CSEP 573

Logic, Reasoning, and Uncertainty

What's on our menu today?

Propositional Logic

- Resolution
- WalkSAT

Reasoning with First-Order Logic

- Unification
- Forward/Backward Chaining
- Resolution
- Wumpus again

Uncertainty

- Bayesian networks

Recall from Last Time: Inference/Proof Techniques

Two kinds (roughly):
Successive application of inference rules

- Generate new sentences from old in a sound way
- Proof = a sequence of inference rule applications
- Use inference rules as successor function in a standard search algorithm
- E.g., Resolution

Model checking

- Done by checking satisfiability: the SAT problem
- Recursive depth-first enumeration of models using heuristics: DPLL algorithm (sec. 7.6.1 in text)
- Local search algorithms (sound but incomplete)
e.g., randomized hill-climbing (WalkSAT)

Understanding Resolution

IDEA: To show $K B \neq \alpha$, use proof by contradiction,
i.e., show $K B \wedge \neg \alpha$ unsatisfiable

KB is in Conjunctive Normal Form (CNF): $K B$ is conjunction of clauses

$$
\text { E.g.. }(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)
$$

Clause
Literals

Generating new clauses

General Resolution inference rule (for CNF): where ζ_{i} and m_{j} are complementary literals ($\zeta_{\mathrm{i}}=\neg m_{\mathrm{j}}$)

$$
\text { E.g. . } \frac{P_{1,3} \vee P_{2,2} \quad \neg P_{2,2}}{P_{1,3}}
$$

Why this is sound

Proof of soundness of resolution inference rule:
$\neg\left(\zeta_{1} \vee \ldots \vee \varsigma_{i-1} \vee\left\{_{i+1} \vee \ldots \vee \int_{k}\right) \Rightarrow C_{i}\right.$
$\neg m_{\mathrm{j}} \Rightarrow\left(m_{1} \vee \ldots \vee m_{\mathrm{j}-1} \vee m_{\mathrm{j}+1} \vee \ldots \vee m_{\mathrm{n}}\right)$
$\neg\left(f_{i} \vee \ldots \vee \mathfrak{C}_{i-1} \vee \mathfrak{f}_{i+1} \vee \ldots \vee \mathfrak{K}_{k}\right) \Rightarrow\left(m_{1} \vee \ldots \vee m_{j-1} \vee\right.$ $\left.m_{j+1} \vee \ldots \vee m_{n}\right)$
(since $l_{\mathrm{i}}=\neg m_{\mathrm{j}}$)

Resolution example

KB

$$
\neg \alpha
$$

You got a literal and its negation
Empty clause What does this mean?

Recall that KB is a conjunction of all these clauses
Is $P_{1,2} \wedge \neg P_{1,2}$ satisfiable? No!
Therefore, $\mathrm{KB} \wedge \neg \alpha$ is unsatisfiable, i.e., $\mathrm{KB} \neq \alpha$

Back to Inference/Proof Techniques

Two kinds (roughly):
Successive application of inference rules

- Generate new sentences from old in a sound way
- Proof = a sequence of inference rule applications
- Use inference rules as successor function in a standard search algorithm
- E.g., Resolution

Model checking

- Done by checking satisfiability: the SAT problem
- Recursive depth-first enumeration of models using heuristics: DPLL algorithm (sec. 7.6.1 in text)
- Local search algorithms (sound but incomplete)
e.g., randomized hill-climbing (WalkSAT)

Why Satisfiability?

Why Satisfiability?

Recall: $K B \vDash a$ iff $K B \wedge \neg a$ is unsatisfiable
Thus, algorithms for satisfiability can be used for inference by showing $K B \wedge \neg a$ is unsatisfiable

BUT... showing a sentence is satisfiable (the SAT problem) is NP-complete!

