CSEP 573

MachineLearning|:
Supervised L earning

F
!

o
(]
(31} ()

“

'ﬂg

a

(=]
@

E.

&
(B2
@

© CSE Al Faculty

What's on our menu today?

Supervised Learning

+ Classification

- Decision trees

- Cross validation

- K-nearest neighbor

- Neural networks

+Perceptrons

- Support Vector Machines (SVMs)
* Regression

- Backpropagation networks

Why Learning?

Learning is essential for unknown environments
* e.g., when designer lacks omniscience

Learning is necessary in dynamic environments

+ Agent can adapt to changes in environment not
foreseen at design time

Learning is useful as a system construction method

- Expose the agent to reality rather than trying
to approximate it through equations etc.

Learning modifies the agent's decision mechanisms to
improve performance

Types of Learning

Supervised learning: correct answers for each input is
provided

- E.g., decision trees, backpropagation neural networks

Unsupervised learning: correct answers not given, must
discover patterns in input data

+ E.g., clustering, principal component analysis

Reinforcement learning: occasional rewards (or
punishments) given to guide behavior

Inductive learning
We will focus on one form of supervised learning called
Inductive Learning:
Learn a function from examples

f is the target function. Examples are pairs (x, f(x))

Problem: learn a function (“hypothesis™) A

such that A = £ (h approximates 7 as best as
possible)

given a training set of examples

(This is a highly simplified model of real learning:
- Ignores prior knowledge
- Assumes examples are given) 5

Inductive learning example

Construct A to agree with 7 on training set

* h is consistent if it agrees with 7 on all
training examples

E.g., curve fitting (regression):

fix)

x = Input data point
% (training example)

Inductive learning example

h = Straight line?

fix)
A

Inductive learning example
What about a quadratic function?

fix)
A

What about

/ this little

b4 fella?

Lt o

Inductive learning example

Finally, a function that satisfies alll

fix)

]

Inductive learning example

But so does this one...

10

Ockham'’s Razor Principle

fx)
A

&
e N

Ockham's razor: prefer the simplest hypothesis
consistent with data

Related to KISS principle (“keep it simple stupid”)
Smooth blue function preferable over wiggly yellow one

If noise known to exist in this data, even linear might be
better (the lowest x might be due to noise)

Y

A

[

1

Supervised Learning Technique I:
Decision Trees

To play or
not to play?

http://www.sfgate.com/blogs/images/sfgate/sgreen/2007/09/05/2240773250x321.jpg 12

Example data for learning the concept
"600d day for tennis”

Day Outlook Humid Wind PlayTennis?

dl s h w n

O s h < n Outlook =
d3 0 h w y sunny,

d4 r h W y ovgrcas‘r,
ds r n W y rain

do r n S y

d7 0 n S y Humidity =
d8 s h w n high, normal
d9 S n w y

dlo-r n W y Wind = weak,
dlil s n S y strong

dl2 o h s y

dl3 o n w y

dl4 r h S n

13

A Decision Tree for the Same Data

Decision Tree for “PlayTennis?”

Leaves = classification output
_ . P Outlook
Arcs = choice of value

for parent attribute)
Sunn Overcast Rain

Humidity Yes Wind
NMh S}Mé \\»\%
Yes No No Yes

Decision tree is equivalent to logic in disjunctive normal form
PlayTennis < (Sunny A Normal) v Overcast v (Rain A Weak)

14

Decision Trees
Input: Description of an object or a situation through a
set of attributes

Output: a decision that is the predicted output value
for the input

Both input and output can be discrete or continuous

Discrete-valued functions lead to classification
problems

15

Example: Decision Tree for Continuous
Valued Features and Discrete Output

Input real number attributes (x1,x2), Classification output: O or 1

x2 A 1

1
6 .
1 1 | How do we branch using
0 attribute values x1 and x2
4 0 to partition the space
0 1 correctly?
9 O 0 l
) 0 I
0 1
0 >
0 2 4 6

16

Example: Classification of Continuous Valued Inputs

Decision trees divide the feature space into axis-parallel rectangles, and label each rectangle

with one of the K classes.

ecision Tree
XZA] Decision Tr
1
6 X 4 xl1<3
1 1 1
0 0 1 x2 <4 1
4 0
0 1 ; 1
3 0 0
5 1
0 1
0 1
0 =
0 ’ 4 ¢ x1

17

Expressiveness of Decision Trees

Decision trees can express any function of the input
attributes.

