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mething. Learning
at your own speed isn’t working out.”
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Our agenda today

Unsupervised Learning and Applications
* Clustering
- Application: Image Segmentation
+ Density Estimation and EM algorithm
+ Dimensionality Reduction
- Principal Component Analysis (PCA)

- Applications: Image Compression,
Face Recognition

Guest Lecture by Rawichote Chalodhorn:
Applications of Learning in Robotics




Motivation: Image Segmentation in
Computer Vision

Goal: Partition an image into its constituent “objects”

Some slides adapted from Steve Seitz, Linda Shapiro 3

Idea: Image histograms

How many “orange” pixels are in
this image?
* Look at the Aistogram

* A histogram counts the
number of occurrences of
each color

- Given an image F'[z,y] -+ RGB
- The histogram is Hp[c] = |{(z,y) | Flz,y] = c}|
i.e., for each color value ¢ on

the x-axis, plot # of pixels
with that color on y-axis




Example Histogram of a
6rayscale Image
Image

S HPTY Histogram

Intensity bin

How Many Modes Are There?
e Easy to see, hard to compute

Histogram-based segmentation

Idea: Break the image into K regions (segments) by
- reducing the number of colors to K

- assigning each pixel to the closest color

Here’s what our image looks like if we use two colors (intensities)




Clustering

* Idea in previous slide can be formalized as clustering

* Problem: Given unlabeled data points {p;,p,,....pn}.
assign each data point p; to one of K clusters

- points within a cluster are "similar” (according
to some metric)

- Example of unsupervised learning (no label given)
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2D data points {p,, p,,..-} K = 3 clusters

Why Clustering?

* Lots of Applications!

+ Biology: Discovering gene clusters with similar
expression patterns, grouping homologous DNA
sequences, etc.

* Marketing: Grouping customers with similar traits
for segmenting the market, product positioning
etc.

+ Vision: Image segmentation, feature learning for
recognition,...

+ Search result grouping (e.g, clusty.com)

+ Social network analysis (discovering user
communities with similar interests)

* Crime analysis (identification of “hot spots”)
* Many morel




Clustering: The Problem

Given: Unlabeled data
Goal: Assign each point to the cluster it is most similar to
Suppose we are given the number of clusters K (= 3 here)

How do we assign each point to a cluster?

Suppose you are given the
cluster centers c;
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Q: how do you assign points to a cluster?

A: for each point p,
« Compute distance to cluster centers
* Choose the closest c;
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Suppose you are given the
cluster centers c;

But wait..you are not given the cluster centers!
How do you find them?
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Finding the cluster center

e | ;423.

Given a cluster of points, we can easily compute its center
(How?)
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A chicken-or-egg problem?

Given cluster centers, we can assign points

To find centers, we need points assigned to a
cluster

@Or\gina\Amst i
Heproduction rights obtainable from
v CartoonStock.com

ey

|

"I hope we're not going to have
the same old argument."
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A way out of the impasse

Why not alternate?
(between finding centers and
assigning points)
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Alternate between 2 steps

I. Given current estimate of L
cluster centers c;: c1 v E';"’
Assign each point p to closest c; .- S s

II. Given current assignment of

points to clusters: le
Choose c; to be the mean of all .
the points in the cluster ‘ue
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K-means clustering

Algorithm
1. Randomly initialize the cluster centers, cq,...,c,
2. Determine cluster membership
* For each point p, find the closest c;
* Put p into cluster i
3. Re-estimate cluster centers
- Set ¢; to be the mean of points in cluster i
4. If c, have changed, go to 2 else done.

Java demo: http://home.dei.polimi.it/matteucc/Clustering/tutorial _html/AppletKM.html
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K-means clustering example

Randomly initialize the cluster centers
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K-means clustering example

Determine cluster membership
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K-means clustering example

5

Re-estimate cluster centers
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K-means clustering example
Result of first iteration
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K-means clustering example

Second iteration
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K-means clustering example

Result of second iteration
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K-means clustering

Properties
Will always converge to some solution

Can be a "local minimum”

- does not always find the global minimum of
objective function:

> > lp — cill?

clusters 7 points p in cluster ¢
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K-means as probability density estimation
K-means can be formalized as estimating the unknown
probability density of a data set
* Model data as a mixture of K Gaussians
« Estimate not only means but also (co)variances

K
Data Model p(x)=3p(C;)G(n;.Z))
2 2 =
)e( X
% XN X
1w i A Ha

X <

"11012‘11012
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K-Means and the EM Algorithm

* The Expectation Maximization (EM) Algorithm is a
general algorithm for unsupervised learning when
there are hidden variables (e.g., clusters, non-
evidence nodes in Bayesian networks, etc.)

* Like K-means, it involves iterating between 2 steps:

* E ("expectation”) step that estimates posterior
probabilities of hidden variables

* M ("maximization”) step that uses the result of E
step to update model parameters

* Each iteration improves likelihood of data under the
model (or keeps it the same)

* Guaranteed to converge (perhaps to local maximum)
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Not o be confused with...

