
Machine Learning I:
Supervised Learning
Machine Learning I:
Supervised Learning

CSEP 573

© CSE AI Faculty

(Rowley, Baluja & Kanade, 1998)

http://vasc.ri.cmu.edu/NNFaceDetector/

2

What’s on our menu today?What’s on our menu today?
Supervised Learning

• Classification
– Decision trees
– Cross validation
– K-nearest neighbor
– Neural networks

+ Perceptrons
– Support Vector Machines (SVMs)

• Regression
– Backpropagation networks

3

Why Learning?Why Learning?

Learning is essential for unknown environments
• e.g., when designer lacks omniscience

Learning is necessary in dynamic environments
• Agent can adapt to changes in environment not
foreseen at design time

Learning is useful as a system construction method
• Expose the agent to reality rather than trying
to approximate it through equations etc.

Learning modifies the agent's decision mechanisms to
improve performance

4

Types of Learning Types of Learning
Supervised learning: correct answers for each input is
provided

• E.g., decision trees, backpropagation neural networks

Unsupervised learning: correct answers not given, must
discover patterns in input data

• E.g., clustering, principal component analysis

Reinforcement learning: occasional rewards (or
punishments) given to guide behavior

5

Inductive learningInductive learning
We will focus on one form of supervised learning called
Inductive Learning:
Learn a function from examples

f is the target function. Examples are pairs (x, f(x))

Problem: learn a function (“hypothesis”) h
such that h ≈ f (h approximates f as best as
possible)

given a training set of examples

(This is a highly simplified model of real learning:
• Ignores prior knowledge
• Assumes examples are given)

6

Inductive learning exampleInductive learning example
Construct h to agree with f on training set

• h is consistent if it agrees with f on all
training examples

E.g., curve fitting (regression):

x = Input data point
(training example)

7

Inductive learning exampleInductive learning example
h = Straight line?

8

Inductive learning exampleInductive learning example
What about a quadratic function?

What about
this little
fella?

9

Inductive learning exampleInductive learning example
Finally, a function that satisfies all!

10

But so does this one…

Inductive learning exampleInductive learning example

11

Ockham’s Razor PrincipleOckham’s Razor Principle

Ockham’s razor: prefer the simplest hypothesis
consistent with data
Related to KISS principle (“keep it simple stupid”)
Smooth blue function preferable over wiggly yellow one
If noise known to exist in this data, even linear might be

better (the lowest x might be due to noise)

12

Supervised Learning Technique I:
Decision Trees

Supervised Learning Technique I:
Decision Trees

To play or
not to play?

http://www.sfgate.com/blogs/images/sfgate/sgreen/2007/09/05/2240773250x321.jpg

13

Example data for learning the concept
“Good day for tennis”

Example data for learning the concept
“Good day for tennis”

Day Outlook Humid Wind PlayTennis?
d1 s h w n
d2 s h s n
d3 o h w y
d4 r h w y
d5 r n w y
d6 r n s y
d7 o n s y
d8 s h w n
d9 s n w y
d10 r n w y
d11 s n s y
d12 o h s y
d13 o n w y
d14 r h s n

• Outlook =
sunny,
overcast,
rain

• Humidity =
high, normal

• Wind = weak,
strong

14

A Decision Tree for the Same DataA Decision Tree for the Same Data

Outlook

Humidity Wind

YesYes

Yes

No No

Sunny Overcast Rain

High StrongNormal Weak

Decision Tree for “PlayTennis?”

Leaves = classification output
Arcs = choice of value

for parent attribute

Decision tree is equivalent to logic in disjunctive normal form
PlayTennis ⇔ (Sunny ∧ Normal) ∨ Overcast ∨ (Rain ∧ Weak)

15

Decision TreesDecision Trees
Input: Description of an object or a situation through a
set of attributes

Output: a decision that is the predicted output value
for the input

Both input and output can be discrete or continuous

Discrete-valued functions lead to classification
problems

16

Example: Decision Tree for Continuous
Valued Features and Discrete Output

x1

x2

How do we branch using
attribute values x1 and x2
to partition the space
correctly?

Input real number attributes (x1,x2), Classification output: 0 or 1

17

Example: Classification of Continuous Valued Inputs

3

4

Decision Tree

x1

x2

18

Expressiveness of Decision TreesExpressiveness of Decision Trees
Decision trees can express any function of the input
attributes.