E.g., for Boolean functions, truth table row = path to leaf:

A B AxorB
F

— T
Skl

T
T
F

Trivially, there is a consistent decision tree for any
training set with one path to leaf for each example

* But most likely won't generalize to new examples

Prefer to find more compact decision trees
18

Learning Decision Trees
Example: When should I wait for a table at a restaurant?

Attributes (features) relevant to Wait? decision:
1. Alternate: is there an alternative restaurant nearby?
Bar: is there a comfortable bar area to wait in?
Fri/Sat: is today Friday or Saturday?
Hungry: are we hungry?
Patrons: number of people in the restaurant (None, Some, Full)
Price: price range ($, $$. $$%)
Raining: is it raining outside?
Reservation: have we made a reservation?
. Type: kind of restaurant (French, Ttalian, Thai, Burger)
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

VXN~

19

Example Decision tree
A decision tree for Wait?based on personal “rules of thumb":

| Reservation? || Fri'Sat?]

Mo Yas

20

Input Data for Learning

Past examples when I did/did not wait for a table:

Example Attributes Target

Alt| Bar | Fri | Hun | Pat | Price | Rain | Res | Type | Est | Wait
X4 T F F T |Some| $%% F T |French| 0-10 T
X T| F F T Full $ F F | Thai |[30-60 F
X3 F T F F |Some $ F F | Burger| 0-10 T
Xy T| F T T Full $ F F | Thai [10-30 T
X5 T F T F Full | $%$ F T |French| =60 F
Xo F| T|F| T [Somel $ | T | T |lalian|0-10| T
X7 F T F F | None $ T F | Burger | 0-10 F
Xz F| F | F | T |Some|l $% T T | Thai | 0-10 T
Xy F T T F Full $ T F | Burger| =60 F
D ¢T) T T | T T Full | $$% F T | ltalian | 10-30 F
X F| F|F | F |None[$ F | F | Thai [0-10| F
KA1 T T | T T Full $ F F | Burger | 30-60 T

Classification of examples is positive (T) or negative (F)

21

Decision Tree Learning

Aim: find a small tree consistent with fraining examples

Idea: (recursively) choose "most significant" attribute as

root of (sub)tree

function DTL(examples, attributes, default) returns a decision tree

if ezamples is empty then return default

else if all examples have the same classification then return the classification
else if attributes is empty then return MoDE(ezamples)

else

best +— CHOOSE- ATTRIBUTE(attributes, emmples)l
tree < a new decision tree with root test best
for each value v; of best do
examples; + {elements of examples with best = v;}
[subtree <~ DTL(ezamples;, attributes — best, MODE(ezamples))|
add a branch to tree with label v; and subtree subtree
return ftree

22

Choosing an attribute to split on

Idea: a good attribute should reduce uncertainty

. Eg splits the examples into subsets that are
(ideally) "all positive" or "all negative"

MHone Some Full

Patrons? is a better choice

French

Htalian Thai Burger

%

For Type?, to wait or not
to wait is still at 50%

23

How do we quantify uncertainty?

http://a.espncdn.com/media/ten/2006/0306/photo/g_mcenroe_195.jpg

Using information theory to
quantify uncertainty

Entropy measures the amount of uncertainty ina
probability distribution

Entropy (or Information Content) of an answer to a
question with possible answers vy, ... , v,;:

I(P(vy), ..., P(vy) = Zi,y -P(v;) log, P(v;)

25

Using information theory

Imagine we have p examples with Wait = True (positive)
and n examples with Wait = false (negative).

