Machine Learning I:

Supervised Learning

(Rowley, Baluja \& Kanade, 1998)

What's on our menu today?

Supervised Learning

- Classification
- Decision trees
- Cross validation
- K-nearest neighbor
- Neural networks
+ Perceptrons
- Support Vector Machines (SVMs)
- Regression
- Backpropagation networks

Why Learning?

Learning is essential for unknown environments

- e.g., when designer lacks omniscience

Learning is necessary in dynamic environments

- Agent can adapt to changes in environment not foreseen at design time

Learning is useful as a system construction method

- Expose the agent to reality rather than trying to approximate it through equations etc.

Learning modifies the agent's decision mechanisms to improve performance

Types of Learning

Supervised learning: correct answers for each input is provided

- E.g., decision trees, backpropagation neural networks

Unsupervised learning: correct answers not given, must discover patterns in input data

- E.g., clustering, principal component analysis

Reinforcement learning: occasional rewards (or punishments) given to guide behavior

Inductive learning

We will focus on one form of supervised learning called Inductive Learning:
Learn a function from examples
f is the target function. Examples are pairs $(x, f(x))$

Problem: learn a function ("hypothesis") h
such that $h \approx f$ (h approximates f as best as possible)
given a training set of examples
(This is a highly simplified model of real learning:

- Ignores prior knowledge
- Assumes examples are given)

Inductive learning example

Construct h to agree with f on training set

- h is consistent if it agrees with f on all training examples
E.g., curve fitting (regression):

Inductive learning example

$$
h=\text { Straight line? }
$$

Inductive learning example

What about a quadratic function?

Inductive learning example

Finally, a function that satisfies all!

Inductive learning example
But so does this one...

Ockham's Razor Principle

Ockham's razor: prefer the simplest hypothesis consistent with data
Related to KISS principle ("keep it simple stupid")
Smooth blue function preferable over wiggly yellow one
If noise known to exist in this data, even linear might be better (the lowest x might be due to noise)

Supervised Learning Technique I: Decision Trees

Example data for learning the concept "Good day for tennis"

Day Outlook Humid Wind PlayTennis?

d1	S	h	w	n	Outlook =	
d2	s	h	s	n		
d3	o	h	w	y		
d4	r	h	w	y		overcast,
d5	r	n	w	y		rain
d6	r	n	S	y		
d7	o	n	S	y	-	Humidity =
d8	S	h	w	n		high, normal
d9	s	n	w	y		
d10	r	n	w	y		Wind = weak
d11	S	n	S	y		strong
d12	o	h	S	y		strong
d13	0	n	w	y		
d14	r	h	s	n		

A Decision Tree for the Same Data

> Decision Tree for "PlayTennis?"

Leaves $=$ classification output
Arcs = choice of value
for parent attribute

Decision tree is equivalent to logic in disjunctive normal form
PlayTennis \Leftrightarrow (Sunny \wedge Normal) \vee Overcast $\vee($ Rain \wedge Weak $)$

Decision Trees

Input: Description of an object or a situation through a set of attributes
Output: a decision that is the predicted output value for the input
Both input and output can be discrete or continuous
Discrete-valued functions lead to classification problems

Example: Decision Tree for Continuous Valued Features and Discrete Output

Input real number attributes $(x 1, x 2)$, Classification output: 0 or 1

How do we branch using attribute values $x 1$ and $x 2$ to partition the space correctly?

Example: Classification of Continuous Valued Inputs

Decision trees divide the feature space into axis-parallel rectangles, and label each rectangle with one of the K classes.