E.g., for Boolean functions, truth table row = path to leaf:

Trivially, there is a consistent decision tree for any
training set with one path to leaf for each example

• But most likely won't generalize to new examples

Prefer to find more compact decision trees

19

Learning Decision TreesLearning Decision Trees
Example: When should I wait for a table at a restaurant?

Attributes (features) relevant to Wait? decision:
1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($, $$, $$$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

20

Example Decision treeExample Decision tree
A decision tree for Wait? based on personal “rules of thumb”:

21

Input Data for LearningInput Data for Learning
Past examples when I did/did not wait for a table:

Classification of examples is positive (T) or negative (F)

22

Decision Tree LearningDecision Tree Learning
Aim: find a small tree consistent with training examples
Idea: (recursively) choose "most significant" attribute as

root of (sub)tree

23

Choosing an attribute to split onChoosing an attribute to split on
Idea: a good attribute should reduce uncertainty

• E.g., splits the examples into subsets that are
(ideally) "all positive" or "all negative"

Patrons? is a better choice For Type?, to wait or not
to wait is still at 50%

How do we quantify uncertainty?How do we quantify uncertainty?

http://a.espncdn.com/media/ten/2006/0306/photo/g_mcenroe_195.jpg

25

Using information theory to
quantify uncertainty

Using information theory to
quantify uncertainty

Entropy measures the amount of uncertainty in a
probability distribution

Entropy (or Information Content) of an answer to a
question with possible answers v1, … , vn:

I(P(v1), … , P(vn)) = Σi=1 -P(vi) log2 P(vi)

26

Using information theoryUsing information theory
Imagine we have p examples with Wait = True (positive)
and n examples with Wait = false (negative).

Our best estimate of the probabilities of Wait = true or
false is given by:

Hence the entropy of Wait is given by:

() /
() /

P true p p n
p false n p n

≈ +

≈ +

np
n

np
n

np
p

np
p

np
n

np
pI

++
−

++
−=

++ 22 loglog),(

27

P(Wait = T)

En
tr

op
y

 I
En

tr
op

y
 I

.00 .50 1.00

1.0

0.5

Entropy is
highest
when
uncertainty
is greatest

Wait = T
Wait = F

28

Idea: a good attribute should reduce uncertainty
and result in “gain in information”

How much information do we gain if we disclose the
value of some attribute?

Answer:
uncertainty before – uncertainty after

Choosing an attribute to split onChoosing an attribute to split on

29

Back at the RestaurantBack at the Restaurant

Before choosing an attribute:
Entropy = - 6/12 log(6/12) – 6/12 log(6/12)

= - log(1/2) = log(2) = 1 bit
There is “1 bit of information to be discovered”

30

Back at the RestaurantBack at the Restaurant

If we choose Type: Go along branch “French”: we have
entropy = 1 bit; similarly for the others.

Information gain = 1-1 = 0 along any branch
If we choose Patrons:
In branch “None” and “Some”, entropy = 0
For “Full”, entropy = -2/6 log(2/6)-4/6 log(4/6) = 0.92

Info gain = (1-0) or (1-0.92) bits > 0 in both cases
So choosing Patrons gains more information!

31

Entropy across branchesEntropy across branches
• How do we combine entropy of
different branches?

• Answer: Compute average
entropy

• Weight entropies according to
probabilities of branches

2/12 times we enter “None”, so
weight for “None” = 1/6

“Some” has weight: 4/12 = 1/3
“Full” has weight 6/12 = ½

1
() (,)

n
i i i i

i i i i i

p n p nEntropy A Entropy
p n p n p n=

+
=

+ + +∑

weight for each branch
entropy for each branch

AvgEntropy

32

Information gainInformation gain

Information Gain (IG) or reduction in entropy from
using attribute A:

Choose the attribute with the largest IG

IG(A) = Entropy before – AvgEntropy after choosing A

33

Information gain in our exampleInformation gain in our example

Patrons has the highest IG of all attributes
⇒ DTL algorithm chooses Patrons as the root

bits 0)]
4
2,

4
2(

12
4)

4
2,

4
2(

12
4)

2
1,

2
1(

12
2)

2
1,

2
1(

12
2[1)(

bits 541.)]
6
4,

6
2(

12
6)0,1(

12
4)1,0(

12
2[1)(

=+++−=

=++−=

IIIITypeIG

IIIPatronsIG

34

Decision tree learned from the 12 examples:

Substantially simpler than “rules-of-thumb” tree
• more complex hypothesis not justified by small
amount of data

Should I stay or should I go?
Learned Decision Tree

Should I stay or should I go?
Learned Decision Tree

35

Performance EvaluationPerformance Evaluation
How do we know that the learned tree h ≈ f ?
Answer: Try h on a new test set of examples

Learning curve = % correct on test set as a function
of training set size

36

GeneralizationGeneralization
How do we know the classifier function we have
learned is good?