Finding a fast algorithm for SAT automatically yields fast algorithms for hundreds of difficult (NPcomplete) problems

I really can't get \neg satisfaction

Satisfiability Examples

E.g. 2-CNF sentences (2 literals per clause):
$(\neg A \vee \neg B) \wedge(A \vee B) \wedge(A \vee \neg B)$
Satisfiable?
Yes (e.g., $A=$ true, $B=$ false)
$(\neg A \vee \neg B) \wedge(A \vee B) \wedge(A \vee \neg B) \wedge(\neg A \vee B)$
Satisfiable?
No

The WalkSAT algorithm

Local hill climbing search algorithm

- Incomplete: may not always find a satisfying assignment even if one exists

Evaluation function?
= Number of satisfied clauses
WalkSAT tries to maximize this function

Balance between greediness and randomness

The WalkSAT algorithm

function WalkSAT(clauses, p, max-flips) returns a satisfying model or failure inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a "random walk" move max-flips, number of flips allowed before giving up
model \leftarrow a random assignment of true/false to the symbols in clauses for $i=1$ to max-flips do
if model satisfies clauses then return model
clause \leftarrow a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses return failure

Greed

Hard Satisfiability Problems

Consider random 3-CNF sentences. e.g.,

$$
\begin{aligned}
& (\neg D \vee \neg B \vee C) \wedge(B \vee \neg A \vee \neg C) \wedge(\neg C \vee \neg B \vee E) \wedge \\
& (E \vee \neg D \vee B) \wedge(B \vee E \vee \neg C)
\end{aligned}
$$

$m=$ number of clauses
$n=$ number of symbols

- Hard instances of SAT seem to cluster near $\mathrm{m} / \mathrm{n}=4.3$ (critical point)

Hard Satisfiability Problems

Hard Satisfiability Problems

Median runtime for random 3-CNF sentences, $n=50$

What about me?

Putting it all together: Logical Wumpus Agents

A wumpus-world agent using propositional logic:

$$
\begin{aligned}
& \neg P_{1,1} \\
& \neg W_{1,1}
\end{aligned}
$$

For $x=1,2,3,4$ and $y=1,2,3,4$, add (with appropriate boundary conditions):

$$
\begin{aligned}
& B_{x, y} \Leftrightarrow\left(P_{x, y+1} \vee P_{x, y-1} \vee P_{x+1, y} \vee P_{x-1, y}\right) \\
& S_{x, y} \Leftrightarrow\left(W_{x, y+1} \vee W_{x, y-1} \vee W_{x+1, y} \vee W_{x-1, y}\right)
\end{aligned}
$$

$$
W_{1,1} \vee W_{1,2} \vee \ldots \vee W_{4,4} \quad \text { At least } 1 \text { wumpus }
$$

$$
\neg \mathbf{W}_{1,1} \vee \neg \mathbf{W}_{1,2}
$$

$$
\neg \mathbf{W}_{1,1} \vee \neg \mathbf{W}_{1,3}
$$

$\Rightarrow 64$ distinct proposition symbols, 155 sentences!

Limitations of propositional logic

KB contains "physics" sentences for every single square

For every time step t and every location $[x, y]$, we need to add to the KB:

$$
L_{x, y}^{\dagger} \wedge \text { FacingRight }^{\dagger} \wedge \text { Forward }^{\dagger} \Rightarrow L_{x+1, y}^{+1}
$$

Rapid proliferation of sentences!

What we'd like is a way to talk about objects and groups of objects, and to define relationships between them

Enter...First-Order Logic (aka "Predicate logic")

Propositional vs. First-Order

Propositional logic
Facts: $p, q, \neg r, \neg P_{1,1}, \neg W_{1,1}$ etc.

$$
(p \wedge q) \vee(\neg r \vee q \wedge p)
$$

First-order logic
Objects: George, Monkey2, Raj, 573Student1, etc.
Relations:
Curious(George), Curious(573Student1), ...
Smarter(573Student1, Monkey2)
Smarter(Monkey2, Raj)
Stooges(Larry, Moe, Curly)
PokesInTheEyes(Moe, Curly)
PokesInTheEyes(573Student1, Raj)

FOL Definitions

Constants: George, Monkey2, etc.

- Name a specific object.

Variables: X, Y.

- Refer to an object without naming it.

Functions: banana-of, grade-of, etc.

- Mapping from objects to objects.

Terms: banana-of(George), grade-of(stdnt1)

- Logical expressions referring to objects

Relations (predicates): Curious, PokesInTheEyes, etc.

- Properties of/relationships between objects.

