Machine Learning II:

Unsupervised Learning

"Take a course or something. Learning at your own speed isn't working out."

Our agenda today

Unsupervised Learning and Applications

- Clustering
- Application: Image Segmentation
- Density Estimation and EM algorithm
- Dimensionality Reduction
- Principal Component Analysis (PCA)
- Applications: Image Compression, Face Recognition

Guest Lecture by Rawichote Chalodhorn:
Applications of Learning in Robotics

Motivation: Image Segmentation in Computer Vision

Goal: Partition an image into its constituent "objects"

Idea: Image histograms

How many "orange" pixels are in this image?

- Look at the histogram
- A histogram counts the number of occurrences of each color

- Given an image $F[x, y] \rightarrow R G B$
- The histogram is $H_{F}[c]=|\{(x, y) \mid F[x, y]=c\}|$
i.e., for each color value c on the x-axis, plot \# of pixels with that color on y-axis

Example Histogram of a Grayscale Image

Image

How Many Modes Are There?

- Easy to see, hard to compute

Histogram-based segmentation

Idea: Break the image into K regions (segments) by - reducing the number of colors to K - assigning each pixel to the closest color

Here's what our image looks like if we use two colors (intensities)

$K=2$

Clustering

- Idea in previous slide can be formalized as clustering
- Problem: Given unlabeled data points $\left\{p_{1}, p_{2}, \ldots, p_{N}\right\}$, assign each data point p_{j} to one of K clusters
- points within a cluster are "similar" (according to some metric)
- Example of unsupervised learning (no label given)

2D data points $\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots\right\}$

$\mathrm{K}=3$ clusters

Why Clustering?

- Lots of Applications!
- Biology: Discovering gene clusters with similar expression patterns, grouping homologous DNA sequences, etc.
- Marketing: Grouping customers with similar traits for segmenting the market, product positioning etc.
- Vision: Image segmentation, feature learning for recognition,...
- Search result grouping (e.g, clusty.com)
- Social network analysis (discovering user communities with similar interests)
- Crime analysis (identification of "hot spots")
- Many more!

Clustering: The Problem

Given: Unlabeled data
Goal: Assign each point to the cluster it is most similar to
Suppose we are given the number of clusters K (= 3 here)

How do we assign each point to a cluster?

Suppose you are given the cluster centers c_{i}

Q: how do you assign points to a cluster?
A: for each point p,

- Compute distance to cluster centers
- Choose the closest c_{i}

Suppose you are given the

 cluster centers c_{i}

But wait...you are not given the cluster centers! How do you find them?

Given a cluster of points, we can easily compute its center (How?)

A chicken-or-egg problem?

Given cluster centers, we can assign points To find centers, we need points assigned to a cluster

A way out of the impasse

Alternate between 2 steps

I. Given current estimate of cluster centers c_{i} :
Assign each point p to closest c_{i}

II. Given current assignment of points to clusters:
Choose c_{i} to be the mean of all the points in the cluster

K-means clustering

Algorithm

1. Randomly initialize the cluster centers, c_{1}, \ldots, c_{k}
2. Determine cluster membership

- For each point p, find the closest c_{i}
- Put p into cluster i

3. Re-estimate cluster centers

- Set c_{i} to be the mean of points in cluster i

4. If c_{i} have changed, go to 2 else done.

Java demo: http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

K-means clustering example
Randomly initialize the cluster centers

K-means clustering example

Determine cluster membership

K-means clustering example
Re-estimate cluster centers

K-means clustering example

Result of first iteration

K-means clustering example
Second iteration

K-means clustering example
Result of second iteration

K-means clustering

Properties

- Will always converge to some solution
- Can be a "local minimum"
- does not always find the global minimum of objective function:
$\sum_{\text {clusters } i} \sum_{\text {points } \mathrm{p} \text { in cluster } i}\left\|p-c_{i}\right\|^{2}$

K-means as probability density estimation

K-means can be formalized as estimating the unknown probability density of a data set