Expressiveness of Decision Trees

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row = path to leaf:

Trivially, there is a consistent decision tree for any training set with one path to leaf for each example

- But most likely won't generalize to new examples

Prefer to find more compact decision trees

Learning Decision Trees

Example: When should I wait for a table at a restaurant?
Attributes (features) relevant to Wait? decision:

1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($\$, \$ \$, \$ \$ \$$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time ($0-10,10-30,30-60,>60$)

Example Decision tree

A decision tree for Wait? based on personal "rules of thumb":

Input Data for Learning

Past examples when I did/did not wait for a table:

Example	Attributes										Target Wait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
X_{1}	T	F	F	T	Some	\$\$8	F	T	French	0-10	T
X_{2}	T	F	F	T	Full	\$	F	F	Thai	30-60	F
X_{3}	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_{4}	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_{5}	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_{6}	F	T	F	T	Some	\$	T	T	Italian	0-10	T
X_{7}	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_{8}	F	F	F	T	Some	\$	T	T	Thai	0-10	T
X_{9}	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30-60	T

Classification of examples is positive (T) or negative (F)

Decision Tree Learning

Aim: find a small tree consistent with training examples Idea: (recursively) choose "most significant" attribute as root of (sub)tree

```
function DTL(examples, attributes, default) returns a decision tree
    if examples is empty then return default
    else if all examples have the same classification then return the classification
    else if attributes is empty then return \(\operatorname{Mode}\) (examples)
    else
        best \(\leftarrow\) С СооSE-ATTRIBUTE(attributes, examples)
        tree \(\leftarrow\) a new decision tree with root test best
        for each value \(v_{i}\) of best do
            examples \(i_{i} \leftarrow\) \{elements of examples with best \(\left.=v_{i}\right\}\)
            subtree \(\leftarrow \mathrm{DTL}\left(\right.\) examples \(_{i}\), attributes - best, \(\operatorname{MODE}(\) examples \(\left.)\right)\)
            add a branch to tree with label \(v_{i}\) and subtree subtree
        return tree
```


Choosing an attribute to split on

Idea: a good attribute should reduce uncertainty

- E.g., splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice

For Type?, to wait or not to wait is still at 50%

How do we quantify uncertainty?

Using information theory to quantify uncertainty

Entropy measures the amount of uncertainty in a probability distribution

Entropy (or Information Content) of an answer to a question with possible answers v_{1}, \ldots, v_{n} :

$$
I\left(P\left(v_{1}\right), \ldots, P\left(v_{n}\right)\right)=\sum_{i=1}-P\left(v_{i}\right) \log _{2} P\left(v_{i}\right)
$$

Using information theory

Imagine we have p examples with Wait = True (positive) and n examples with Wait = false (negative).

Our best estimate of the probabilities of Wait = true or false is given by:

$$
\begin{aligned}
& P(\text { true }) \approx p / p+n \\
& p(\text { false }) \approx n / p+n
\end{aligned}
$$

Hence the entropy of Wait is given by:

$$
I\left(\frac{p}{p+n}, \frac{n}{p+n}\right)=-\frac{p}{p+n} \log _{2} \frac{p}{p+n}-\frac{n}{p+n} \log _{2} \frac{n}{p+n}
$$

Choosing an attribute to split on

Idea: a good attribute should reduce uncertainty and result in "gain in information"

How much information do we gain if we disclose the value of some attribute?

Answer:
uncertainty before - uncertainty after

Before choosing an attribute:
Entropy $=-6 / 12 \log (6 / 12)-6 / 12 \log (6 / 12)$

$$
=-\log (1 / 2)=\log (2)=1 \mathrm{bit}
$$

There is " 1 bit of information to be discovered"

Back at the Restaurant

If we choose Type: Go along branch "French": we have entropy $=1$ bit; similarly for the others.

Information gain =1-1 $=0$ along any branch
If we choose Patrons:
In branch "None" and "Some", entropy $=0$
For "Full", entropy $=-2 / 6 \log (2 / 6)-4 / 6 \log (4 / 6)=0.92$
Info gain $=(1-0)$ or (1-0.92) bits >0 in both cases
So choosing Patrons gains more information!