Our best estimate of the probabilities of Wait = true or
false is given by: Pltrue) = p/ p+n
p(false)=n/p+n

Hence the entropy of Wait is given by:

I(p n —plogzp—nlogn

p+n’p+n p+n p+n p+n 2p+n

26

Entropy is
highest
when
uncertainty
is greatest

e Wait = F
o Wait = T

P(Wait = T)
.00 .50 1.00

27

Choosing an attribute to split on

Idea: a good attribute should reduce uncertainty
and result in "gain in information”

How much information do we gain if we disclose the
value of some attribute?

Answer:
uncertainty before - uncertainty after

28

Back at the Restaurant

1 1
! MEEEEE ! WEEBER
. . __BEEBEE |

Patrons?

Before choosing an attribute:
Entropy = - 6/12 log(6/12) — 6/12 log(6/12)
= -log(1/2) = log(2) = 1 bit
There is “1 bit of information to be discovered”

29

Back at the Restaurant

If we choose Type: Go along branch "French”: we have
entropy = 1 bit; similarly for the others.
Information gain = 1-1 = O along any branch

If we choose Patrons:

In branch "None" and "Some”, entropy = O

For “Full", entropy = -2/6 log(2/6)-4/6 log(4/6) = 0.92
Info gain = (1-0) or (1-0.92) bits > 0 in both cases

So choosing Patrons gains more information!
30

Entropy across branches

* How do we combine entropy of
different branches?

* Answer: Compute average
entropy

+ Weight entropies according to

probabilities of branches
2/12 times we enter "None”, so
weight for "None" = 1/6
"Some" has weight: 4/12 = 1/3
“Full" has weight 6/12 = 3

PN

/1 ;1
AvgEntropy = Z;’;TnEnf/‘apy(DAn AT

/ entropy for each branch

weight for each branch 31

Information gain

Information Gain (I6) or reduction in entropy from
using attribute A:

IG(A) = Entropy before - AvgEntropy after choosing A

Choose the attribute with the largest I6

32

Information gain in our example

mEEEE R
BEHEHB DI

|G(Patrons) =1— [—|(o1)+ S0, o)+£|(6 %)] 541 bits
1 2 11, 4 22 4 22

Patrons has the highest IG of all attributes
= DTL algorithm chooses Patrons as the root

33

Should I stay or should I go?
Learned Decision Tree

Decision tree learned from the 12 examples:

Substantially simpler than "rules-of -thumb” tree

* more comflex hypothesis not justified by small

amount of data w4

Performance Evaluation

How do we know that the learned tree A = £ ?
Answer: Try A on a new test set of examples

Learning curve = % correct on test set as a function
of training set size

1

09 r
08 | ¥
07 r

06

% correct on test set

05

0.4

0 20 40 60 80 100
Training set size

35

Generalization

How do we know the classifier function we have
learned is good?

* Look at generalization error on test data

- Method 1: Split data in training vs test set
(the “hold out” method)

- Method 2: Cross-Validation

36

Cross-validation

K-fold cross-validation:
+ Divide data into k subsets of equal size

* Train learning algorithm K times, leaving out
one of the subsets. Compute error on
left-out subset

* Report average error over all subsets
Leave-1-out cross-validation:

* Train on all but 1 data point, test on that
data point; repeat for each point

* Report average error over all points

37

Decision trees are for girlie men
— let’s move on to more powerful
learning algorithms

hwarzenegger2/pages/arnold_01.htm

19

Example Problem: Face Detection

How do we build a classifier to distinguish
between faces and other objects?