- Model data as a mixture of K Gaussians
- Estimate not only means but also (co)variances

K-Means and the EM Algorithm

- The Expectation Maximization (EM) Algorithm is a general algorithm for unsupervised learning when there are hidden variables (e.g., clusters, nonevidence nodes in Bayesian networks, etc.)
- Like K-means, it involves iterating between 2 steps:
- E ("expectation") step that estimates posterior probabilities of hidden variables
- M ("maximization") step that uses the result of E step to update model parameters
- Each iteration improves likelihood of data under the model (or keeps it the same)
- Guaranteed to converge (perhaps to local maximum)

Not to be confused with...

The Expectation Minimization Algorithm

Density estimation using EM

- EM for Gaussian mixtures (similar to K -means):
- Initialize K clusters: C_{1}, \ldots, C_{k}
$\left(\mu_{\mathrm{j}}, \Sigma_{\mathrm{j}}\right)$ and $p\left(C_{\mathrm{j}}\right)$ for each cluster j
- Repeat until convergence:
- Estimate which cluster each data point belongs to $p\left(C_{j} \mid x_{i}\right) \Longrightarrow$ Expectation step
- Re-estimate cluster parameters $\left(\mu_{j}, \Sigma_{j}\right), p\left(C_{j}\right) \Longrightarrow$ Maximization step

EM algorithm: The details

E step: Compute probability of membership in cluster based on output of previous \mathbf{M} step $\quad\left(p\left(x_{\mathrm{i}} \mid C_{\mathrm{j}}\right)=\operatorname{Gaussian}\left(\mu_{\mathrm{j}}, \Sigma_{\mathrm{j}}\right)\right)$
$p\left(C_{j} \mid x_{i}\right)=\frac{p\left(x_{i} \mid C_{j}\right) \cdot p\left(C_{j}\right)}{p\left(x_{i}\right)}=\frac{p\left(x_{i} \mid C_{j}\right) \cdot p\left(C_{j}\right)}{\sum_{j} p\left(x_{i} \mid C_{j}\right) \cdot p\left(C_{j}\right)}$
M step: Re-estimate cluster parameters based on output of E step
$\mu_{j}=\frac{\sum_{i} p\left(C_{j} \mid x_{j}\right) \cdot x_{i}}{\sum_{i} p\left(C_{j} \mid x_{i}\right)} \quad \Sigma_{j}=\frac{\sum_{i} p\left(C_{j} \mid x_{i}\right) \cdot\left(x_{i}-\mu_{j}\right) \cdot\left(x_{i}-\mu_{j}\right)^{T}}{\sum_{i} p\left(C_{j} \mid x_{i}\right)} \quad p\left(C_{j}\right)=\frac{\sum_{i} p\left(C_{j} \mid x_{i}\right)}{N}$

Results from the EM algorithm

Input data:

Suppose we are not interested in density estimation but want to reduce the dimensionality of our data

Example application: Image compression

Redundancy in Images

Most natural images (e.g., images of faces) are highly redundant

- Nearby pixels tend to have similar intensities and are therefore highly correlated

-Why?
- Due to physical regularities of natural structures generating the image

Can we use unsupervised learning to capture and reduce this redundancy?

A Simple 2D Example

Suppose pixel 1 and pixel 2 are two neighboring pixels

- What does the plot above suggest?
- The two pixels are highly correlated for this data set of images

Linear subspaces

Suppose we fit a line v_{1} Let v_{2} be orthogonal to v_{1}

Convert an input \mathbf{x} into $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ coordinates

$$
\mathrm{x} \rightarrow\left((\mathrm{x}-\bar{x}) \cdot \mathrm{v}_{1},(\mathrm{x}-\bar{x}) \cdot \mathrm{v}_{2}\right)
$$

What does the \mathbf{v}_{1} coordinate measure?

- position along v_{1} axis
- use it to specify which point it is

What does the $\mathbf{v}_{\mathbf{2}}$ coordinate measure?