Entropy across branches

- How do we combine entropy of different branches?
- Answer: Compute average entropy
- Weight entropies according to probabilities of branches

2/12 times we enter "None", so

 weight for "None" = 1/6
"Some" has weight: 4/12 = $1 / 3$
"Full" has weight $6 / 12=\frac{1}{2}$
AvgEntropy $=\sum_{i=1}^{n} \frac{p_{i}+n_{i}}{p+n} \operatorname{Entropy}\left(\frac{p_{i}}{p_{i}+n_{i}}, \frac{n_{i}}{p_{i}+n_{i}}\right)$

weight for each branch entropy for each branch

Information gain

Information Gain (IG) or reduction in entropy from using attribute A:
$I G(A)=$ Entropy before - AvgEntropy after choosing A

Choose the attribute with the largest IG

Information gain in our example

$I G($ Patrons $)=1-\left[\frac{2}{12} I(0,1)+\frac{4}{12} I(1,0)+\frac{6}{12} I\left(\frac{2}{6}, \frac{4}{6}\right)\right]=.541$ bits
$I G($ Type $)=1-\left[\frac{2}{12} I\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{2}{12} I\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{4}{12} I\left(\frac{2}{4}, \frac{2}{4}\right)+\frac{4}{12} I\left(\frac{2}{4}, \frac{2}{4}\right)\right]=0$ bits

Patrons has the highest IG of all attributes \Rightarrow DTL algorithm chooses Patrons as the root

Should I stay or should I go? Learned Decision Tree

Decision tree learned from the 12 examples:

Substantially simpler than "rules-of-thumb" tree

- more complex hypothesis not justified by small amount of data

Performance Evaluation

How do we know that the learned tree $h \approx f$?
Answer: Try h on a new test set of examples
Learning curve $=\%$ correct on test set as a function of training set size

Generalization

How do we know the classifier function we have learned is good?

- Look at generalization error on test data
- Method 1: Split data in training vs test set (the "hold out" method)
- Method 2: Cross-Validation

Cross-validation

K-fold cross-validation:

- Divide data into k subsets of equal size
- Train learning algorithm K times, leaving out one of the subsets. Compute error on left-out subset
- Report average error over all subsets

Leave-1-out cross-validation:

- Train on all but 1 data point, test on that data point: repeat for each point
- Report average error over all points

Decision trees are for girlie men - let's move on to more powerful learning algorithms

Example Problem: Face Detection

How do we build a classifier to distinguish between faces and other objects?

Images as Vectors

Binary handwritten characters

00000000010000000000
00000000110000000000
00000000101000000000
00000001000010000000
0000001000001000000
00000100000001000000
00001000000000100000
0000110011111111000 00001111110000010000 00010000000000001100 00110000000000000100
00110000000000000110
0100000000000000010
0010000000000000010
0110000000000000010
110000000000000000000
00000000000000000000
Greyscale images

Treat an image as a highdimensional vector (e.g., by reading pixel values left to right, top to bottom row)

$$
\mathbf{I}=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\vdots \\
p_{N-2} \\
p_{N}
\end{array}\right]
$$

Pixel value p_{i} can be 0 or 1 (binary image) or 0 to 255 (greyscale)

The human brain is extremely good at classifying images

Can we develop classification methods by emulating the brain?

Brains

10^{11} neurons of >20 types, 10^{14} synapses, $1 \mathrm{~ms}-10 \mathrm{~ms}$ cycle time Signals are noisy "spike trains" of electrical potential

Neurons communicate via spikes

Output spike roughly dependent on whether sum of all inputs reaches a threshold

Neurons as "Threshold Units"

Artificial neuron:

- m binary inputs (-1 or 1), 1 output (-1 or 1)
- Synaptic weights w_{ji}
- Threshold μ_{i}

$$
\begin{aligned}
& v_{i}=\Theta\left(\sum_{j} w_{j i} u_{j}-\mu_{i}\right) \\
& \Theta(\mathrm{x})=1 \text { if } \mathrm{x}>0 \text { and }-1 \text { if } \mathrm{x} \leq 0
\end{aligned}
$$

