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What’s on our menu today?What’s on our menu today?
Supervised Learning

• Classification
– Decision trees
– Cross validation
– K-nearest neighbor
– Neural networks

+ Perceptrons
– Support Vector Machines (SVMs)

• Regression
– Backpropagation networks
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Why Learning?Why Learning?

Learning is essential for unknown environments
• e.g., when designer lacks omniscience

Learning is necessary in dynamic environments
• Agent can adapt to changes in environment not 
foreseen at design time 

Learning is useful as a system construction method
• Expose the agent to reality rather than trying 
to approximate it through equations etc.

Learning modifies the agent's decision mechanisms to 
improve performance
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Types of Learning Types of Learning 
Supervised learning: correct answers for each input is 
provided

• E.g., decision trees, backpropagation neural networks

Unsupervised learning: correct answers not given, must 
discover patterns in input data

• E.g., clustering, principal component analysis

Reinforcement learning: occasional rewards (or 
punishments) given to guide behavior
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Inductive learningInductive learning
We will focus on one form of supervised learning called 
Inductive Learning:
Learn a function from examples

f is the target function. Examples are pairs (x, f(x))

Problem: learn a function (“hypothesis”) h
such that h ≈ f  (h approximates f as best as 
possible)

given a training set of examples

(This is a highly simplified model of real learning:
• Ignores prior knowledge
• Assumes examples are given)
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Inductive learning exampleInductive learning example
Construct h to agree with f on training set

• h is consistent if it agrees with f on all 
training examples

E.g., curve fitting (regression):

x = Input data point 
(training example)
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Inductive learning exampleInductive learning example
h = Straight line?
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Inductive learning exampleInductive learning example
What about a quadratic function?

What about 
this little 
fella?
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Inductive learning exampleInductive learning example
Finally, a function that satisfies all!
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But so does this one…

Inductive learning exampleInductive learning example
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Ockham’s Razor PrincipleOckham’s Razor Principle

Ockham’s razor: prefer the simplest hypothesis 
consistent with data
Related to KISS principle (“keep it simple stupid”)
Smooth blue function preferable over wiggly yellow one
If noise known to exist in this data, even linear might be 

better (the lowest x might be due to noise)
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Supervised Learning Technique I:
Decision Trees

Supervised Learning Technique I:
Decision Trees

To play or 
not to play?

http://www.sfgate.com/blogs/images/sfgate/sgreen/2007/09/05/2240773250x321.jpg
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Example data for learning the concept 
“Good day for tennis”

Example data for learning the concept 
“Good day for tennis”

Day Outlook Humid Wind PlayTennis?
d1 s h w n
d2 s h s n
d3 o h w y
d4 r h w y
d5 r n w y
d6 r n s y
d7 o n s y
d8 s h w n
d9 s n w y
d10 r n w y
d11 s n s y
d12 o h s y
d13 o n w y
d14 r h s n

• Outlook = 
sunny, 
overcast, 
rain

• Humidity = 
high, normal

• Wind = weak, 
strong
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A Decision Tree for the Same DataA Decision Tree for the Same Data

Outlook

Humidity Wind

YesYes

Yes

No No

Sunny Overcast Rain

High StrongNormal Weak

Decision Tree for “PlayTennis?”

Leaves = classification output
Arcs = choice of value

for parent attribute

Decision tree is equivalent to logic in disjunctive normal form
PlayTennis ⇔ (Sunny ∧ Normal) ∨ Overcast ∨ (Rain ∧ Weak)
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Decision TreesDecision Trees
Input: Description of an object or a situation through a 
set of attributes

Output: a decision that is the predicted output value 
for the input

Both input and output can be discrete or continuous

Discrete-valued functions lead to classification 
problems
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Example: Decision Tree for Continuous 
Valued Features and Discrete Output

x1

x2

How do we branch using 
attribute values x1 and x2 
to partition the space 
correctly?

Input real number attributes (x1,x2), Classification output: 0 or 1 
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Example: Classification of Continuous Valued Inputs

3

4

Decision Tree

x1

x2
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Expressiveness of Decision TreesExpressiveness of Decision Trees
Decision trees can express any function of the input 
attributes.

E.g., for Boolean functions, truth table row = path to leaf:

Trivially, there is a consistent decision tree for any 
training set with one path to leaf for each example

• But most likely won't generalize to new examples

Prefer to find more compact decision trees
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Learning Decision TreesLearning Decision Trees
Example: When should I wait for a table at a restaurant?