- distance to line (position along v_{2} axis)
- near 0 for these pts

Dimensionality reduction

- We can represent the points with only their \mathbf{v}_{1} coordinates
- since $\mathbf{v}_{\mathbf{2}}$ coordinates are all essentially 0
- Reduce dimensionality of data from 2D to 1D
- This makes it cheaper to store and compare points
- Bigger deal for higher dimensional inputs (like images!)

How do we find v_{1}, v_{2}, \ldots ?

Consider the variation along some direction \mathbf{v} for all of the N points:
$\operatorname{var}(\mathrm{v})=1 / N \sum_{\text {orange point } \mathrm{x}}\left\|(\mathrm{x}-\overline{\mathrm{x}})^{\mathrm{T}} \quad \mathrm{v}\right\|^{2}$
What unit vector \mathbf{v} maximizes var? $\mathbf{v}_{1}=\underset{\max _{\mathbf{v}}}{\arg }\{\operatorname{var}(\mathbf{v})\}$

$$
\mathbf{v}_{\mathbf{2}} \text { is then the unit vector orthogonal to } \mathbf{v}_{1}
$$

How do we find v_{1}, v_{2}, \ldots ?
Pixel $2 \uparrow$

Pixel 1

$$
\begin{array}{rlr}
\operatorname{var}(\mathrm{v}) & =\sum_{\mathrm{x}}\left\|(\mathrm{x}-\overline{\mathrm{x}})^{\mathrm{T}} \mathrm{v}\right\|^{2} / N & \\
& =\sum_{\mathrm{x}} \mathrm{v}^{\mathrm{T}}(\mathrm{x}-\overline{\mathrm{x}})(\mathrm{x}-\overline{\mathrm{x}})^{\mathrm{T}} \mathrm{v} / N & \text { A }=\text { Covariance } \\
& =\mathrm{v}^{\mathrm{T}}\left[\sum_{\mathrm{x}}(\mathrm{x}-\overline{\mathrm{x}})(\mathrm{x}-\overline{\mathrm{x}})^{\mathrm{T}}\right]_{\mathrm{v}} / N & \text { matrix of data points } \\
& =\mathrm{v}^{\mathrm{T}} \mathrm{Av} \text { where } \mathrm{A}=\sum_{\mathrm{x}}(\mathrm{x}-\overline{\mathrm{x}})(\mathbf{x}-\overline{\mathrm{x}})^{\mathrm{T}} / N &
\end{array}
$$

We want to find a unit vector \mathbf{v} that maximizes $\mathbf{v}^{\boldsymbol{\top}} \mathbf{A} \mathbf{v}$

Finding v_{1} and v_{2} : The Math

$\mathbf{v}_{\mathbf{1}}=\operatorname{argmax}_{\mathbf{v}}\left(\mathbf{v}^{\boldsymbol{\top}} \mathbf{A} \mathbf{v}\right)$ subject to $\mathbf{v}^{\top} \mathbf{v}=1$
Using Lagrange multiplier method,
$\mathbf{v}_{\mathbf{1}}=\operatorname{argmax}_{\mathbf{v}}\left[\mathbf{v}^{\top} \mathbf{A} \mathbf{v}-\lambda\left(\mathbf{v}^{\top} \mathbf{v}-1\right)\right]$
Setting derivative wrt \mathbf{v} to 0 , we get:
$\mathbf{A} \mathbf{V}=\lambda \mathbf{V} \quad$ Thus, $\mathbf{v}_{\mathbf{1}}$ is eigenvector of \mathbf{A} with largest eigenvalue λ_{1} $\mathbf{v}_{\mathbf{2}}$ is eigenvector of \mathbf{A} with smaller eigenvalue λ_{2}

Principal Component Analysis (PCA)

Suppose each of the N data points is L-dimensional

- Form $L \times L$ data covariance matrix A

$$
A=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{T}
$$

- Compute eigenvectors of A
- Eigenvectors of A define a new coordinate system that is a rotation of the original coordinate system
- Eigenvector with largest eigenvalue captures the most variation among training vectors x
- Eigenvector with smallest eigenvalue has least variation

Principal Component Analysis (PCA)

We can compress the data by only using the top few eigenvectors with largest eigenvalues

- corresponds to choosing a "linear subspace" of the original data space
- represent points on a line, plane, "hyperplane"
- these eigenvectors are known as principal component vectors
- procedure is known as Principal Component Analysis (PCA)

Back in the vector space of faces...