More Definitions

Logical connectives: and, or, not, $\Rightarrow, \Leftrightarrow$
Quantifiers:

- \forall For all
(Universal quantifier)
- \exists There exists

Examples

- George is a monkey and he is curious Monkey(George) ^Curious(George)
- All monkeys are curious
$\forall \mathrm{m}$: Monkey (m) \Rightarrow Curious(m)
- There is a curious monkey $\exists \mathrm{m}$: Monkey (m) ^Curious(m)

Quantifier / Connective Interaction

$\forall x: \quad M(x) \wedge C(x)$

$$
\begin{aligned}
& M(x)==\text { " } x \text { is a monkey" } \\
& C(x)==\text { " } x \text { is curious" }
\end{aligned}
$$

"Everything is a curious monkey"
$\forall x: \quad M(x) \Rightarrow C(x)$
"All monkeys are curious"
$\exists x: \quad M(x) \wedge C(x)$
"There exists a curious monkey"
$\exists x: \quad M(x) \Rightarrow C(x)$
"There exists an object that is either a curious monkey, or not a monkey at all"

Nested Quantifiers: Order matters!

$$
\forall x \exists y \mathrm{P}(x, y) \neq \exists y \forall x \mathrm{P}(x, y)
$$

Examples

Every monkey has a tail
Every monkey shares a tail!
$\exists t \forall m$ has (m, t)

Try:
Everybody loves somebody vs. Someone is loved by everyone $\forall x \exists y$ loves $(x, y) \quad \exists y \forall x \operatorname{loves}(x, y)$

Semantics

Semantics = what the arrangement of symbols means in the world

Propositional logic

- Basic elements are variables
(refer to facts about the world)
- Possible worlds: mappings from variables to T/F

First-order logic

- Basic elements are terms
(logical expressions that refer to objects)
- Interpretations: mappings from terms to realworld elements.

Example: A World of Kings and Legs

Syntactic elements:
Constants:
Functions:
Richard John

Relations:
On(x, y) King(p)

Interpretation I

Interpretations map syntactic tokens to model elements

- Constants:

Functions:
Relations:

Interpretation II

- Constants:

Richard John

Functions:
LeftLeg(p)
On(x, y) King(p)

How Many Interpretations?

Two constants (and 5 objects in world)

- Richard, John (R, J, crown, RL, JL)
$5^{2}=25$ object mappings
One unary relation
King(x)
Infinite number of values for $x \rightarrow$ infinite mappings Even if we restricted x to: R, J, crown, RL, JL: $2^{5}=32$ unary truth mappings
Two binary relations
- Leg(x, y); On (x, y)

Infinite. But even restricting x, y to five objects still yields 2^{25} mappings for each binary relation

Satisfiability, Validity, \& Entailment

S is valid if it is true in all interpretations
S is satisfiable if it is true in some interp
S is unsatisfiable if it is false in all interps
S1 F S2 (S1 entails S2) if
For all interps where 51 is true,
S 2 is also true

Propositional. Logic vs. First Order

Ontology	Facts (P, Q,...)	Objects, Properties, Relations
Syntax	Atomic sentences Connectives	Variables \& quantification Sentences have structure: terms father-of(mother-of(X)))
Semantics	Truth Tables	Interpretations (Much more complicated)
Inference Algorithm	DPLL, WalkSAT Fast in practice	Unification Forward, Backward chaining Prolog, theorem proving
Complexity	NP-Complete	Semi-decidable

First-Order Wumpus World

Objects

- Squares, wumpuses, agents,
- gold, pits, stinkiness, breezes 4 Relations
- Square topology (adjacency), ${ }^{3}$
- Pits/breezes,
- Wumpus/stinkiness

S 5 S 5 Stench 5			PIT
$\underset{\substack{-0 \\ 0 \\ 2}}{\substack{5 \\ 0}}$	$\begin{gathered} \text { Breeze } \\ 555555 \\ 5 \text { stend } 5 \\ 111 \\ \text { Gold } \\ \text { G } \end{gathered}$	PIT	$=\text { Breeze= }$
$\begin{aligned} & 555555 \\ & \text { Stench }\} \end{aligned}$		$=\text { Breeze= }$	
x_{0}^{0} START	$=\text { Breeze }$	PIT	$=\text { Breeze= }$
1	2	3	4

Wumpus World: Squares

- Each square as an object:

Square $_{1,1}$, Square $_{1,2}, \ldots$,
Square $_{3,4}$ Square $_{4,4}$

- Square topology relations?