Attributes (features) relevant to Wait? decision:
1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($, $$, $$$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)
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Example Decision treeExample Decision tree
A decision tree for Wait? based on personal “rules of thumb”:
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Input Data for LearningInput Data for Learning
Past examples when I did/did not wait for a table:

Classification of examples is positive (T) or negative (F)
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Decision Tree LearningDecision Tree Learning
Aim: find a small tree consistent with training examples
Idea: (recursively) choose "most significant" attribute as 

root of (sub)tree
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Choosing an attribute to split onChoosing an attribute to split on
Idea: a good attribute should reduce uncertainty

• E.g., splits the examples into subsets that are 
(ideally) "all positive" or "all negative"

Patrons? is a better choice For Type?, to wait or not 
to wait is still at 50%



How do we quantify uncertainty?How do we quantify uncertainty?

http://a.espncdn.com/media/ten/2006/0306/photo/g_mcenroe_195.jpg
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Using information theory to 
quantify uncertainty

Using information theory to 
quantify uncertainty

Entropy measures the amount of uncertainty in a 
probability distribution

Entropy (or Information Content) of an answer to a 
question with possible answers v1, … , vn:

I(P(v1), … , P(vn)) = Σi=1 -P(vi) log2 P(vi)
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Using information theoryUsing information theory
Imagine we have p examples with Wait = True (positive) 
and n examples with Wait = false (negative). 

Our best estimate of the probabilities of Wait = true or 
false is given by:

Hence the entropy of Wait is given by:

( ) /
( ) /

P true p p n
p false n p n

≈ +

≈ +

np
n

np
n

np
p

np
p

np
n

np
pI

++
−

++
−=

++ 22 loglog),(



27

P(Wait = T)
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Entropy is 
highest 
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uncertainty 
is greatest
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Idea: a good attribute should reduce uncertainty 
and result in “gain in information”

How much information do we gain if we disclose the 
value of some attribute?

Answer:
uncertainty before – uncertainty after

Choosing an attribute to split onChoosing an attribute to split on
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Back at the RestaurantBack at the Restaurant

Before choosing an attribute: 
Entropy = - 6/12 log(6/12) – 6/12 log(6/12) 

= - log(1/2) = log(2) = 1 bit
There is “1 bit of information to be discovered”
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Back at the RestaurantBack at the Restaurant

If we choose Type: Go along branch “French”: we have 
entropy = 1 bit; similarly for the others.

Information gain = 1-1 = 0 along any branch
If we choose Patrons: 
In branch “None” and “Some”, entropy = 0 
For “Full”, entropy = -2/6 log(2/6)-4/6 log(4/6) = 0.92

Info gain = (1-0) or (1-0.92) bits > 0 in both cases
So choosing Patrons gains more information!
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Entropy across branchesEntropy across branches
• How do we combine entropy of 
different branches?

• Answer: Compute average  
entropy

• Weight entropies according to 
probabilities of branches

2/12 times we enter “None”, so 
weight for “None” = 1/6 

“Some” has weight: 4/12 = 1/3
“Full” has weight 6/12 = ½

1
( ) ( , )

n
i i i i

i i i i i

p n p nEntropy A Entropy
p n p n p n=

+
=

+ + +∑

weight for each branch 
entropy for each branch

AvgEntropy
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Information gainInformation gain

Information Gain (IG) or reduction in entropy from 
using attribute A:

Choose the attribute with the largest IG

IG(A) = Entropy before – AvgEntropy after choosing A
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Information gain in our exampleInformation gain in our example

Patrons has the highest IG of all attributes
⇒ DTL algorithm chooses Patrons as the root
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Decision tree learned from the 12 examples:

Substantially simpler than “rules-of-thumb” tree
• more complex hypothesis not justified by small 
amount of data

Should I stay or should I go?
Learned Decision Tree

Should I stay or should I go?
Learned Decision Tree
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Performance EvaluationPerformance Evaluation
How do we know that the learned tree h ≈ f ?
Answer: Try h on a new test set of examples

Learning curve = % correct on test set as a function 
of training set size
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GeneralizationGeneralization
How do we know the classifier function we have 
learned is good?