• Look at generalization error on test data
– Method 1: Split data in training vs test set
(the “hold out” method)

– Method 2: Cross-Validation

37

Cross-validationCross-validation
K-fold cross-validation:

• Divide data into k subsets of equal size
• Train learning algorithm K times, leaving out
one of the subsets. Compute error on
left-out subset

• Report average error over all subsets
Leave-1-out cross-validation:

• Train on all but 1 data point, test on that
data point; repeat for each point

• Report average error over all points

Decision trees are for girlie men
– let’s move on to more powerful

learning algorithms

http://www.ipjnet.com/schwarzenegger2/pages/arnold_01.htm

39

Example Problem: Face Detection

How do we build a classifier to distinguish
between faces and other objects?

40

Images as VectorsImages as Vectors
Binary handwritten characters

Greyscale images
62 79 23 119 120 105 4 0

10 10 9 62 12 78 34 0

10 58 197 46 46 0 0 48

176 135 5 188 191 68 0 49

2 1 1 29 26 37 0 77

0 89 144 147 187 102 62 208

255 252 0 166 123 62 0 31

166 63 127 17 1 0 99 30

Treat an image as a high-
dimensional vector
(e.g., by reading pixel values
left to right, top to bottom row)

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

N

N

p
p

p
p

2

2

1

MI

Pixel value pi can be 0
or 1 (binary image) or
0 to 255 (greyscale)

The human brain is extremely
good at classifying images

The human brain is extremely
good at classifying images

Can we develop classification methods by
emulating the brain?

42

43

Neurons communicate via spikesNeurons communicate via spikes

Inputs

Output spike
(electrical pulse)

Output spike roughly dependent on whether
sum of all inputs reaches a threshold

44

Neurons as “Threshold Units”Neurons as “Threshold Units”
Artificial neuron:

• m binary inputs (-1 or 1), 1 output (-1 or 1)
• Synaptic weights wji

• Threshold μi

Inputs uj
(-1 or +1)

Output vi
(-1 or +1)

Weighted Sum Thresholdw1i

w2i

w3i

Θ(x) = 1 if x > 0 and -1 if x ≤ 0

)(ij
j

jii uwv μ−Θ= ∑

45

“Perceptrons” for Classification“Perceptrons” for Classification
Fancy name for a type of layered “feed-forward”
networks (no loops)

Uses artificial neurons (“units”) with binary inputs and
outputs

Multilayer

Single-layer

46

Perceptrons and ClassificationPerceptrons and Classification
Consider a single-layer perceptron

• Weighted sum forms a linear hyperplane

• Everything on one side of this hyperplane is in
class 1 (output = +1) and everything on other
side is class 2 (output = -1)

Any function that is linearly separable can be
computed by a perceptron

0=−∑ ij
j

jiuw μ

47

Linear SeparabilityLinear Separability
Example: AND is linearly separable

Linear hyperplane

v

u1 u2

μ = 1.5
(1,1)

1

1

-1

-1

u1

u2-1 -1 -1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 AND

v = 1 iff u1 + u2 – 1.5 > 0

Similarly for OR and NOT

How do we learn the appropriate
weights given only examples of

(input,output)?

How do we learn the appropriate
weights given only examples of

(input,output)?

Idea: Change the weights to decrease the error
in ouput

49

Perceptron Learning RulePerceptron Learning Rule
Given input pair (u, vd) where vd ∈ {+1,-1} is the

desired output, adjust w and μ as follows:

1. Calculate current output v of neuron

2. Compute error signal e = (vd – v)

)()(μμ −Θ=−Θ= ∑ uwT
j

j
juwv

50

Perceptron Learning RulePerceptron Learning Rule
3. Change w and μ according to error (vd – v) :

If input is positive and error is positive,
then w not large enough ⇒ increase w

If input is positive and error is negative,
then w too large ⇒ decrease w

Similar reasoning for other cases yields:

)(
)(

vv
vv

d

d

−−→

−+→

αμμ

α uww
BABA with replace means →

α is the “learning rate” (a small positive number,
e.g., 0.05)

51

What about the XOR function?What about the XOR function?