39

Images as Vectors

Binary handwritten characters

11110000000
000000001 10000400000 00000001100001100000
00000000101000000000 00000011000000110000
00000001 000010400000 00001100000000011000
066000 10006010600060 60001000000006001660
00000100000001 400000 0000110000000001 0000
00001000000000100000 00000111000000100000
00001100111111110000 0000001110011 1100000
00001111110000410000 4000000011 1100000000
000110000060006110660 6000001100011 1000660
00010000000000001100 00001100000000110000
00110000000000000100 00011000000000011000
001100000000000001 10 00110000000000001000
001 10 ag: 1100
001000000000000400010 00010000000000011000
011000000000004000 10 0001100000000001 0000
01, 0000 110000
00000000000000000000 00000011111110000000

Greyscale images
62 79 23 119 120 105 4 0
10 10 9 62 12 8 34 0

)/ 10 58 197 |46 46 0 0 48

w6 [135 |5 188 [191 |68) 49

2 1 1 29 26 37 0 7

0 89 144 147 187 102 62 208

255 252 o 166 123 62 o 31

166 63 127 17 1 o 99 30

Treat an image as a high-

dimensional vector
(e.g., by reading pixel values
left to right, top to bottom row)

P,

Pn-2
Pn

Pixel value p; can be 0

or 1 (binary image) or
0 to 255 (greyscale)

40

The human brain is extremely
good at classifying images

Can we develop classification methods by
emulating the brain?

[Brains I

10" neurons of > 20 types, 10'* synapses, 1ms—10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axonal arborization
Axon from another cell

Synapse

Cell body or Soma

Neurons communicate via spikes

nnnrl ifes

Inputs N\}E, Axon hitlock Myelinated axon

Output spike
(electrical pulse)

| A

J\ / \
s\ < \

Output spike roughly dependent on whether
sum of all inputs reaches a threshold

43

Neurons as “Threshold Units”

Artificial neuron:
* m binary inputs (-1 or 1), 1 output (-1 or 1)
* Synaptic weights w;;
* Threshold ,

Wi Weighted Sum Threshold

Inputs u; M>\ Out
> utput v;
(-1 or+1) W Z (-1 or +1)
i
i

Vi = g(zwjiuj — i)

J
O(x)=1ifx>0and-1ifx<0

44

"Perceptrons” for Classification

Fancy name for a type of layered “feed-forward”
networks (no loops)

Uses artificial neurons (“units”) with binary inputs and
outputs

Multilayer

Single-layer

AN

45

Perceptrons and Classification

Consider a single-layer perceptron
* Weighted sum forms a /inear hyperplane

ijiuj — 1, =0
J

- Everything on one side of this hyperplane is in
class 1 (output = +1) and everything on other
side is class 2 (output = -1)

Any function that is linearly separable can be
computed by a perceptron

46

Linear Separability

Example: AND is linearly separable

/\ Linear hyperplane

u; u, AND
-1(-1| -1 u
N " (171) v
1]-1] -1 1‘1\ p=15
il i - -1 1\\\111 Ry &
111 1 |
o -] o Uy Uy

v=1 lff u+ U2-1.5>0

Similarly for OR and NOT

47

How do we /earn the appropriate
weights given only examples of
gnpuf,oufpuf)?

Idea: Change the weights to decrease the error
in ouput

Perceptron Learning Rule

Given input pair (u, vd) where vd € {+1,-1} is the
desired output, adjust w and p as follows:

1. Calculate current output v of neuron

V=00 WU, —) =0(W'u-u)

2. Compute error signal e = (v -v)

49

Perceptron Learning Rule

3. Change w and p according to error (vd -v) :

If input is positive and error is positive,
then w not large enough = increase w

If input is positive and error is negative,
then w too large = decrease w

Similar reasoning for other cases yields:
w = w+a (v —vu

4 A — B means replace Awith B
U= u—a(V' —V)

o is the "learning rate” (a small positive number,
e.g., 0.05)

50

What about the XOR function?

u; u, XOR
-1-1 1
1 |-1| -1
-111 -1
111 1

Can a perceptron separate the +1
outputs from the -1 outputs?

51

Linear Inseparability

Perceptron with threshold units fails if classification
task is not linearly separable

- Example: XOR
* No single line can separate the “yes"” (+1)
outputs from the "no” (-1) outputs!

Minsky and Papert's book
showing such negative
results put a damper on
neural networks research
for over a decadel!

52

How do we deal with linear
inseparability?