• Look at generalization error on test data
– Method 1: Split data in training vs test set 
(the “hold out” method)

– Method 2: Cross-Validation
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Cross-validationCross-validation
K-fold cross-validation: 

• Divide data into k subsets of equal size
• Train learning algorithm K times, leaving out 
one of the subsets. Compute error on 
left-out subset

• Report average error over all subsets
Leave-1-out cross-validation:

• Train on all but 1 data point, test on that 
data point; repeat for each point

• Report average error over all points



Decision trees are for girlie men 
– let’s move on to more powerful 

learning algorithms

http://www.ipjnet.com/schwarzenegger2/pages/arnold_01.htm
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Example Problem: Face Detection

How do we build a classifier to distinguish 
between faces and other objects?
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Images as VectorsImages as Vectors
Binary handwritten characters

Greyscale images
62 79 23 119 120 105 4 0

10 10 9 62 12 78 34 0

10 58 197 46 46 0 0 48

176 135 5 188 191 68 0 49

2 1 1 29 26 37 0 77

0 89 144 147 187 102 62 208

255 252 0 166 123 62 0 31

166 63 127 17 1 0 99 30

Treat an image as a high-
dimensional vector 
(e.g., by reading pixel values 
left to right, top to bottom row)
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Pixel value pi can be 0 
or 1 (binary image) or 
0 to 255 (greyscale)



The human brain is extremely 
good at classifying images

The human brain is extremely 
good at classifying images

Can we develop classification methods by 
emulating the brain?
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Neurons communicate via spikesNeurons communicate via spikes

Inputs

Output spike 
(electrical pulse)

Output spike roughly dependent on whether 
sum of all inputs reaches a threshold
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Neurons as “Threshold Units”Neurons as “Threshold Units”
Artificial neuron:

• m binary inputs (-1 or 1), 1 output (-1 or 1)
• Synaptic weights wji

• Threshold μi

Inputs uj
(-1 or +1)

Output vi
(-1 or +1)

Weighted Sum Thresholdw1i

w2i

w3i

Θ(x) = 1 if x > 0 and -1 if x ≤ 0

)( ij
j

jii uwv μ−Θ= ∑
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“Perceptrons” for Classification“Perceptrons” for Classification
Fancy name for a type of layered “feed-forward”
networks (no loops)

Uses artificial neurons (“units”) with binary inputs and 
outputs

Multilayer

Single-layer
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Perceptrons and ClassificationPerceptrons and Classification
Consider a single-layer perceptron

• Weighted sum forms a linear hyperplane

• Everything on one side of this hyperplane is in 
class 1 (output = +1) and everything on other 
side is class 2 (output = -1)

Any function that is linearly separable can be 
computed by a perceptron

0=−∑ ij
j

jiuw μ
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Linear SeparabilityLinear Separability
Example: AND is linearly separable

Linear hyperplane

v

u1 u2

μ = 1.5
(1,1)

1

1

-1

-1

u1

u2-1 -1 -1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 AND

v = 1 iff u1 + u2 – 1.5 > 0

Similarly for OR and NOT



How do we learn the appropriate 
weights given only examples of 

(input,output)?

How do we learn the appropriate 
weights given only examples of 

(input,output)?

Idea: Change the weights to decrease the error 
in ouput
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Perceptron Learning RulePerceptron Learning Rule
Given input pair (u, vd) where vd ∈ {+1,-1} is the 

desired output, adjust w and μ as follows:

1. Calculate current output v of neuron

2. Compute error signal e = (vd – v) 

)()( μμ −Θ=−Θ= ∑ uwT
j

j
juwv
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Perceptron Learning RulePerceptron Learning Rule
3.  Change w and μ according to error (vd – v) :

If input is positive and error is positive, 
then w not large enough ⇒ increase w

If input is positive and error is negative, 
then w too large ⇒ decrease w

Similar reasoning for other cases yields:

)(
)(

vv
vv

d

d

−−→

−+→

αμμ

α uww
BABA  with  replace means  →

α is the “learning rate” (a small positive number, 
e.g., 0.05)
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What about the XOR function?What about the XOR function?

(1,1)

1
1

-1

-1

u1

u2
-1 -1 1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 XOR ?

Can a perceptron separate the +1 
outputs from the -1 outputs?
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Linear InseparabilityLinear Inseparability

Minsky and Papert’s book 
showing such negative 
results put a damper on 
neural networks research 
for over a decade!