Adjacent(Square ${ }_{1,1}$, Square $_{2,1}$)
Adjacent(Square ${ }_{3,4}$, Square $_{4,4}$)
Better: Squares as lists:
[1, 1], [1,2], ..., [4, 4]
Square topology relations:
$\forall x, y, a, b: \operatorname{Adjacent}([x, y],[a, b]) \Leftrightarrow$
$[a, b] \epsilon\{[x+1, y],[x-1, y],[x, y+1],[x, y-1]\}$

Wumpus World: Pits

- Each pit as an object:

$$
\begin{aligned}
& \mathrm{Pit}_{1,1} \mathrm{Pit}_{1,2}, \ldots, \\
& \mathrm{Pit}_{3,4}, \mathrm{Pit}_{4,4}
\end{aligned}
$$

- Problem?

Not all squares have pits
List only the pits we have?

$$
\mathrm{Pit}_{3,1}, \mathrm{Pit}_{3,3}, \mathrm{Pit}_{4,4}
$$

Problem?
No reason to distinguish pits (same properties)
Better: pit as unary predicate

$$
\operatorname{Pit}(x)
$$

$\operatorname{Pit}([3,1]) ; \operatorname{Pit}([3,3]) ; \operatorname{Pit}([4,4])$ will be true

Wumpus World: Breezes

- Represent breezes like pits, as unary predicates:
Breezy (x)
"Squares next to pits are breezy":
$\forall x, y, a, b:$
$\operatorname{Pit}([x, y]) \wedge \operatorname{Adjacent}([x, y],[a, b]) \Rightarrow \operatorname{Breezy}([a, b])$

Wumpus World: Wumpuses

- Wumpus as object: Wumpus
- Wumpus home as unary predicate:
WumpusIn(x)
Better: Wumpus's home as a function: Home(Wumpus) references the wumpus's home square.

FOL Reasoning: Outline

Basics of FOL reasoning
Classes of FOL reasoning methods

- Forward \& Backward Chaining
- Resolution
- Compilation to SAT

Basics: Universal Instantiation

Universally quantified sentence:

- $\forall x$: Monkey $(x) \Rightarrow$ Curious(x)

Intutively, x can be anything:

- Monkey(George) \Rightarrow Curious(George)
- Monkey(473Student1) \Rightarrow Curious(473Student1)
- Monkey(DadOf(George)) \Rightarrow Curious(DadOf(George))

Formally:
$\frac{\forall x \text { s }}{\text { Subst }(\{x / \text { p\}, S) }} \quad \frac{\forall x \text { Monkey }(x) \rightarrow \text { Curious }(x)}{\text { Monkey(George) } \rightarrow \text { Curious(George) }}$
x is replaced with p in S, and the quantifier removed
x is replaced with George in S, and the quantifier removed

Basics: Existential Instantiation

Existentially quantified sentence:

- $\exists x$: Monkey $(x) \wedge \neg$ Curious (x)

Intutively, x must name something. But what?

- Monkey(George) ^ ᄀCurious(George) ???
- No! S might not be true for George!

Use a Skolem Constant :

- Monkey(K) ^ \rightarrow Curious(K)
...where K is a completely new symbol (stands for the monkey for which the statement is true)

Formally:
$\frac{\exists x S}{\operatorname{Subst}(\{x / K\}, S)}$
K is called a Skolem constant

Basics: Generalized Skolemization

 What if our existential variable is nested?- $\forall x \exists y$: Monkey $(x) \Rightarrow$ HasTail (x, y)
- $\forall x$: Monkey $(x) \Rightarrow$ HasTail $(x$, K_Tail) ???

Existential variables can be replaced by Skolem functions

- Args to function are all surrounding \forall vars
$\forall x: \operatorname{Monkey}(x) \Rightarrow \operatorname{HasTail}(x, f(x))$
"tail-of" function

Motivation for Unification

What if we want to use modus ponens?
Propositional Logic:

In First-Order Logic?
Monkey(x) \Rightarrow Curious(x)
Monkey(George)
????
Must "unify" x with George:
Need to substitute $\{x /$ George in Monkey $(x) \Rightarrow$ Curious (x) to infer Curious(George)

What is Unification?