Idea 1: Multilayer Perceptrons

Removes limitations of single-layer networks
* Can solve XOR
Example: Two-layer perceptron that computes XOR

(09

(19

X y

Output is +1 if and only if x +y - 20(x+y-15)-05>0

54

Multilayer Perceptron: What does it do?

out

=
N
x

55

Multilayer Perceptron: What does it do?

out =-1
y 1+%x—y<0 ®
@-1

1
1+—x-y>0
> y

56

Multilayer Perceptron: What does it do?

out —
y ®-=-1

57

Multilayer Perceptron: What does it do?
@®--1

out y

58

29

Perceptrons as Constraint
Satisfaction Networks

out

59

Back to Linear Separability

* Recall: Weighted sum in perceptron
forms a /inear hyperplane

D> wx+b=0

* Due to threshold function, everything on
one side of this hyperplane is labeled as
class 1 (output = +1) and everything on
other side is labeled as class 2 (output = -1)

60

30

Separating Hyperplane

w,Xx, +b=0
Class1 Z

» denotes +1 output

> denotes -1 output

Need to choose W and b based on training data

61

Separating Hyperplanes

Different choices of w and b give different hyperplanes
Class1

+ denotes +1 output

> denotes -1 output

(This and next few slides adapted from Andrew Moore’s) 62

Which hyperplane is best?

» denotes +1 output

> denotes -1 output

63
How about the one right in the middle?
.., . Intuitively, this boundary
. . seems good
N A Avoids misclassification of
. o ° o new test points if they are
s C . e generated from the same
°e distribution as training points

64

Define the margin
of a linear
classifier as the
width that the
boundary could be
increased by
before hitting a
datapoint.

65

Maximum Margin and Support Vector Machine

Support Vectors]
are those
datapoints that

the margin

pushes up

against

The maximum
margin classifier is
called a Support
Vector Machine (in
. this case, a Linear
SVM or LSVM)

66

Why Maximum Margin?

¢ Robust to small
perturbations of data
points near boundary

e There exists theory
showing this is best for
generalization to new
points

e Empirically works great

67

Support Vector Machines: The Math

Suppose the training data points (X;,Y;) satisfy :

W-X;,+b>+1for y, =+1
w-X, +b<—1for y, =-1
This can be rewritten as
y,(Ww-x, +b)>+1

We can always do this by rescaling
w and b, without affecting the
separating hyperplane:

wW-X+b=0

68

Estimating the Margin

The margin is given by (see Burges tutorial online):

2
m=—-—
o 4l
&)
] © P
] @ Class 2
.. = \WTX—l-b:l
CIassl./ rf/v

WTX—Kb:—l wix+b=0

Margin can be calculated based on expression for distance from a point to a line, see,
e.g., http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html

69

Learning the Maximum Margin Classifier

Want to maximize margin:
2/ |w||subjectto y; (W -x; +b)=+1,Vi

Equivalent to finding w and 6 that minimize:

%HWH2 subjectto Y, (W-X, +b)>+1,Vi

Constrained optimization problem that can be
solved using Lagrange multiplier method

70

Learning the Maximum Margin Classifier

Using Lagrange formulation and Lagrangian
multipliers o;, we get (see Burges tutorial online):

W = Z a; YiX,
where the o; are obtained by maximizing:

1
Zai_gzaiajyiyj(xi 'Xj)
i

subjectto ¢; = 0 and Z oy, =0
i

This is a quadratic programming (QP) problem
- A global maximum can always be found

71

Geometrical Interpretation

X; with non-zero o are called support vectors

0§=06 G100
be=0 m .(17—0.az=0
(x4!0 . @ 0,=0.8
oz=1.4 T
Og=0 C i wx+b=1
a5=0 wix+b=0

wa—|-b:—1

72

What if data is not linearly separable?

o «— Outliers (due to noise)

73

Approach 1: Soft Margin SVMs

Allow errors €, (deviations from
margin)

Trade off margin with errors.

Minimize: %”W ||2 +C> | & subjectto

y,(w-x, +b)>1-¢& and & >0,Vi

74

What if data is not linearly
separable: Other ideas?

u; u, XOR
1)1 1

1]-1) -1
-1 1 -1
11 1

Can we do something o the inputs?