(1,1)

1
1

-1

-1

u1

u2
-1 -1 1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 XOR ?

Can a perceptron separate the +1
outputs from the -1 outputs?

52

Linear InseparabilityLinear Inseparability

Minsky and Papert’s book
showing such negative
results put a damper on
neural networks research
for over a decade!

Perceptron with threshold units fails if classification
task is not linearly separable

• Example: XOR
• No single line can separate the “yes” (+1)
outputs from the “no” (-1) outputs!

(1,1)

1
1

-1

-1

u1

u2

X

How do we deal with linear
inseparability?

How do we deal with linear
inseparability?

54

Idea 1: Multilayer PerceptronsIdea 1: Multilayer Perceptrons
Removes limitations of single-layer networks

• Can solve XOR
Example: Two-layer perceptron that computes XOR

Output is +1 if and only if x + y – 2Θ(x + y – 1.5) – 0.5 > 0

x y

55

x y

out

x

y

1

1

2

1 2

2
1

1
1− 1−

2

1−

1−1

2
1

− ?

Multilayer Perceptron: What does it do?

56

x y

out

x

y

1

1

2

1 2

0
2
11 >−+ yx

0
2
11 <−+ yx

=-1

=1

2
1

1
1−

xy
2
11+=

Multilayer Perceptron: What does it do?

57

x y

out

x

y

1

1

2

1 2

02 >−− yx 02 <−− yx

=-1

=-1=1

=1

1−

2

1−

Multilayer Perceptron: What does it do?

58

x y

out

x

y

1

1

2

1 2

=-1

=-1=1

=1
1−1

2
1

− -
2
1

− >0

Multilayer Perceptron: What does it do?

59

x y

out

x

y

1

1

2

1 2

02 <−− yx

0
2
11 >−+ yx

=-1

=-1=1

=1

2
1

1
1− 1−

2

1−

1−1

2
1

−

Perceptrons as Constraint
Satisfaction Networks

60

Back to Linear SeparabilityBack to Linear Separability

• Recall: Weighted sum in perceptron
forms a linear hyperplane

• Due to threshold function, everything on
one side of this hyperplane is labeled as
class 1 (output = +1) and everything on
other side is labeled as class 2 (output = -1)

0=+∑ bxw i
i

i

61

Separating HyperplaneSeparating Hyperplane

denotes +1 output

denotes -1 output

Class 2

Need to choose w and b based on training data

0=+∑ bxw i
i

i
Class 1

62

Separating HyperplanesSeparating Hyperplanes
Different choices of w and b give different hyperplanes

(This and next few slides adapted from Andrew Moore’s)

denotes +1 output

denotes -1 output

Class 1

Class 2

http://www.cs.cmu.edu/~awm/tutorials

63

Which hyperplane is best?Which hyperplane is best?

denotes +1 output

denotes -1 output

Class 1

Class 2

64

How about the one right in the middle?How about the one right in the middle?

Intuitively, this boundary
seems good

Avoids misclassification of
new test points if they are
generated from the same
distribution as training points

65

MarginMargin

Define the margin
of a linear
classifier as the
width that the
boundary could be
increased by
before hitting a
datapoint.

66

Maximum Margin and Support Vector MachineMaximum Margin and Support Vector Machine

The maximum
margin classifier is
called a Support
Vector Machine (in
this case, a Linear
SVM or LSVM)

Support Vectors
are those
datapoints that
the margin
pushes up
against

67

Why Maximum Margin?Why Maximum Margin?