"Perceptrons" for Classification

Fancy name for a type of layered "feed-forward" networks (no loops)

Uses artificial neurons ("units") with binary inputs and outputs

Multilayer

Single-layer

Perceptrons and Classification

Consider a single-layer perceptron

- Weighted sum forms a linear hyperplane

$$
\sum_{j} w_{j i} u_{j}-\mu_{i}=0
$$

- Everything on one side of this hyperplane is in class 1 (output = +1) and everything on other side is class 2 (output = -1)
Any function that is linearly separable can be computed by a perceptron

Linear Separability

Example: AND is linearly separable

U_{1}	U_{2}	AND
-1	-1	-1
1	-1	-1
-1	1	-1
1	1	1

$$
v=1 \text { iff } u_{1}+U_{2}-1.5>0
$$

Similarly for OR and NOT

How do we learn the appropriate weights given only examples of (input,output)?

Idea: Change the weights to decrease the error in ouput

Perceptron Learning Rule

Given input pair (u, v^{d}) where $v^{d} \in\{+1,-1\}$ is the desired output, adjust w and μ as follows:

1. Calculate current output v of neuron

$$
v=\Theta\left(\sum_{j} w_{j} u_{j}-\mu\right)=\Theta\left(\mathbf{w}^{T} \mathbf{u}-\mu\right)
$$

2. Compute error signal $e=\left(v^{d}-v\right)$

Perceptron Learning Rule

3. Change w and μ according to error ($v^{d}-v$):

If input is positive and error is positive, then w not large enough \Rightarrow increase w
If input is positive and error is negative, then w too large \Rightarrow decrease w
Similar reasoning for other cases yields:
$\mathbf{w} \rightarrow \mathbf{w}+\alpha\left(v^{d}-v\right) \mathbf{u}$
$A \rightarrow B$ means replace A with B
$\mu \rightarrow \mu-\alpha\left(v^{d}-v\right)$
α is the "learning rate" (a small positive number, e.g., 0.05)

What about the XOR function?

u_{1}	U_{2}	XOR
-1	-1	1
1	-1	-1
-1	1	-1
1	1	1

Can a perceptron separate the +1 outputs from the -1 outputs?

Linear Inseparability

Perceptron with threshold units fails if classification task is not linearly separable

- Example: XOR
- No single line can separate the "yes" (+1) outputs from the "no" (-1) outputs!

Minsky and Papert's book showing such negative results put a damper on neural networks research for over a decade!

How do we deal with linear inseparability?

Idea 1: Multilayer Perceptrons

Removes limitations of single-layer networks

- Can solve XOR

Example: Two-layer perceptron that computes XOR

Output is +1 if and only if $x+y-2 \Theta(x+y-1.5)-0.5>0$

Multilayer Perceptron: What does it do?

Multilayer Perceptron: What does it do?

Multilayer Perceptron: What does it do?

Multilayer Perceptron: What does it do?

Back to Linear Separability

- Recall: Weighted sum in perceptron forms a linear hyperplane

$$
\sum_{i} w_{i} x_{i}+b=0
$$

- Due to threshold function, everything on one side of this hyperplane is labeled as class 1 (output $=+1$) and everything on other side is labeled as class 2 (output = -1)

Separating Hyperplane

- denotes +1 output
- denotes -1 output

Need to choose \mathbf{w} and b based on training data

Separating Hyperplanes

Different choices of \mathbf{w} and b give different hyperplanes

Which hyperplane is best?

- denotes +1 output
- denotes -1 output

How about the one right in the middle?

Intuitively, this boundary seems good

Avoids misclassification of new test points if they are generated from the same distribution as training points

Maximum Margin and Support Vector Machine

Why Maximum Margin?

