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Our agenda todayOur agenda today
Unsupervised Learning and Applications

• Clustering
– Application: Image Segmentation

• Density Estimation and EM algorithm
• Dimensionality Reduction

– Principal Component Analysis (PCA)
– Applications: Image Compression, 
Face Recognition

Guest Lecture by Rawichote Chalodhorn: 
Applications of Learning in Robotics
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Motivation: Image Segmentation in 
Computer Vision

Motivation: Image Segmentation in 
Computer Vision

Goal: Partition an image into its constituent “objects”

Some slides adapted from Steve Seitz, Linda Shapiro
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Idea: Image histogramsIdea: Image histograms

How many “orange” pixels are in 
this image?

• Look at the histogram
• A histogram counts the 
number of occurrences of 
each color
– Given an image
– The histogram is

i.e., for each color value c on 
the x-axis, plot # of pixels 
with that color on y-axis
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Example Histogram of a 
Grayscale Image

Example Histogram of a 
Grayscale Image

How Many Modes Are There?
• Easy to see, hard to compute 

Image
Histogram

Intensity bins
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Histogram-based segmentationHistogram-based segmentation

Here’s what our image looks like if we use two colors (intensities)

Idea: Break the image into K regions (segments) by
• reducing the number of colors to K  
• assigning each pixel to the closest color

K = 2
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ClusteringClustering
• Idea in previous slide can be formalized as clustering
• Problem: Given unlabeled data points {p1,p2,…,pN}, 
assign each data point pj to one of K clusters

• points within a cluster are “similar” (according 
to some metric)

• Example of unsupervised learning (no label given)

2D data points {p1, p2,…} K = 3 clusters
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Why Clustering?Why Clustering?
• Lots of Applications!

• Biology: Discovering gene clusters with similar 
expression patterns, grouping homologous DNA 
sequences, etc.

• Marketing: Grouping customers with similar traits 
for segmenting the market, product positioning 
etc.

• Vision: Image segmentation, feature learning for 
recognition,…

• Search result grouping (e.g, clusty.com)
• Social network analysis (discovering user 

communities with similar interests)
• Crime analysis (identification of “hot spots”)
• Many more!



5

9

Clustering: The ProblemClustering: The Problem

Given: Unlabeled data
Goal: Assign each point to the cluster it is most similar to
Suppose we are given the number of clusters K (= 3 here)

How do we assign each point to a cluster?
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Suppose you are given the 
cluster centers ci

Suppose you are given the 
cluster centers ci

Q:  how do you assign points to a cluster?
A:   for each point p, 

• Compute distance to cluster centers
• Choose the closest ci
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Suppose you are given the 
cluster centers ci

Suppose you are given the 
cluster centers ci

But wait…you are not given the cluster centers!
How do you find them?
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Finding the cluster centerFinding the cluster center

Given a cluster of points, we can easily compute its center
(How?)
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A chicken-or-egg problem?A chicken-or-egg problem?
Given cluster centers, we can assign points
To find centers, we need points assigned to a 
cluster
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A way out of the impasseA way out of the impasse

Why not alternate?
(between finding centers and 

assigning points)
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Alternate between 2 stepsAlternate between 2 steps

I. Given current estimate of 
cluster centers ci:
Assign each point p to closest ci

II. Given current assignment of 
points to clusters:
Choose ci to be the mean of all 
the points in the cluster
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K-means clusteringK-means clustering
Algorithm

1. Randomly initialize the cluster centers, c1,...,cK

2. Determine cluster membership 
• For each point p, find the closest ci

• Put p into cluster i
3. Re-estimate cluster centers

• Set ci to be the mean of points in cluster i
4. If ci have changed, go to 2 else done.

Java demo: http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
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Randomly initialize the cluster centers
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Determine cluster membership
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Re-estimate cluster centers
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K-means clusteringK-means clustering
Properties

• Will always converge to some solution
• Can be a “local minimum”

• does not always find the global minimum of 
objective function:

24

K-means as probability density estimationK-means as probability density estimation
K-means can be formalized as estimating the unknown 
probability density of a data set

• Model data as a mixture of K Gaussians
• Estimate not only means but also (co)variances

Data

μA

2σA

∑
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K-Means and the EM AlgorithmK-Means and the EM Algorithm
• The Expectation Maximization (EM) Algorithm is a 
general algorithm for unsupervised learning when 
there are hidden variables (e.g., clusters, non-
evidence nodes in Bayesian networks, etc.)

• Like K-means, it involves iterating between 2 steps:
• E (“expectation”) step that estimates posterior 
probabilities of hidden variables

• M (“maximization”) step that uses the result of E 
step to update model parameters

• Each iteration improves likelihood of data under the 
model (or keeps it the same)

• Guaranteed to converge (perhaps to local maximum)

26

Not to be confused with…

The Expectation Minimization Algorithm

Not to be confused with…

The Expectation Minimization Algorithm
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Density estimation using EMDensity estimation using EM
• EM for Gaussian mixtures (similar to K-means):

• Initialize K clusters: C1, …, CK 
(μj, Σj) and p(Cj) for each cluster j

• Repeat until convergence:
– Estimate which cluster each data point belongs to

– Re-estimate cluster parameters
)|( ij xCp Expectation step

Maximization step)(),,( jjj CpΣμ
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EM algorithm: The detailsEM algorithm: The details

E step: Compute probability of membership in cluster based 
on output of previous M step   (p(xi|Cj) = Gaussian(μj, Σj))