 BERLIN WALL TUMBLES

Not this kind of unification...

What is Unification?

Match up expressions by finding variable values that make the expressions identical
Unify(x, y) returns most general unifier (MGU).
MGU places fewest restrictions on values of variables

Examples:

- Unify(city (x), city(seattle)) returns $\{x /$ seattle $\}$
- Unify(PokesInTheEyes(Moe,x), PokesInTheEyes(y,z)) returns $\{y /$ Moe, $z / x\}$
- \{y/Moe,x/Moe,z/Moe\} possible but not MGU

Unification and Substitution

Unification produces a mapping from variables to values (e.g., $\{x /$ kent, $y /$ seattle\})
Substitution: Subst(mapping, sentence) returns new sentence with variables replaced by values

- Subst(\{x/kent,y/seattle\}), connected(x, y)), returns connected(kent, seattle)

Unification Examples I

Unify(road(x, kent), road(seattle, y))

- Returns $\{x /$ seattle, $y / k e n t\}$
- When substituted in both expressions, the resulting expressions match:
- Each is (road(seattle, kent))

Unify(road(x, x), road(seattle, kent))

- Not possible - Fails!
- x can't be seattle and kent at the same time!

Unification Examples II

Unify(f(g(x, dog), y)), f(g(cat, y), dog)

- $\{x /$ cat, $y / \operatorname{dog}\}$

Unify $(f(g(x)), f(x))$

- Fails: no substitution makes them identical.
- E.g. $\{x / g(x)\}$ yields $f(g(g(x)))$ and $f(g(x))$ which are not identical!

Unification Examples III

Unify(f(g(cat, y), y), f(x, dog))
$\cdot\{x / g(c a t, d o g), \quad y / d o g\}$
Unify(f(g(y)), $f(x))$

- $\{x / g(y)\}$

Back to curious monkeys:
Monkey (x) \rightarrow Curious (x)
Monkey(George)

Unify and then use modus ponens = generalized modus ponens
("Lifted" version of modus ponens)

Inference I: Forward Chaining

The algorithm:

- Start with the KB
- Add any fact you can generate with GMP (i.e.. unify expressions and use modus ponens)
- Repeat until: goal reached or generation halts.

Inference II: Backward Chaining

The algorithm:

- Start with KB and goal.
- Find all rules whose results unify with goal: Add the premises of these rules to the goal list Remove the corresponding result from the goal list
- Stop when:

Goal list is empty (SUCCEED) or
Progress halts (FAIL)

Inference III: Resolution
 [Robinson 1965]

$\{(p \vee q),(\neg p \vee r \vee s)\} \quad \longrightarrow(q \vee r \vee s)$

Recall Propositional Case:

- Literal in one clause
- Its negation in the other
-Result is disjunction of other literals

$$
\begin{aligned}
& \text { First-Order Resolution } \\
& \text { [Robinson 1965] }
\end{aligned}
$$

$$
\{(p(x) \vee q(A), \quad(\neg p(B) \vee r(x) \vee s(y))\}
$$

Substitute MGU $\{x / B\}$ in all literals

- Literal in one clause
- Negation of something which unifies in other
- Result is disjunction of all other literals with substitution based on MGU

Inference using First-Order Resolution

As before, use "proof by contradiction" To show $K B=a$, show $K B \wedge \neg a$ unsatisfiable

Method

- Let S = KB ^ goal
- Convert S to clausal form
- Standardize apart variables (change names if needed)
- Move quantifiers to front, skolemize to remove \exists
- Replace \Rightarrow with \vee and \neg
- DeMorgan's laws to get CNF (ands-of-ors)
- Resolve clauses in S until empty clause (unsatisfiable) or no new clauses added

First-Order Resolution Example

Given

- $\forall x \operatorname{man}(x) \Rightarrow$ human (x)
- $\forall x$ woman $(x) \Rightarrow$ human (x)
- $\forall x \operatorname{singer}(x) \Rightarrow \operatorname{man}(x) \vee \operatorname{woman}(x)$
- singer(M)

Prove

- human(M)