- Robust to small perturbations of data points near boundary
- There exists theory showing this is best for generalization to new points
- Empirically works great

Support Vector Machines: The Math

Suppose the training data points $\left(\mathbf{x}_{i}, y_{i}\right)$ satisfy :
$\mathbf{w} \cdot \mathbf{x}_{i}+b \geq+1$ for $y_{i}=+1$
$\mathbf{w} \cdot \mathbf{x}_{i}+b \leq-1$ for $y_{i}=-1$
This can be rewritten as
$y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq+1$

$$
\begin{aligned}
& \text { We can always do this by rescaling } \\
& \mathbf{w} \text { and } b \text {, without affecting the } \\
& \text { separating hyperplane: } \\
& \qquad \mathbf{w} \cdot \mathbf{x}+b=0
\end{aligned}
$$

Estimating the Margin

The margin is given by (see Burges tutorial online):

Margin can be calculated based on expression for distance from a point to a line, see,
e.g., http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html

Learning the Maximum Margin Classifier

Want to maximize margin:
$2 /\|\mathbf{w}\|$ subject to $\quad y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq+1, \forall i$
Equivalent to finding w and b that minimize:
$\frac{1}{2}\|\mathbf{w}\|^{2}$ subject to $\quad y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq+1, \forall i$
Constrained optimization problem that can be solved using Lagrange multiplier method

Learning the Maximum Margin Classifier

Using Lagrange formulation and Lagrangian multipliers α_{i}, we get (see Burges tutorial online):
$\mathbf{w}=\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$
where the α_{i} are obtained by maximizing:
$\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right)$
subject to $\alpha_{i} \geq 0$ and $\sum_{i} \alpha_{i} y_{i}=0$
This is a quadratic programming (QP) problem

- A global maximum can always be found

Geometrical Interpretation

\mathbf{x}_{i} with non-zero α_{i} are called support vectors

What if data is not linearly separable?

Approach 1: Soft Margin SVMs

Allow errors ξ_{i} (deviations from margin)

Trade off margin with errors.

U_{1}	U_{2}	XOR
-1 -1 1 -1 -1 1 1 1	1	

Can we do something to the inputs?

Another Example

Not linearly separable

What if data is not linearly separable?

Approach 2: Map original input space to higherdimensional feature space; use linear classifier in higher-dim. space

Problem with high dimensional spaces

Computation in high-dimensional feature space can be costly
The high dimensional projection function $\varphi(x)$ may be too complicated to compute
Kernel trick to the rescue!

The Kernel Trick

Recall: SVM maximizes the quadratic function:
$\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right)$
subject to $\alpha_{i} \geq 0$ and $\sum_{i} \alpha_{i} y_{i}=0$

Insight:

The data points only appear as inner product

- No need to compute high-dimensional $\varphi(x)$ explicitly! Just replace inner product $x_{i} \cdot x_{j}$ with a kernel function $\mathcal{K}\left(x_{i}, x_{j}\right)=\varphi\left(x_{i}\right) \cdot \varphi\left(x_{j}\right)$
- E.g., Gaussian kernel

$$
K\left(x_{i}, x_{j}\right)=\exp \left(-\left\|x_{i}-x_{j}\right\|^{2 / 2} / 2 \sigma^{2}\right)
$$

- E.g., Polynomial kernel

$$
\mathcal{K}\left(x_{i}, x_{j}\right)=\left(x_{i} \cdot x_{j}+1\right)^{d}
$$

An Example for $\phi($.$) and K(. .$.

Suppose $\phi($.$) is given as follows$

$$
\phi\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)
$$

An inner product in the feature space is

$$
\left\langle\phi\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right), \phi\left(\left[\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]\right)\right\rangle=\left(1+x_{1} y_{1}+x_{2} y_{2}\right)^{2}\right.
$$

So, if we define the kernel function as follows, there is no need to compute $\phi($.$) explicitly$

$$
K(\mathbf{x}, \mathbf{y})=\left(1+x_{1} y_{1}+x_{2} y_{2}\right)^{2}
$$

This use of kernel function to avoid computing $\phi($.$) explicitly is known as the kernel trick$

Summary: Steps for Classification using SVMs

Prepare the data matrix
Select the kernel function to use
Select parameters of the kernel function