75

Another Example

Not linearly separable

76

What if data is not linearly separable?

Approach 2: Map original input space to higher-
dimensional feature space; use linear classifier in
higher-dim. space

N .
® ° o ° X = (P(X) : °
° o ° b o °
°
L] °) L]
o [° ®
¢ ° [] * ’ ¢ o . [¢
o ° °
°
3:R* - R

(21,@2) (21,22, 23) == (a1, V2210, T3)

77

Problem with high dimensional spaces

Computation in high-dimensional feature space can be
costly

The high dimensional projection function ¢(x) may be too
complicated to compute

Kernel trick to the rescuel!

78

The Kernel Trick

Recall: SVM maximizes the quadratic function:

1
i i,

subjectto ¢; = 0 and Z oy, =0

Insight:
The data points only appear as inner product
* No need to compute high-dimensional ¢(x)

explicitlyl Just replace inner product x;x; with

a kernel function K(x;x;) = o(x;) - o(x;)
* E.g., Gaussian kernel
K(x;.x;) = exp(-||xi-x;[2/20?)
- E.g., Polynomial kernel
K(x;.x;) = (x;x;+1)

79

An Example for ¢(.) and K(.,.)
Suppose ¢(.) is given as follows
o([55]) = (1, V221, V222,23, 23, v22122)
An inner product in the feature space is

(@[72), ([#5])) = (0 + w191 + 2292)?

So, if we define the kernel function as follows,
there is no need to compute ¢(.) explicitly

K(x,y) = (1 + z1y1 + zoy2)?

This use of kernel function to avoid computing
¢(.) explicitly is known as the kernel trick

80

Summary: Steps for Classification
using SVMs

Prepare the data matrix

Select the kernel function to use
Select parameters of the kernel function

* You can use the values suggested by the
SVM software, or use cross-validation

Execute the training algorithm and obtain the

parameters o,

Classify new data using the learned parameters

81

Face Detection using

SVMs

Test Set A Test Set B

Detect False || Detect False
Rate | Alarms Rate | Alarms

SVM

97.1 % 4 74.2% 20

Sung ct al.

94.6 % 2 74.2% 11

Kernel used: Polynomial of degree 2

(Osuna, Freund, Girosi, 1998)

82

Support Vectors

NON-FACES
0 g0 0O -
O o [
= a C L D O
-*—. 0O 0
2 om E M 0"
O o O L_: .J []
O o O -~ . B U
- O @, . \
00000 0o @ \ED
00 0 ~O na rs
O v~ Y o 4
O "V Y5 0 e B
'S O QO -) - 0
- "FACES |
83

K-Nearest Neighbors

A simple non-parametric classification algorithm
Idea:

* Look around you to see how your neighbors
classify data

* Classify a new data-point according to a majority
vote of your k nearest neighbors

84

Distance Meftric

How do we measure what it means to be a neighbor
(what is “close”)?

Appropriate distance metric depends on the problem

Examples:

x discrete (e.g., strings): Hamming distance
d(x,,x,) = # features on which x, and x, differ

x continuous (e.g., vectors over reals): Euclidean
distance

d(x1,x,) = || X;-%, || = square root of sum of squared
differences between corresponding elements of data vectors

85

Example
Input Data: 2-D points (x;,x,)
Two classes: C;and C,. New Data Point +

X;

K = 4: Look at 4 nearest neighbors of +

3 are in Cy, so classify + as C;
86

Decision Boundary using K-NN

12r

1F

osf Some points
near the
boundary may

be misclassified

0Bt
XX H

D4t ®E OB
ks

3
02+ % B
®

87

What if we want to learn
continuous-valued functions?

Output fix

Input

et ¥

Example: Learning to Drive

Can you use a neural network to drive?