• Robust to small
perturbations of data
points near boundary

• There exists theory
showing this is best for
generalization to new
points

• Empirically works great

68

Support Vector Machines: The Math Support Vector Machines: The Math

() 1
asrewritten becan This

1for 1
1for 1

:satisfy),(points data training theSuppose

+≥+⋅

−=−≤+⋅
+=+≥+⋅

by

yb
yb

y

ii

ii

ii

ii

xw

xw
xw

x

 0 =+⋅ bxw

We can always do this by rescaling
w and b, without affecting the
separating hyperplane:

69

The margin is given by (see Burges tutorial online):

Class 1

Class 2

m

Estimating the MarginEstimating the Margin

Margin can be calculated based on expression for distance from a point to a line, see,
e.g., http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html

http://research.microsoft.com/en-us/um/people/cburges/papers/SVMTutorial.pdf
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html

70

Learning the Maximum Margin ClassifierLearning the Maximum Margin Classifier
Want to maximize margin:

Equivalent to finding w and b that minimize:

Constrained optimization problem that can be
solved using Lagrange multiplier method

() iby ii ∀+≥+⋅ ,1 subject to 2/ xww

() iby ii ∀+≥+⋅ ,1 subject to
2
1 2 xww

http://en.wikipedia.org/wiki/Lagrange_multipliers

71

Learning the Maximum Margin ClassifierLearning the Maximum Margin Classifier

Using Lagrange formulation and Lagrangian
multipliers αi, we get (see Burges tutorial online):

where the αi are obtained by maximizing:

∑=
i

iii y xw α

∑

∑∑
=≥

⋅−

i
iii

ji
jijiji

i
i

y

yy

0 and 0 subject to

)(
2
1

,

αα

ααα xx

This is a quadratic programming (QP) problem
- A global maximum can always be found

http://research.microsoft.com/en-us/um/people/cburges/papers/SVMTutorial.pdf

72

α6=1.4

Geometrical InterpretationGeometrical Interpretation

α1=0.8

α2=0

α3=0

α4=0

α5=0
α7=0

α8=0.6

α9=0

α10=0

xi with non-zero αi are called support vectors

73

What if data is not linearly separable?What if data is not linearly separable?

Outliers (due to noise)

74

Approach 1: Soft Margin SVMsApproach 1: Soft Margin SVMs

Allow errors ξ i (deviations from
margin)

Trade off margin with errors.

Minimize:

ξ

() iby

C

iiii

i
i

∀≥−≥+⋅

+ ∑
,0 and 1

 :subject to
2
1 2

ξξ

ξ

xw

w

75

-1 -1 1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 XOR

Can we do something to the inputs?

(1,1)

1
1

-1

-1

u1

u2

X

What if data is not linearly
separable: Other ideas?

What if data is not linearly
separable: Other ideas?

76

Another Example

Not linearly separable

77

Approach 2: Map original input space to higher-
dimensional feature space; use linear classifier in
higher-dim. space

x → φ(x)

What if data is not linearly separable?

78

x → φ(x)

Problem with high dimensional spaces

Computation in high-dimensional feature space can be
costly

The high dimensional projection function φ(x) may be too
complicated to compute

Kernel trick to the rescue!

79

The Kernel TrickThe Kernel Trick
Recall: SVM maximizes the quadratic function:

Insight:
The data points only appear as inner product
• No need to compute high-dimensional φ(x)

explicitly! Just replace inner product xi⋅xj with
a kernel function K(xi,xj) = φ(xi) ⋅ φ(xj)

• E.g., Gaussian kernel
K(xi,xj) = exp(-||xi-xj||2/2σ2)

• E.g., Polynomial kernel
K(xi,xj) = (xi⋅xj+1)d

∑

∑∑
=≥

⋅−

i
iii

ji
jijiji

i
i

y

yy

0 and 0 subject to

)(
2
1

,

αα

ααα xx

80

An Example for φ(.) and K(.,.)An Example for φ(.) and K(.,.)
Suppose φ(.) is given as follows

An inner product in the feature space is

So, if we define the kernel function as follows,
there is no need to compute φ(.) explicitly

This use of kernel function to avoid computing
φ(.) explicitly is known as the kernel trick

81

Summary: Steps for Classification
using SVMs

Summary: Steps for Classification
using SVMs

Prepare the data matrix
Select the kernel function to use
Select parameters of the kernel function

• You can use the values suggested by the
SVM software, or use cross-validation

Execute the training algorithm and obtain the
parameters αi

Classify new data using the learned parameters

82

Face Detection using
SVMs

Face Detection using
SVMs

Kernel used: Polynomial of degree 2

(Osuna, Freund, Girosi, 1998)

http://cbcl.mit.edu/projects/cbcl/publications/ps/cvpr97-face.ps.gz

83

Support VectorsSupport Vectors

84

K-Nearest Neighbors K-Nearest Neighbors
A simple non-parametric classification algorithm
Idea:

• Look around you to see how your neighbors
classify data

• Classify a new data-point according to a majority
vote of your k nearest neighbors

85

Distance MetricDistance Metric

How do we measure what it means to be a neighbor
(what is “close”)?