Perceptron with threshold units fails if classification 
task is not linearly separable

• Example: XOR
• No single line can separate the “yes” (+1)
outputs from the “no” (-1) outputs!

(1,1)

1
1

-1

-1

u1

u2

X



How do we deal with linear 
inseparability?

How do we deal with linear 
inseparability?
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Idea 1: Multilayer PerceptronsIdea 1: Multilayer Perceptrons
Removes limitations of single-layer networks

• Can solve XOR
Example: Two-layer perceptron that computes XOR

Output is +1 if and only if x + y – 2Θ(x + y – 1.5) – 0.5 > 0

x y
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x y

out

x

y

1

1

2

1 2

2
1

1
1− 1−

2

1−

1−1

2
1

− ?

Multilayer Perceptron: What does it do?



56

x y

out

x

y

1

1

2

1 2

0
2
11 >−+ yx

0
2
11 <−+ yx

=-1

=1

2
1

1
1−

xy
2
11+=

Multilayer Perceptron: What does it do?
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Multilayer Perceptron: What does it do?
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x y
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Multilayer Perceptron: What does it do?
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Perceptrons as Constraint 
Satisfaction Networks
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Back to Linear SeparabilityBack to Linear Separability

• Recall: Weighted sum in perceptron
forms a linear hyperplane

• Due to threshold function, everything on 
one side of this hyperplane is labeled as 
class 1 (output = +1) and everything on 
other side is labeled as class 2 (output = -1)

0=+∑ bxw i
i

i
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Separating HyperplaneSeparating Hyperplane

denotes +1 output 

denotes -1 output

Class 2

Need to choose w and b based on training data

0=+∑ bxw i
i

i
Class 1
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Separating HyperplanesSeparating Hyperplanes
Different choices of w and b give different hyperplanes

(This and next few slides adapted from Andrew Moore’s)

denotes +1 output 

denotes -1 output

Class 1

Class 2

http://www.cs.cmu.edu/~awm/tutorials
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Which hyperplane is best?Which hyperplane is best?

denotes +1 output 

denotes -1 output

Class 1

Class 2
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How about the one right in the middle?How about the one right in the middle?

Intuitively, this boundary 
seems good 

Avoids misclassification of 
new test points if they are 
generated from the same 
distribution as training points
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MarginMargin

Define the margin
of a linear 
classifier as the 
width that the 
boundary could be 
increased by 
before hitting a 
datapoint.
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Maximum Margin and Support Vector MachineMaximum Margin and Support Vector Machine

The maximum 
margin classifier is 
called a Support 
Vector Machine (in 
this case, a Linear 
SVM or LSVM)

Support Vectors 
are those 
datapoints that 
the margin 
pushes up 
against
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Why Maximum Margin?Why Maximum Margin?

• Robust to small 
perturbations of data 
points near boundary

• There exists theory 
showing this is best for 
generalization to new 
points 

• Empirically works great
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Support Vector Machines: The Math Support Vector Machines: The Math 

( ) 1
asrewritten  becan  This

1for  1
1for  1

:satisfy ),( points data  training theSuppose

+≥+⋅
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+=+≥+⋅

by

yb
yb

y

ii

ii

ii

ii

xw

xw
xw

x

 0 =+⋅ bxw

We can always do this by rescaling
w and b, without affecting the
separating hyperplane:
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The margin is given by (see Burges tutorial online):

Class 1

Class 2

m

Estimating the MarginEstimating the Margin

Margin can be calculated based on expression for distance from a point to a line, see,
e.g.,  http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html

http://research.microsoft.com/en-us/um/people/cburges/papers/SVMTutorial.pdf
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
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Learning the Maximum Margin ClassifierLearning the Maximum Margin Classifier
Want to maximize margin:

Equivalent to finding w and b that minimize:

Constrained optimization problem that can be 
solved using Lagrange multiplier method

( ) iby ii ∀+≥+⋅ ,1 subject to 2/ xww

( ) iby ii ∀+≥+⋅ ,1 subject to 
2
1 2 xww

http://en.wikipedia.org/wiki/Lagrange_multipliers
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Learning the Maximum Margin ClassifierLearning the Maximum Margin Classifier