89

Regression using Networks

We want networks that can learn a function
* Network maps real-valued inputs fo real-valued
output
- Idea: Given data, minimize errors between

network's output and desired output by changing
weights

Continuous output values = Can’t
use binary threshold units anymore

To minimize errors, a differentiable
output function is desirable

90

Sigmoidal Networks

The most common
activation function:

v=g(w'u) Output Sigmoid function:
w

a)=———
Input nodes 9(a) 1+e 7

g(a)
l"‘/

' a

u=(@, u u'

Non-linear “squashing” function: Squashes input to be between 0
and 1. The parameter 3 controls the slope.

91

6radient-Descent Learning
("Hill-Climbing™)

Given training examples (u”,d") (m = 1, .., N),
define an error function (cost function or “energy”
function)

E(w)=%z(dm—vm>2

m

where V" =g(w'u™)

92

6radient-Descent Learning
("Hill-Climbing™)

Would like to change w so that Aw) is minimized

* Gradient Descent: Change w in proportion to
-d&/dw (why?)

dE
W—oW-—€—
dw
dE dv™
S N YL == d"-=v™Mg'(w'u™u™
| Em()dw Em()9()

[

Derivative of sigmoid

93

“Stochastic” 6radient Descent

What if the inputs only arrive one-by-one?

Stochastic gradient descent approximates
sum over all inputs with an “on-line" running
sum:

dE,
W-—-o>W-¢& m
Also known as
E , « ”
L:_(dm_vm)g (WTUm)Um the“ delta rule
dw or “LMS (least
mean square)
rule”

delta = error

94

But waift....

Delta rule tells us how to modify the connections
from input to output (one layer network)

* One layer networks are not that interesting
(remember XOR?)
What if we have multiple layers?

95

Learning Multilayer Networks

Start with random weights W, w
Vi = g(zwjig(zwkjuk)) 8
j k
Given input U, network produces

output v

Find W and w that minimize
total squared output error over
all output units (labeled i):

EW,w)=2 ¥ (d -)

96

Backpropagation: Output Weights
Vi = g(Z\Njin)

EW,w)=2 (@ -v,)°

Learning rule for hidden-output weights W:

dE
W =W, —& aw, {gradient descent}

dE
—=—(d, =v,)g'(D> W.x,)x. {deltarule}
dei ZJ: ey J

97

Backpropagation: Hidden Weights

E(W,w) :%Z(di v) V"= Q(ZWjin)

X;n = g(zwkjulr(n)
k

Learning rule for input-hidden weights w:

dE dE dE dx,
Wy —> W, —€—— But: = :
dw, dw, dx; dw,

{chain rule}

do\I,IvE' = {— Z a" —Vim)g'(ZWji X W, } : {g’(zk: ijuf‘)u;“}

J

98

Learning to Drive using Backprop

30 Output
Units

30x32 Sensor
Input Retina

One of the learned
~ “road features” w;

A

99

ALVINN (Autonomous Land Vehicle in a Neural
Network)

8 Trained using human
g driver + camera images

W After learning:

Drove up to 70 mph on
highway

Up to 22 miles without
intfervention

Drove cross-country
largely autonomously

(Pomerleau, 1992)

100

50

Another Example: Face Detection

Input image pyramid Extracted window Corrected lighting Histogram equalized Receptive fields
(20 by 20 pixels) .

o W W W _

Inpur

Hidden units

\\! L i\ e A

Preprocessing Meural network

Output between -1 (no face) and +1 (face present)

(Rowley, Baluja & Kanade, 1998)

101

Face Detection Results

102

(Rowley, Baluja & Kanade, 1998)

Demos: Pole Balancing and Backing up a Truck

(courtesy of Keith Grochow, CSE 599)

4+ Neural network learns to balance a pole on a cart pole
@ System:
< 4 state variables: Xg,, Vour Opoter Vpole cart

< 1 input: Force on cart
« Backprop Network:
< Input: State variables
< Output: New force on cart

4+ NN learns to back a truck into a loading dock
@ System (Nyugen and Widrow, 1989):
< State variables: X ,p, Yeans Ocab Ll SO
@ 1 input: new B, e
< Backprop Network:
< Input: State variables
< Output: Steering angle 0

steering e A

103