M step: Re-estimate cluster parameters based on output of 
E step
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Results from the EM algorithmResults from the EM algorithm

Input data:

μA

μB
2σA

2σB

Suppose we are not interested in 
density estimation but want to reduce 

the dimensionality of our data

Suppose we are not interested in 
density estimation but want to reduce 

the dimensionality of our data

Example application: Image compression
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Redundancy in ImagesRedundancy in Images
Most natural images (e.g., images of 
faces) are highly redundant

• Nearby pixels tend to have 
similar intensities and are 
therefore highly correlated

• Why?
• Due to physical regularities of 
natural structures generating 
the image

Can we use unsupervised learning to 
capture and reduce this redundancy?
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A Simple 2D ExampleA Simple 2D Example

Suppose pixel 1 and pixel 2 are two neighboring pixels
• What does the plot above suggest?
• The two pixels are highly correlated for this data set of images

This and next few slides adapted from Steve Seitz, Linda Shapiro

Pixel 1

Pixel 2



17

33

Linear subspacesLinear subspaces

Suppose we fit a line v1 
Let v2 be orthogonal to v1

Convert an input x into v1, v2
coordinates

What does the v2 coordinate measure?
- distance to line (position along v2 axis)
- near 0 for these pts

What does the v1 coordinate measure?
- position along v1 axis
- use it to specify which point it is

Pixel 1

Pixel 2
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Dimensionality reductionDimensionality reduction

• We can represent the points with only their v1 coordinates
– since v2 coordinates are all essentially 0

– Reduce dimensionality of data from 2D to 1D
• This makes it cheaper to store and compare points
• Bigger deal for higher dimensional inputs (like images!)

Pixel 1

Pixel 2
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How do we find v1, v2, … ?How do we find v1, v2, … ?

Consider the variation along some direction v for all of the N points:

What unit vector v maximizes var?

Pixel 1

Pixel 2

v2 is then the unit vector orthogonal to v1

arg
1/N
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How do we find v1, v2, … ?How do we find v1, v2, … ?

We want to find a unit vector v that maximizes vTA v

A = Covariance 
matrix of data points

2
Pixel 1

Pixel 2

/N

/N

/N

/N
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Finding v1 and v2: The MathFinding v1 and v2: The Math

v1 = argmaxv (vTA v) subject to vTv = 1
Using Lagrange multiplier method,
v1 = argmaxv [vTA v – λ(vTv – 1)]
Setting derivative wrt v to 0, we get:
Av = λv 

Pixel 1

Pixel 2

Thus, v1 is eigenvector of A with largest eigenvalue λ1
v2 is eigenvector of A with smaller eigenvalue λ2
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Principal Component Analysis (PCA)Principal Component Analysis (PCA)
Suppose each of the N data points is L-dimensional

• Form L x L data covariance matrix A

• Compute eigenvectors of A
– Eigenvectors of A define a new coordinate system 

that is a rotation of the original coordinate system
– Eigenvector with largest eigenvalue captures the most 

variation among training vectors x
– Eigenvector with smallest eigenvalue has least 

variation
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Principal Component Analysis (PCA)Principal Component Analysis (PCA)

We can compress the data by only using the top 
few eigenvectors with largest eigenvalues
– corresponds to choosing a “linear subspace”
of the original data space

– represent points on a line, plane, “hyper-
plane”

– these eigenvectors are known as principal 
component vectors

– procedure is known as Principal Component 
Analysis (PCA)
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Back in the vector space of faces…Back in the vector space of faces…

An image is a point in a high dimensional space
• A P x Q pixels image is a point in RPQ

• Vectors in this space behave similarly to 
the data points in our 2D case

+=
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Dimensionality reductionDimensionality reduction

The space of all faces is a “subspace” of the space of all images
• Suppose this subspace is K dimensional, K << PQ
• We can find such a subspace using PCA
• This is like fitting a “hyper-plane” to the set of faces

– spanned by eigenvectors v1, v2, ..., vK

– any face
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EigenfacesEigenfaces
PCA extracts the eigenvectors v1, v2, v3, ... vK of 
covariance matrix A

Each one of these vectors is a direction in face space
• what do these look like?

The eigenvectors for 
face images are called 
“eigenfaces”
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Choosing the reduced dimension KChoosing the reduced dimension K

K PQi = 

eigenvalues

How many eigenfaces to use?
Look at the decay of the eigenvalues

• the eigenvalue tells you the amount of 
variance “in the direction” of that 
eigenface

• ignore eigenfaces with low variance

# pixels in 
the image
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Application 1: Image CompressionApplication 1: Image Compression
The eigenfaces v1, ..., vK span the space of faces

• An image is converted to eigenface coordinates 
using dot products (“projection”):

∑

Reconstructed face

Compressed representation of face 
(K usually much smaller than PQ)

Input image 
(P x Q pixels)



23

45

[Turk & Pentland 01]
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Application 2: Face RecognitionApplication 2: Face Recognition
Algorithm:

1. Given a set of images with labels (e.g., names)
• Run PCA and compute K eigenfaces
• Calculate and store the K coefficients for 

each image with its label

2. Given a new image x, calculate K coefficients

3. Verify that x is a face

4. If it is a face, who is it?
• Find label of closest face in database
• Nearest-neighbor in K-dimensional space
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BreakBreak

Next: Applications in Robotic Learning 
(Guest Lecture by Dr. Chalodhorn)