CNF representation (list of clauses):
$[\neg \mathrm{m}(\mathrm{x}), \mathrm{h}(\mathrm{x})][\neg \mathrm{w}(\mathrm{y}), \mathrm{h}(\mathrm{y})][\neg \mathrm{s}(\mathrm{z}), \mathrm{m}(\mathrm{z}), \mathrm{w}(\mathrm{z})][\mathrm{s}(\mathrm{M})][\neg \mathrm{h}(\mathrm{M})]$

FOL Resolution Example

Back To the Wumpus World

Recall description:

- Squares as lists: $[1,1][3,4]$ etc.
- Square adjacency as binary predicate.
- Pits, breezes, stenches as unary predicates:

$$
\operatorname{Pit}(x)
$$

- Wumpus, gold, homes as functions: Home(Wumpus)

4	${ }_{\text {chen }}^{55555}$		$=\text { Breazé }$	PIT
3	$\underset{y=0}{\substack{50 \\ 0}}$		PIT	$=\text { Breeze = }$
2			= Breaze=	
1		$=$ Exeezé	PIT	$=\text { Ereeze= }$
	1	2	3	4

Back To the Wumpus World

"Squares next to pits are breezy":
$\forall x, y, a, b:$
$\operatorname{Pit}([x, y]) \wedge \operatorname{Adjacent}([x, y],[a, b]) \Rightarrow$ Breezy([a, b])
"Breezes happen only and always next to pits":

- $\forall a, b \operatorname{Breezy}([a, b]) \Leftrightarrow$
$\exists x, y \operatorname{Pit}([x, y]) \wedge \operatorname{Adjacent}([x, y],[a, b])$

That's nice but these algorithms assume complete knowledge of the world!

Hard to achieve in most cases

Enter...

Uncertainty

Example: Catching a flight

Suppose you have a flight at 6pm
When should you leave for SEATAC?

- What are the traffic conditions?
- How crowded is security?

Leaving time before 6pm
20 min
30 min
45 min
60 min
120 min
1 day

```
P(arrive-in-time)
    0 . 0 5
    0.25
    0 . 5 0
    0 . 7 5
    0 . 9 8
    0.99999
```

Probability Theory: Beliefs about events Utility theory: Representation of preferences

Decision about when to leave depends on both: Decision Theory = Probability + Utility Theory

What Is Probability?

Probability: Calculus for dealing with nondeterminism and uncertainty

Probabilistic model: Says how often we expect different things to occur

Where do the numbers for probabilities come from?

- Frequentist view (numbers from experiments)
- Objectivist view (numbers inherent properties of universe)
- Subjectivist view (numbers denote agent's beliefs)

Why Should You Care?

The world is full of uncertainty

- Logic is not enough
- Computers need to be able to handle uncertainty

Probability: new foundation for AI (\& CS!)
Massive amounts of data around today

- Statistics and CS are both about data
- Statistics lets us summarize and understand it
- Statistics is the basis for most learning

Statistics lets data do our work for us

Logic vs. Probability

Symbol: Q, R ...	Random variable: Q ...
Boolean values: T, F	Values/Domain: you specify e.g. \{heads, tails\}, [1,6]
State of the world: Assignment of T/F to all Q, R ... Z	Atomic event: a complete assignment of values to Q... Z - Mutually exclusive Exhaustive
	Prior probability aka Unconditional ly prob: P(Q)
	Joint distribution: Prob. of every atomic event

Types of Random Variables

Propositional or Boolean random variables
e.g., Cavity (do I have a cavity?)

Discrete random variables (finite or infinite)
e.g., Weather is one of 〈sunny, rain, cloudy, snow〉

Weather $=$ rain is a proposition
Values must be exhaustive and mutually exclusive
Continuous random variables (bounded or unbounded) e.g., Temp $=21.6$; also allow, e.g., Temp <22.0.

Arbitrary Boolean combinations of basic propositions

Axioms of Probability Theory

Just 3 are enough to build entire theory!