Using Lagrange formulation and Lagrangian
multipliers αi, we get (see Burges tutorial online): 

where the αi are obtained by maximizing:

∑=
i

iii y xw α

∑

∑∑
=≥

⋅−

i
iii

ji
jijiji

i
i

y

yy

0 and 0 subject to

)(
2
1

,

αα

ααα xx

This is a quadratic programming (QP) problem
- A global maximum can always be found

http://research.microsoft.com/en-us/um/people/cburges/papers/SVMTutorial.pdf
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α6=1.4

Geometrical InterpretationGeometrical Interpretation

α1=0.8

α2=0

α3=0

α4=0

α5=0
α7=0

α8=0.6

α9=0

α10=0

xi with non-zero αi  are called support vectors
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What if data is not linearly separable?What if data is not linearly separable?

Outliers (due to noise)
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Approach 1: Soft Margin SVMsApproach 1: Soft Margin SVMs

Allow errors ξ i (deviations from 
margin)

Trade off margin with errors.

Minimize:

ξ

( ) iby

C

iiii

i
i

∀≥−≥+⋅

+ ∑
,0 and   1

 :subject to 
2
1 2

ξξ

ξ

xw

w
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-1 -1 1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 XOR

Can we do something to the inputs?

(1,1)

1
1

-1

-1

u1

u2

X

What if data is not linearly 
separable: Other ideas?

What if data is not linearly 
separable: Other ideas?
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Another Example

Not linearly separable
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Approach 2:   Map original input space to higher-
dimensional feature space; use linear classifier in 
higher-dim. space

x → φ(x)

What if data is not linearly separable?
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x → φ(x)

Problem with high dimensional spaces

Computation in high-dimensional feature space can be 
costly

The high dimensional projection function φ(x) may be too 
complicated to compute

Kernel trick to the rescue!
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The Kernel TrickThe Kernel Trick
Recall: SVM maximizes the quadratic function:

Insight:
The data points only appear as inner product
• No need to compute high-dimensional φ(x) 

explicitly! Just replace inner product xi⋅xj with 
a kernel function K(xi,xj) = φ(xi) ⋅ φ(xj)

• E.g., Gaussian kernel 
K(xi,xj) =  exp(-||xi-xj||2/2σ2)

• E.g., Polynomial kernel 
K(xi,xj) = (xi⋅xj+1)d

∑

∑∑
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An Example for φ(.) and K(.,.)An Example for φ(.) and K(.,.)
Suppose φ(.) is given as follows

An inner product in the feature space is

So, if we define the kernel function as follows, 
there is no need to compute φ(.) explicitly

This use of kernel function to avoid computing 
φ(.) explicitly is known as the kernel trick
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Summary: Steps for Classification 
using SVMs

Summary: Steps for Classification 
using SVMs

Prepare the data matrix
Select the kernel function to use
Select parameters of the kernel function

• You can use the values suggested by the 
SVM software, or use cross-validation

Execute the training algorithm and obtain the 
parameters αi

Classify new data using the learned parameters
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Face Detection using 
SVMs

Face Detection using 
SVMs

Kernel used: Polynomial of degree 2

(Osuna, Freund, Girosi, 1998)

http://cbcl.mit.edu/projects/cbcl/publications/ps/cvpr97-face.ps.gz
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Support VectorsSupport Vectors
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K-Nearest Neighbors K-Nearest Neighbors 
A simple non-parametric classification algorithm
Idea:

• Look around you to see how your neighbors 
classify data

• Classify a new data-point according to a majority 
vote of your k nearest neighbors
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Distance MetricDistance Metric

How do we measure what it means to be a neighbor 
(what is “close”)?

Appropriate distance metric depends on the problem

Examples:
x discrete (e.g., strings): Hamming distance

d(x1,x2) = # features on which x1 and x2 differ

x continuous (e.g., vectors over reals): Euclidean 
distance 
d(x1,x2) = || x1-x2 || = square root of sum of squared 
differences between corresponding elements of data vectors
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ExampleExample
Input Data: 2-D points (x1,x2)

Two classes: C1 and C2.     New Data Point +

K = 4: Look at 4 nearest neighbors of +
3 are in C1, so classify + as C1
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Decision Boundary using K-NNDecision Boundary using K-NN

Some points 
near the 
boundary may 
be misclassified

(but maybe noise)



What if we want to learn 
continuous-valued functions?
What if we want to learn 

continuous-valued functions?

