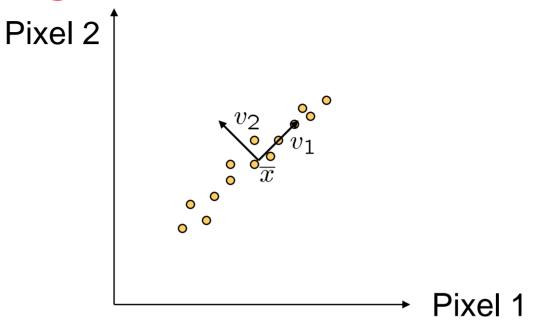


$$\begin{aligned} \mathit{var}(\mathbf{v}) &= \sum_{\mathbf{x}} \| (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \mathbf{v} \|^{2} / N \\ &= \sum_{\mathbf{x}} \mathbf{v}^{\mathrm{T}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \mathbf{v} / N \\ &= \mathbf{v}^{\mathrm{T}} \left[ \sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \right] \mathbf{v} / N \\ &= \mathbf{v}^{\mathrm{T}} \mathbf{A} \mathbf{v} \text{ where } \mathbf{A} = \sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} / N \end{aligned}$$

A = Covariance matrix of data points

We want to find a unit vector  $\mathbf{v}$  that maximizes  $\mathbf{v}^{\mathsf{T}}\mathbf{A}$   $\mathbf{v}$ 

## Finding $v_1$ and $v_2$ : The Math



 $\mathbf{v_1} = \operatorname{argmax}_{\mathbf{v}} (\mathbf{v}^T \mathbf{A} \mathbf{v}) \text{ subject to } \mathbf{v}^T \mathbf{v} = 1$ 

Using Lagrange multiplier method,

 $\mathbf{v_1} = \operatorname{argmax}_{\mathbf{v}} [\mathbf{v}^{\mathsf{T}} \mathbf{A} \ \mathbf{v} - \lambda (\mathbf{v}^{\mathsf{T}} \mathbf{v} - 1)]$ 

Setting derivative wrt **v** to 0, we get:

 $\mathbf{AV} = \lambda \mathbf{V}$  Thus,  $\mathbf{v_1}$  is eigenvector of  $\mathbf{A}$  with *largest* eigenvalue  $\lambda_1$   $\mathbf{v_2}$  is eigenvector of  $\mathbf{A}$  with *smaller* eigenvalue  $\lambda_2$ 

#### Principal Component Analysis (PCA)

Suppose each of the N data points is L-dimensional

Form L x L data covariance matrix A

$$A = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})^T$$

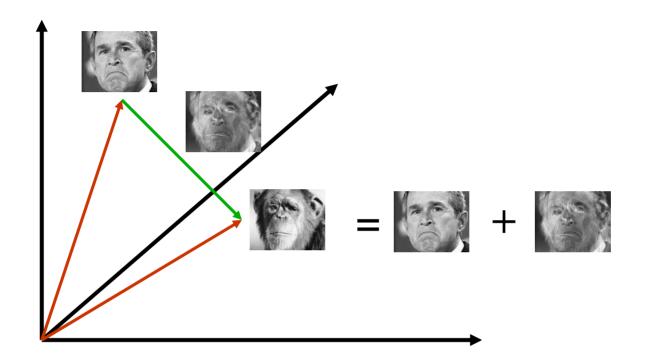
- · Compute eigenvectors of A
  - Eigenvectors of A define a new coordinate system that is a rotation of the original coordinate system
  - Eigenvector with largest eigenvalue captures the most variation among training vectors x
  - Eigenvector with smallest eigenvalue has least variation

#### Principal Component Analysis (PCA)

We can compress the data by only using the top few eigenvectors with largest eigenvalues

- corresponds to choosing a "linear subspace" of the original data space
- represent points on a line, plane, "hyperplane"
- these eigenvectors are known as principal component vectors
- procedure is known as Principal Component Analysis (PCA)

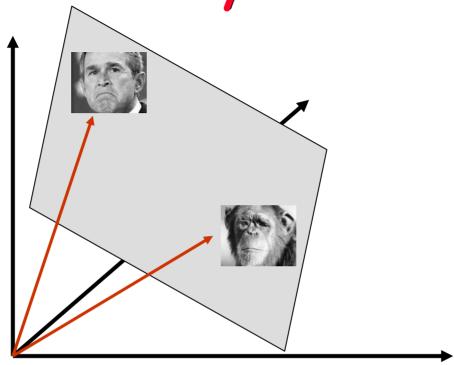
#### Back in the vector space of faces...