An image is a point in a high dimensional space

- $A P \times Q$ pixels image is a point in $R^{P Q}$
- Vectors in this space behave similarly to the data points in our 2D case

Dimensionality reduction

The space of all faces is a "subspace" of the space of all images

- Suppose this subspace is K dimensional, $K \ll P Q$
- We can find such a subspace using PCA
- This is like fitting a "hyper-plane" to the set of faces
- spanned by eigenvectors $v_{1}, v_{2}, \ldots, v_{k}$
- any face $\mathbf{x} \approx \overline{\mathbf{x}}+a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\ldots+a_{k} \mathbf{v}_{\mathbf{k}}$

Eigenfaces

PCA extracts the eigenvectors $v_{1}, v_{2}, v_{3}, \ldots v_{k}$ of covariance matrix A
Each one of these vectors is a direction in face space - what do these look like?

The eigenvectors for face images are called "eigenfaces"

Choosing the reduced dimension K

How many eigenfaces to use?
Look at the decay of the eigenvalues

- the eigenvalue tells you the amount of variance "in the direction" of that eigenface
- ignore eigenfaces with low variance

Application 1: Image Compression

The eigenfaces v_{1}, \ldots, v_{k} span the space of faces

- An image is converted to eigenface coordinates using dot products ("projection"):

X

(K usually much smaller than PQ)
$\mathrm{x} \rightarrow(\underbrace{(\mathrm{x}-\overline{\mathrm{x}}) \cdot \mathrm{v}_{1}}_{a_{1}}, \underbrace{(\mathrm{x}-\overline{\mathrm{x}}) \cdot \mathrm{v}_{2}}_{a_{2}}, \ldots, \underbrace{(\mathrm{x}-\overline{\mathrm{x}}) \cdot \mathrm{v}_{\mathrm{K}}}_{a_{K}})$

$\begin{array}{llllllll}a_{1} \mathbf{V}_{1} & a_{2} \mathbf{V}_{2} & a_{3} \mathbf{V}_{3} & a_{4} \mathbf{V}_{4} & a_{5} \mathbf{V}_{5} & a_{6} \mathbf{V}_{6} & a_{7} \mathbf{V}_{7} & a_{8} \mathbf{V}_{8}\end{array}$

Reconstructed face $\mathbf{x} \approx \overline{\mathbf{x}}+a_{1} \mathbf{v}_{\mathbf{1}}+a_{2} \mathbf{v}_{\mathbf{2}}+\ldots+a_{K} \mathbf{v}_{\mathbf{K}}$

Reconstruction using Eigenfaces

- Given image on left, project to Eigenspace, then reconstruct an image (right).

[Turk \& Pentland 01]

Application 2: Face Recognition

Algorithm:

1. Given a set of images with labels (e.g., names)

- Run PCA and compute K eigenfaces
- Calculate and store the K coefficients for each image with its label

2. Given a new image x, calculate K coefficients $\mathrm{x} \rightarrow\left(a_{1}, a_{2}, \ldots, a_{K}\right)$
3. Verify that x is a face $\left\|\mathbf{x}-\left(\overline{\mathbf{x}}+a_{1} \mathbf{v}_{\mathbf{1}}+a_{2} \mathbf{v}_{\mathbf{2}}+\ldots+a_{K} \mathbf{v}_{\mathbf{K}}\right)\right\|<$ threshold
4. If it is a face, who is it?

- Find label of closest face in database
- Nearest-neighbor in K-dimensional space

Break

Next: Applications in Robotic Learning (Guest Lecture by Dr. Chalodhorn)