1. All probabilities between 0 and 1

$$
0 \leq P(A) \leq 1
$$

2. $P($ true $)=1$ and $P($ false $)=0$
3. Probability of disjunction of events is:

$$
P(A \vee B)=P(A)+P(B)-P(A \wedge B)
$$

Prior and Joint Probability

Prior or unconditional probabilities of propositions

$$
\text { e.g., } P(\text { Cavity }=\text { true })=0.2 \text { and } P(\text { Weather }=\text { sunny })=0.72
$$

correspond to belief prior to arrival of any (new) evidence
Probability distribution gives values for all possible assignments:

$$
\mathbf{P}(\text { Weather })=\begin{gathered}
\langle 0.72,0.1,0.08,0.1\rangle \\
\text { sunny, rain, cloudy, snow }
\end{gathered} \text { (normalized, i.e., sums to } 1 \text {) }
$$

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s
$\mathbf{P}($ Weather, Cavity $)=\mathrm{a} 4 \times 2$ matrix of values:

$$
\begin{array}{c|llll}
\text { Weather }= & \text { sunny } & \text { rain cloudy } & \text { snow } \\
\hline \text { Cavity }=\text { true } & 0.144 & 0.02 & 0.016 & 0.02 \\
\text { Cavity }=\text { false } & 0.576 & 0.08 & 0.064 & 0.08
\end{array}
$$

We will see later how any question can be answered by
the joint distribution

Conditional Probability

Conditional probabilities
e.g.. P(Cavity $=$ true | Toothache $=$ true $)=$ probability of cavity given toothache

Notation for conditional distributions:
P (Cavity | Toothache) $=2$-element vector of 2element vectors (2 P values when Toothache is true and $2 P$ values when false)

If we know more, e.g., cavity is also given (i.e. Cavity $=$ true), then we have
$\mathrm{P}($ cavity \mid toothache, cavity $)=1$
New evidence may be irrelevant, allowing simplification: $\mathrm{P}($ cavity \mid toothache, sunny $)=\mathrm{P}($ cavity \mid toothache $)=0.8$

Conditional Probability

$P(A \mid B)$ is the probability of A given B

 Assumes that B is the only info known. Defined as:$$
P(A \mid B)=\frac{P(A, B)}{P(B)}=\frac{P(A \wedge B)}{P(B)}
$$

Dilemma at the Dentist's

What is the probability of a cavity given a toothache? What is the probability of a cavity given the probe catches?

Probabilistic Inference by Enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ, sum the atomic events where it is true:

$$
P(\phi)=\sum_{\omega: \omega \equiv \phi} P(\omega)
$$

$$
\begin{aligned}
P(\text { toothache }) & =.108+.012+.016+.064 \\
& =.20 \text { or } 20 \%
\end{aligned}
$$

Inference by Enumeration

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

$P($ toothachevcavity $)=$?

$$
\begin{aligned}
& .2+.108+.012+.072+.008-(.108+.012) \\
&=.28
\end{aligned}
$$

Inference by Enumeration

$$
\begin{aligned}
P(\neg \text { cavity } \mid \text { toothache }) & \left.=\frac{P(\neg \text { cavity } \wedge \text { toothache })}{P(\text { toothache })} \leftarrow\right) \\
& =\frac{0.016+0.064}{0.108+0.012+0.016+0.064}=0.4
\end{aligned}
$$

Problems with Enumeration

Worst case time: $O\left(d^{n}\right)$
where $d=$ max arity of random variables

$$
\text { e.g., } d=2 \text { for Boolean (T/F) }
$$

and $n=$ number of random variables
Space complexity also $O\left(d^{n}\right)$

- Size of joint distribution

Problem: Hard/impossible to estimate all $O\left(d^{n}\right)$ entries for large problems

Independence

A and B are independent iff:

$$
\begin{aligned}
& P(A \mid B)=P(A) \\
& P(B \mid A)=P(B)
\end{aligned}
$$

These two constraints are logically equivalent

Therefore, if A and B are independent:

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}=P(A)
$$

$$
P(A \wedge B)=P(A) P(B)
$$

Independence

A and B are independent iff

\mathbf{P} (Toothache, Catch, Cavity, Weather) 2 values 4 values $=\mathbf{P}($ Toothache, Catch, Cavity $) \mathbf{P}($ Weather $)$

32 entries reduced to 12 ; for n independent biased coins, $2^{n} \rightarrow n$
Complete independence is powerful but rare What to do if it doesn't hold?