Input

Output
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Example: Learning to DriveExample: Learning to Drive

Can you use a neural network to drive?
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Regression using NetworksRegression using Networks
We want networks that can learn a function

• Network maps real-valued inputs to real-valued 
output

• Idea: Given data, minimize errors between 
network’s output and desired output by changing 
weights

Continuous output values Can’t 
use binary threshold units anymore

To minimize errors, a differentiable 
output function is desirable
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Sigmoidal NetworksSigmoidal Networks

Input nodes ae
ag β−+

=
1

1)(

a

Ψ(a)
1

The most common
activation function:

Sigmoid function:

Non-linear “squashing” function: Squashes input to be between 0 
and 1. The parameter β controls the slope.

g(a)

)( uwTg
w

u = (u1 u2 u3)T

Outputv =



92

Gradient-Descent Learning 
(“Hill-Climbing”)

Gradient-Descent Learning 
(“Hill-Climbing”)

Given training examples (um,dm) (m = 1, …, N), 
define an error function (cost function or “energy”
function)

2)(
2
1)( m

m

m vdE −= ∑w

)( mTm gv uw=where
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Gradient-Descent Learning 
(“Hill-Climbing”)

Gradient-Descent Learning 
(“Hill-Climbing”)

Would like to change w so that E(w) is minimized
• Gradient Descent: Change w in proportion to 
–dE/dw (why?)

mmTmm

m

m
mm

m
gvd

d
dvvd

d
dE

d
dE

uuw
ww

w
ww

)()()( ′−−=−−=

−→

∑∑

ε

Derivative of sigmoid
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“Stochastic” Gradient Descent“Stochastic” Gradient Descent

What if the inputs only arrive one-by-one?
Stochastic gradient descent approximates 
sum over all inputs with an “on-line” running 
sum:

mmTmm gvd
d
dE

d
dE

uuw
w

w
ww

)()(1

1

′−−=

−→ ε
Also known as 
the “delta rule”
or “LMS (least 
mean square) 

rule”
delta = error
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But wait….But wait….
Delta rule tells us how to modify the connections 
from input to output (one layer network)

• One layer networks are not that interesting 
(remember XOR?)

What if we have multiple layers?
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Learning Multilayer NetworksLearning Multilayer Networks

2)(
2
1),( i

i
i vdE −= ∑wW

Start with random weights W, w

Given input u, network produces   
output v

Find W and w that minimize 
total squared output error over 
all output units (labeled i): 

))(( k
k

kj
j

jii uwgWgv ∑∑=

ku
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Backpropagation: Output WeightsBackpropagation: Output Weights

j
j

jjiii
ji

ji
jiji

xxWgvd
dW
dE

dW
dEWW
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{delta rule}
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jx

Learning rule for hidden-output weights W:

2)(
2
1),( i

i
i vdE −= ∑wW

{gradient descent}
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Backpropagation: Hidden WeightsBackpropagation: Hidden Weights
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Learning rule for input-hidden weights w:
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Learning to Drive using Backprop

One of the learned 
“road features” wi
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ALVINN (Autonomous Land Vehicle in a Neural 
Network)

(Pomerleau, 1992)

Trained using human 
driver + camera images

After learning:
Drove up to 70 mph on 
highway
Up to 22 miles without 
intervention
Drove cross-country 
largely autonomously



101

Another Example: Face DetectionAnother Example: Face Detection

(Rowley, Baluja & Kanade, 1998)

Output between -1 (no face) and +1 (face present)

http://vasc.ri.cmu.edu/NNFaceDetector/
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Face Detection ResultsFace Detection Results

(Rowley, Baluja & Kanade, 1998)

http://vasc.ri.cmu.edu/NNFaceDetector/
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Demos: Pole Balancing and Backing up a Truck
(courtesy of Keith Grochow, CSE 599)

Neural network learns to balance a pole on a cart
System:

4 state variables: xcart, vcart, θpole, vpole
1 input: Force on cart

Backprop Network:
Input: State variables
Output: New force on cart

NN learns to back a truck into a loading dock
System (Nyugen and Widrow, 1989):

State variables: xcab, ycab, θcab
1 input: new θsteering

Backprop Network:
Input: State variables
Output: Steering angle θsteering

xcart

vcart

vpole

θpole
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