The Expectation Minimization Algorithm

26




Density estimation using EM

- EM for Gaussian mixtures (similar to K-means):
* Initialize K clusters: Cy, .., C;
(14, Z;) and p(C;) for each cluster |

* Repeat until convergence:
- Estimate which cluster each data point belongs to
p(C, |x) ==y Expectation step
- Re-estimate cluster parameters

(#;,Z,), p(C,) =mp Maximization step
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EM algorithm: The details

E step: Compute probability of membership in cluster based
on output of previous M step (p(x|C) = Gaussian(y;, %))

p(C. |x)= p(inCj)-p(Cj): p(% 1C;)- p(C))
b p(x;) > p(x C)) p(C,)

M step: Re-estimate cluster parameters based on output of
E step
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Results from the EM algorithm

iteration 50
A Ma
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Suppose we are not interested in
density estimation but want to reduce
the dimensionality of our data

Example application: Image compression




Redundancy in Images

Most natural images (e.g., images of
faces) are highly redundant

* Nearby pixels tend to have
similar intensities and are
therefore highly correlated

* Why?
* Due to physical regularities of

natural structures generating
the image

Can we use unsupervised learning to
capture and reduce this redundancy?
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A Simple 2D Example

Pixel 2

Pixel 1
Suppose pixel 1 and pixel 2 are two neighboring pixels

« What does the plot above suggest?
» The two pixels are highly correlated for this data set of images

This and next few slides adapted from Steve Seitz, Linda Shapiro 32




Linear subspaces

Pixel 2

T is the mean
of the orange

points U2
T QL v
N0 R

Suppose we fit a line v,
Let v, be orthogonal to v,

Convert an input x into v, v,
coordinates

X = ((x—7Z) vy,(x—7T) - va)

Pixel 1

What does the v, coordinate measure?
- position along v, axis
- use it to specify which point it is

What does the v, coordinate measure?
- distance to line (position along v, axis)
- near O for these pts
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Dimensionality reduction

Pixel 2

Pixel 1

* We can represent the points with only their v, coordinates
— since v, coordinates are all essentially 0

— Reduce dimensionality of data from 2D to 1D

» This makes it cheaper to store and compare points

» Bigger deal for higher dimensional inputs (like images!)
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How do we find v,, v,, .. ?
Pixel 2
(%] 000
<) 07 1
Pixel 1

Consider the variation along some direction v for all of the N points:
var(V) =UNY.  [[x=%)T v|?
orange point X

What unit vector v maximizes var? vi = mazxy {var(v)}

v, is then the unit vector orthogonal to v,
35

N

How do we find vy, v,, ..
Pixel 2

Pixel 1
var(v) = Y lx-%)T v|?/N

ijvT(x -0 (x-9Tv N A = Covariance

matrix of data points
vT Z(x —X)(x— i)T} vV N

= vIAv where A = SMx—%)(x— K)T/N

We want to find a unit vector v that maximizes vTA v
36




Finding v; and v,: The Math

Pixel 2

Pixel 1

v, = argmax, (VTA v) subjecttovv =1
Using Lagrange multiplier method,
v, = argmax, [VTA v —A(vTv — 1)]

Setting derivative wrt v to 0, we get:

AV = AV Thus, v, is eigenvector of A with largest eigenvalue A,
Vv, is eigenvector of A with smaller eigenvalue A,
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Principal Component Analysis (PCA)

Suppose each of the N data points is L-dimensional
* Form L x L data covariance matrix A

A=%g(xi %), - 9"

- Compute eigenvectors of A

- Eigenvectors of A define a new coordinate system
that is a rotation of the original coordinate system

- Eigenvector with largest eigenvalue captures the most
variation among training vectors x

- Eigenvector with smallest eigenvalue has least
variation

38




Principal Component Analysis (PCA)

We can compress the data by only using the top
few eigenvectors with largest eigenvalues

- corresponds to choosing a “linear subspace”
of the original data space

- represent points on a line, plane, “hyper-
plane”

- these eigenvectors are known as principa/
component vectors

- procedure is known as Principal Component
Analysis (PCA)
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Back in the vector space of faces...

A

An image is a point in a high dimensional space
- A P x Q pixels image is a point in R°Q

* Vectors in this space behave similarly to
the data points in our 2D case

40




Dimensionality reduction

| [k
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/

The space of all faces is a “subspace” of the space of all images
+ Suppose this subspace is K dimensional, K << PQ
* We can find such a subspace using PCA
* This is like fitting a “hyper-plane” to the set of faces
- spanned by eigenvectors v;, v, ..., V¢
-any face x * X+ a1vy +aove + ...+ apvy
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Eigenfaces

PCA extracts the eigenvectors v, v,, v3, ... v, of
covariance matrix A

Each one of these vectors is a direction in face space
* what do these look like?

The eigenvectors for
face images are called
“eigenfaces”

42
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Choosing the reduced dimension K

eigenvalues A;

L # pixels in
- .~ the image

i= K PQ

How many eigenfaces to use?
Look at the decay of the eigenvalues

* the eigenvalue tells you the amount of
variance "in the direction” of that
eigenface

- ignore eigenfaces with low variance
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Application 1: Image Compression

The eigenfaces v;, ..., v span the space of faces

* An image is converted to eigenface coordinates
using dot products (“projection”):

x—=>((x=%) vy, x=%X)-vg,..., (x—X) vK)
Input image ) a 7S a ’ ) a ’
(P x Q pixels) 1 2 K

Compressed representation of face
(K usually much smaller than PQ)

@1V1 G2V2 a3V3 a4Vvy asVs agvVe arvry a8V8/

Reconstructed face x =X+ ai1vy +aove + ... +agvK

44
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Reconstruction using Eigenfaces

* Given 1mage on left, project to Eigenspace,
then reconstruct an image (right).

[Turk & Pentland 01]
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Application 2: Face Recognition

Algorithm:
1. Given a set of images with labels (e.g., names)
* Run PCA and compute K eigenfaces
* Calculate and store the K coefficients for
each image with its label

2. Given a new image x, calculate K coefficients
X — (a’lva27"'7a’K)

3. Verify that x is a face
|lx — (X4 a1vy +axve + ...+ agvk)| < threshold

4_If it is a face, who is it?
* Find label of closest face in database

« Nearest-neighbor in K-dimensional space
46
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Break

Next: Applications in Robotic Learning
(Guest Lecture by Dr. Chalodhorn)