- You can use the values suggested by the SVM software, or use cross-validation
Execute the training algorithm and obtain the parameters α_{i}
Classify new data using the learned parameters

Face Detection using SVMs

	Test Set A		Test Set B	
	Detect Rate	False Alarms	Detect Rate	False Alarms
SVM	97.1%	4	74.2%	20
Sung ct al.	94.6%	2	74.2%	11

Kernel used: Polynomial of degree 2
(Osuna, Freund, Girosi, 1998)

K-Nearest Neighbors

A simple non-parametric classification algorithm Idea:

- Look around you to see how your neighbors classify data
- Classify a new data-point according to a majority vote of your k nearest neighbors

Distance Metric

How do we measure what it means to be a neighbor (what is "close")?

Appropriate distance metric depends on the problem Examples:
x discrete (e.g., strings): Hamming distance $d\left(x_{1}, x_{2}\right)=\#$ features on which x_{1} and x_{2} differ
x continuous (e.g., vectors over reals): Euclidean distance
$d\left(x_{1}, x_{2}\right)=\left\|x_{1}-x_{2}\right\|=$ square root of sum of squared differences between corresponding elements of data vectors

Example

Input Data: 2-D points (x_{1}, x_{2})
Two classes: C_{1} and C_{2}. New Data Point +

$K=4$: Look at 4 nearest neighbors of + 3 are in C_{1}, so classify + as C_{1}

Decision Boundary using K-NN

What if we want to learn continuous-valued functions?

Example: Learning to Drive

Can you use a neural network to drive?

Regression using Networks

We want networks that can learn a function

- Network maps real-valued inputs to real-valued output
- Idea: Given data, minimize errors between network's output and desired output by changing weights

Continuous output values \rightarrow Can't use binary threshold units anymore

To minimize errors, a differentiable output function is desirable

Sigmoidal Networks

$$
v=g\left(\mathbf{w}^{T} \mathbf{u}\right) \underbrace{}_{\text {Output }} \begin{aligned}
& \text { The most common } \\
& \text { activation function: } \\
& \text { Sigmoid function: } \\
& \text { Input nodes }
\end{aligned}
$$

Non-linear "squashing" function: Squashes input to be between 0 and 1. The parameter β controls the slope.

Gradient-Descent Learning ("Hill-Climbing")

Given training examples $\left(u^{m}, d^{m}\right)(m=1, \ldots, N)$, define an error function (cost function or "energy" function)

$$
E(\mathbf{w})=\frac{1}{2} \sum_{m}\left(d^{m}-v^{m}\right)^{2}
$$

where $v^{m}=g\left(\mathbf{w}^{T} \mathbf{u}^{m}\right)$

Gradient-Descent Learning ("Hill-Climbing")

Would like to change w so that $E(w)$ is minimized

- Gradient Descent: Change w in proportion to -dE/dw (why?)
$\mathbf{w} \rightarrow \mathbf{w}-\varepsilon \frac{d E}{d \mathbf{w}}$
$\frac{d E}{d \mathbf{w}}=-\sum_{m}\left(d^{m}-v^{m}\right) \frac{d v^{m}}{d \mathbf{w}}=-\sum_{m}\left(d^{m}-v^{m}\right){\underset{\sim}{\varphi}}^{g^{\prime}}\left(\mathbf{w}^{T} \mathbf{u}^{m}\right) \mathbf{u}^{m}$

"Stochastic" Gradient Descent

What if the inputs only arrive one-by-one?
Stochastic gradient descent approximates sum over all inputs with an "on-line" running sum:

$$
\begin{aligned}
& \mathbf{w} \rightarrow \mathbf{w}-\varepsilon \frac{d E_{1}}{d \mathbf{w}} \\
& \frac{d E_{1}}{d \mathbf{w}}=-\underbrace{\left(d^{m}-v^{m}\right)}_{\text {delta }=\text { error }} g^{\prime}\left(\mathbf{w}^{T} \mathbf{u}^{m}\right) \mathbf{u}^{m}
\end{aligned}
$$

Also known as the "delta rule" or "LMS (least mean square) rule"

But wait.....