An image is a point in a high dimensional space

- A P  $\times$  Q pixels image is a point in  $R^{PQ}$
- Vectors in this space behave similarly to the data points in our 2D case

Dimensionality reduction



The space of all faces is a "subspace" of the space of all images

- · Suppose this subspace is K dimensional, K << PQ
- We can find such a subspace using PCA
- · This is like fitting a "hyper-plane" to the set of faces
  - spanned by eigenvectors  $v_1, v_2, ..., v_K$
  - any face  $\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \ldots + a_k \mathbf{v_k}$

#### Eigenfaces

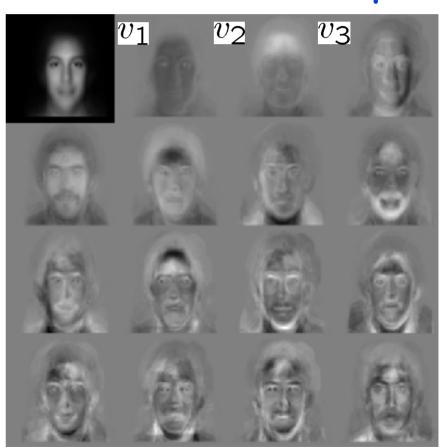
PCA extracts the eigenvectors  $v_1$ ,  $v_2$ ,  $v_3$ , ...  $v_K$  of covariance matrix A

 $\overline{x}$ 

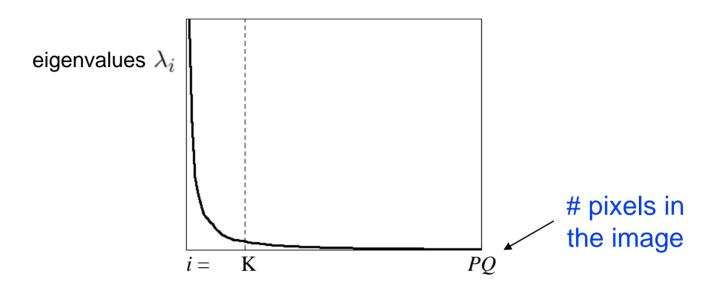
Each one of these vectors is a direction in face space

· what do these look like?

The eigenvectors for face images are called "eigenfaces"



#### Choosing the reduced dimension K



How many eigenfaces to use? Look at the decay of the eigenvalues

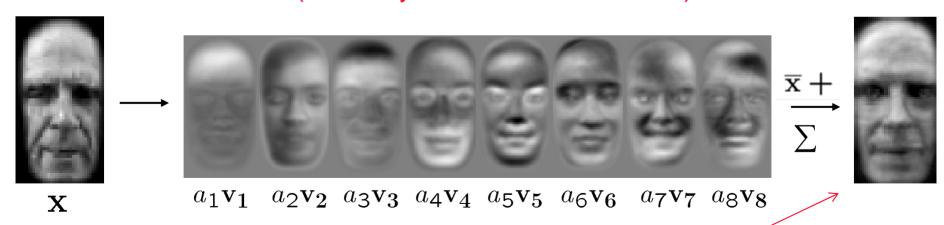
- the eigenvalue tells you the amount of variance "in the direction" of that eigenface
- · ignore eigenfaces with low variance

#### Application 1: Image Compression

The eigenfaces  $v_1, \ldots, v_K$  span the space of faces

· An image is converted to eigenface coordinates using dot products ("projection"):

Compressed representation of face (K usually much smaller than PQ)



Reconstructed face  $\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_K \mathbf{v}_K$ 

#### Reconstruction using Eigenfaces

• Given image on left, project to Eigenspace, then reconstruct an image (right).





[Turk & Pentland 01]

#### Application 2: Face Recognition

#### Algorithm:

- 1. Given a set of images with labels (e.g., names)
  - Run PCA and compute K eigenfaces
  - Calculate and store the K coefficients for each image with its label
- 2. Given a new image x, calculate K coefficients  $\mathbf{x} \to (a_1, a_2, \dots, a_K)$
- 3. Verify that x is a face  $\|\mathbf{x} (\overline{\mathbf{x}} + a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \ldots + a_K\mathbf{v}_K)\| < \text{threshold}$
- 4. If it is a face, who is it?
  - Find label of closest face in database
  - Nearest-neighbor in K-dimensional space

#### Break

Next: Applications in Robotic Learning (Guest Lecture by Dr. Chalodhorn)