Appropriate distance metric depends on the problem

Examples:
x discrete (e.g., strings): Hamming distance

d(x1,x2) = # features on which x1 and x2 differ

x continuous (e.g., vectors over reals): Euclidean
distance
d(x1,x2) = || x1-x2 || = square root of sum of squared
differences between corresponding elements of data vectors

86

ExampleExample
Input Data: 2-D points (x1,x2)

Two classes: C1 and C2. New Data Point +

K = 4: Look at 4 nearest neighbors of +
3 are in C1, so classify + as C1

87

Decision Boundary using K-NNDecision Boundary using K-NN

Some points
near the
boundary may
be misclassified

(but maybe noise)

What if we want to learn
continuous-valued functions?
What if we want to learn

continuous-valued functions?

Input

Output

89

Example: Learning to DriveExample: Learning to Drive

Can you use a neural network to drive?

90

Regression using NetworksRegression using Networks
We want networks that can learn a function

• Network maps real-valued inputs to real-valued
output

• Idea: Given data, minimize errors between
network’s output and desired output by changing
weights

Continuous output values Can’t
use binary threshold units anymore

To minimize errors, a differentiable
output function is desirable

91

Sigmoidal NetworksSigmoidal Networks

Input nodes ae
ag β−+

=
1

1)(

a

Ψ(a)
1

The most common
activation function:

Sigmoid function:

Non-linear “squashing” function: Squashes input to be between 0
and 1. The parameter β controls the slope.

g(a)

)(uwTg
w

u = (u1 u2 u3)T

Outputv =

92

Gradient-Descent Learning
(“Hill-Climbing”)

Gradient-Descent Learning
(“Hill-Climbing”)

Given training examples (um,dm) (m = 1, …, N),
define an error function (cost function or “energy”
function)

2)(
2
1)(m

m

m vdE −= ∑w

)(mTm gv uw=where

93

Gradient-Descent Learning
(“Hill-Climbing”)

Gradient-Descent Learning
(“Hill-Climbing”)

Would like to change w so that E(w) is minimized
• Gradient Descent: Change w in proportion to
–dE/dw (why?)

mmTmm

m

m
mm

m
gvd

d
dvvd

d
dE

d
dE

uuw
ww

w
ww

)()()(′−−=−−=

−→

∑∑

ε

Derivative of sigmoid

94

“Stochastic” Gradient Descent“Stochastic” Gradient Descent

What if the inputs only arrive one-by-one?
Stochastic gradient descent approximates
sum over all inputs with an “on-line” running
sum:

mmTmm gvd
d
dE

d
dE

uuw
w

w
ww

)()(1

1

′−−=

−→ ε
Also known as
the “delta rule”
or “LMS (least
mean square)

rule”
delta = error

95

But wait….But wait….
Delta rule tells us how to modify the connections
from input to output (one layer network)

• One layer networks are not that interesting
(remember XOR?)

What if we have multiple layers?

96

Learning Multilayer NetworksLearning Multilayer Networks

2)(
2
1),(i

i
i vdE −= ∑wW

Start with random weights W, w

Given input u, network produces
output v

Find W and w that minimize
total squared output error over
all output units (labeled i):

))((k
k

kj
j

jii uwgWgv ∑∑=

ku

97

Backpropagation: Output WeightsBackpropagation: Output Weights

j
j

jjiii
ji

ji
jiji

xxWgvd
dW
dE

dW
dEWW

)()(∑′−−=

−→ ε

{delta rule}

)(j
j

jii xWgv ∑=

ku

jx

Learning rule for hidden-output weights W:

2)(
2
1),(i

i
i vdE −= ∑wW

{gradient descent}

98

Backpropagation: Hidden WeightsBackpropagation: Hidden Weights
)(j

j
ji

m
i xWgv ∑=

m
ku

⎥
⎦

⎤
⎢
⎣

⎡ ′⋅⎥
⎦

⎤
⎢
⎣

⎡
′−−=

⋅=−→

∑∑∑ m
k

m
k

k
kjji

j

m
jji

m
i

m
i

imkj

kj

j

jkjkj
kjkj

uuwgWxWgvd
dw
dE

dw
dx

dx
dE

dw
dE

dw
dEww

)()()(

 :But

,

ε {chain rule}

)(m
k

k
kj

m
j uwgx ∑=

Learning rule for input-hidden weights w:

2)(
2
1),(i

i
i vdE −= ∑wW

99

Learning to Drive using Backprop

One of the learned
“road features” wi

100

ALVINN (Autonomous Land Vehicle in a Neural
Network)

(Pomerleau, 1992)

Trained using human
driver + camera images

After learning:
Drove up to 70 mph on
highway
Up to 22 miles without
intervention
Drove cross-country
largely autonomously

101

Another Example: Face DetectionAnother Example: Face Detection

(Rowley, Baluja & Kanade, 1998)

Output between -1 (no face) and +1 (face present)

http://vasc.ri.cmu.edu/NNFaceDetector/

102

Face Detection ResultsFace Detection Results

(Rowley, Baluja & Kanade, 1998)

http://vasc.ri.cmu.edu/NNFaceDetector/

103

Demos: Pole Balancing and Backing up a Truck
(courtesy of Keith Grochow, CSE 599)

Neural network learns to balance a pole on a cart
System:

4 state variables: xcart, vcart, θpole, vpole
1 input: Force on cart

Backprop Network:
Input: State variables
Output: New force on cart

NN learns to back a truck into a loading dock
System (Nyugen and Widrow, 1989):

State variables: xcab, ycab, θcab
1 input: new θsteering

Backprop Network:
Input: State variables
Output: Steering angle θsteering

xcart

vcart

vpole

θpole

	Machine Learning I:�Supervised Learning
	What’s on our menu today?
	Why Learning?
	Types of Learning
	Inductive learning
	Inductive learning example
	Inductive learning example
	Inductive learning example
	Inductive learning example
	Inductive learning example
	Ockham’s Razor Principle
	Supervised Learning Technique I:�Decision Trees
	Example data for learning the concept “Good day for tennis”
	A Decision Tree for the Same Data
	Decision Trees
	Expressiveness of Decision Trees
	Learning Decision Trees
	Example Decision tree
	Input Data for Learning
	Decision Tree Learning
	Choosing an attribute to split on
	How do we quantify uncertainty?
	Using information theory to quantify uncertainty
	Using information theory
	Entropy I
	Choosing an attribute to split on
	Back at the Restaurant
	Back at the Restaurant
	Entropy across branches
	Information gain
	Information gain in our example
	Should I stay or should I go?�Learned Decision Tree
	Performance Evaluation
	Generalization
	Cross-validation
	Images as Vectors
	The human brain is extremely good at classifying images
	Neurons communicate via spikes
	Neurons as “Threshold Units”
	“Perceptrons” for Classification
	Perceptrons and Classification
	Linear Separability
	How do we learn the appropriate weights given only examples of (input,output)?
	Perceptron Learning Rule
	Perceptron Learning Rule
	What about the XOR function?
	Linear Inseparability
	How do we deal with linear inseparability?
	Idea 1: Multilayer Perceptrons
	Back to Linear Separability
	Separating Hyperplane
	Separating Hyperplanes
	Which hyperplane is best?
	How about the one right in the middle?
	Margin
	Maximum Margin and Support Vector Machine
	Why Maximum Margin?
	Support Vector Machines: The Math
	Estimating the Margin
	Learning the Maximum Margin Classifier
	Learning the Maximum Margin Classifier
	Geometrical Interpretation
	What if data is not linearly separable?
	Approach 1: Soft Margin SVMs
	What if data is not linearly separable: Other ideas?
	The Kernel Trick
	An Example for f(.) and K(.,.)
	Summary: Steps for Classification using SVMs
	Face Detection using SVMs
	Support Vectors�
	K-Nearest Neighbors
	Distance Metric
	Example
	Decision Boundary using K-NN
	What if we want to learn continuous-valued functions?
	Example: Learning to Drive
	Regression using Networks
	Sigmoidal Networks
	Gradient-Descent Learning �(“Hill-Climbing”)
	Gradient-Descent Learning �(“Hill-Climbing”)
	“Stochastic” Gradient Descent
	But wait….
	Learning Multilayer Networks
	Backpropagation: Output Weights
	Backpropagation: Hidden Weights
	Another Example: Face Detection
	Face Detection Results