Delta rule tells us how to modify the connections from input to output (one layer network)

- One layer networks are not that interesting (remember XOR?)
What if we have multiple layers?

Learning Multilayer Networks

$$
v_{i}=g\left(\sum_{j} W_{j i} g\left(\sum_{k} w_{k j} u_{k}\right)\right) \quad \text { Start with random weights } \mathbf{W}, \mathbf{w}
$$

Given input \mathbf{u}, network produces output \mathbf{v}

Find \mathbf{W} and \mathbf{w} that minimize total squared output error over all output units (labeled i):

$$
E(\mathbf{W}, \mathbf{w})=\frac{1}{2} \sum_{i}\left(d_{i}-v_{i}\right)^{2}
$$

Learning rule for hidden-output weights W:

$$
\begin{aligned}
W_{j i} & \rightarrow W_{j i}-\varepsilon \frac{d E}{d W_{j i}} \quad\{\text { gradient descent }\} \\
\frac{d E}{d W_{j i}} & =-\left(d_{i}-v_{i}\right) g^{\prime}\left(\sum_{j} W_{j i} x_{j}\right) x_{j} \quad\{\text { delta rule }\}
\end{aligned}
$$

Backpropagation: Hidden Weights

$$
E(\mathbf{W}, \mathbf{w})=\frac{1}{2} \sum_{i}\left(d_{i}-v_{i}\right)^{2}
$$

Learning rule for input-hidden weights w:

$$
\begin{aligned}
& w_{k j} \rightarrow w_{k j}-\varepsilon \frac{d E}{d w_{k j}} \quad \text { But }: \frac{d E}{d w_{k j}}=\frac{d E}{d x_{j}} \cdot \frac{d x_{j}}{d w_{k j}} \text { \{chain rule\} } \\
& \frac{d E}{d w_{k j}}=\left[-\sum_{m, i}\left(d_{i}^{m}-v_{i}^{m}\right) g^{\prime}\left(\sum_{j} W_{j i} x_{j}^{m}\right) W_{j i}\right] \cdot\left[g^{\prime}\left(\sum_{k} w_{k j} u_{k}^{m}\right) u_{k}^{m}\right]
\end{aligned}
$$

Learning to Drive using Backprop

One of the learned "road features" w_{i}

ALVINN (Autonomous Land Vehicle in a Neural Network)

CMU Navlab

Trained using human driver + camera images After learning:

Drove up to 70 mph on highway
Up to 22 miles without intervention Drove cross-country largely autonomously
(Pomerleau, 1992)

Another Example: Face Detection

Output between -1 (no face) and +1 (face present)
(Rowley, Baluja \& Kanade, 1998)

Face Detection Results

Demos: Pole Balancing and Backing up a Truck

(courtesy of Keith Grochow, CSE 599)

- Neural network learns to balance a pole on a cart
\Rightarrow System:
$\Rightarrow 4$ state variables: $\mathrm{x}_{\text {cart, }}, \mathrm{v}_{\text {cart }}, \theta_{\text {pole }}, \mathrm{v}_{\text {pole }}$
$\Rightarrow 1$ input: Force on cart
\Rightarrow Backprop Network:
\Rightarrow Input: State variables
\Rightarrow Output: New force on cart

- NN learns to back a truck into a loading dock
\Rightarrow System (Nyugen and Widrow, 1989):
\Rightarrow State variables: $\mathrm{x}_{\mathrm{cab}}, \mathrm{y}_{\mathrm{cab}}, \theta_{\text {cab }}$
$\Rightarrow 1$ input: new $\theta_{\text {steering }}$
\Rightarrow Backprop Network:
\Rightarrow Input: State variables
\Rightarrow Output: Steering angle $\theta_{\text {steering }}$