Conditional Independence

$\mathbf{P}($ Toothache, Cavity, Catch $)$ has $2^{3}-1=7$ independent entries
If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
(1) $P($ catch \mid toothache, cavity $)=P($ catch \mid cavity $)$

The same independence holds if I haven't got a cavity:
(2) $P($ catch \mid toothache,\neg cavity $)=P($ catch $\mid \neg$ cavity $)$

Catch is conditionally independent of Toothache given Cavity: $\mathbf{P}($ Catch \mid Toothache, Cavity $)=\mathbf{P}($ Catch \mid Cavity $)$

Instead of 7 entries, only need 5 (why?)

Conditional Independence II

$P($ catch | toothache, cavity $)=P($ catch | cavity $)$ $P($ catch | toothache, \neg cavity $)=P($ catch $\mid \neg$ cavity $)$
Equivalent statements:
$\mathbf{P}($ Toothache \mid Catch, Cavity $)=\mathbf{P}($ Toothache \mid Cavity $)$
$\mathbf{P}($ Toothache, Catch \mid Cavity $)=\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch \mid Cavity $)$
Why only 5 entries in table?
Write out full joint distribution using chain rule:
\mathbf{P} (Toothache, Catch, Cavity)
$=\mathbf{P}($ Toothache \mid Catch, Cavity $) \mathbf{P}($ Catch, Cavity $)$
$=\mathbf{P}($ Toothache \mid Catch, Cavity $) \mathbf{P}($ Catch \mid Cavity $) \mathbf{P}($ Cavity $)$
$=\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch \mid Cavity $) \mathbf{P}($ Cavity $)$
l.e., $2+2+1=5$ independent numbers (equations 1 and 2 remove 2)

Power of Cond. Independence

Often, using conditional independence reduces the storage complexity of the joint distribution from exponential to linear!!

Conditional independence is the most basic \& robust form of knowledge about uncertain environments.

Thomas Bayes

Publications:

Reverand Thomas Bayes Nonconformist minister (1702-1761)

Divine Benevolence, or an Attempt to Prove That the Principal End of the Divine Providence and Government is the Happiness of His Creatures (1731)

An Introduction to the Doctrine of Fluxions (1736)

An Essay Towards Solving a Problem in the Doctrine of Chances (1764)

Recall: Conditional Probability

$\mathrm{P}(x \mid y)$ is the probability of x given y
Assumes that y is the only info known.
Defined as:

$$
\begin{aligned}
& P(x \mid y)=\frac{P(x, y)}{P(y)} \\
& P(y \mid x)=\frac{P(y, x)}{P(x)}=\frac{P(x, y)}{P(x)}
\end{aligned}
$$

Therefore?

Bayes' Rule

$$
\begin{aligned}
P(x, y) & =P(x \mid y) P(y)=P(y \mid x) P(x) \\
& \Rightarrow \\
P(x \mid y) & =\frac{P(y \mid x) P(x)}{P(y)}
\end{aligned}
$$

What this useful for?

$$
P(\text { Cause } \mid E f f e c t)=\frac{P(E f f e c t \mid \text { Cause }) P(\text { Cause })}{P(\text { Effect })}
$$

Bayes rule is used to Compute Diagnostic Probability from Causal Probability

$$
P(\text { Cause } \mid E f f e c t)=\frac{P(E f f e c t \mid \text { Cause }) P(\text { Cause })}{P(E f f e c t)}
$$

E.g. let M be meningitis, S be stiff neck $P(M)=0.0001$. $P(S)=0.1$,
$P(S \mid M)=0.8$ (note: these can be estimated from patients)
$P(M \mid S)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.8 \times 0.0001}{0.1}=0.0008$
Note: posterior probability of meningitis still very small!

Normalization in Bayes' Rule

$$
\begin{aligned}
P(x \mid y) & =\frac{P(y \mid x) P(x)}{P(y)}=\alpha P(y \mid x) P(x) \\
\alpha & =\frac{1}{P(y)}=\frac{1}{\sum_{x} P(y, x)}=\frac{1}{\sum_{x} P(y \mid x) P(x)}
\end{aligned}
$$

α is called the normalization constant

Cond. Independence and the Naive Bayes Model

$\mathbf{P}($ Cavity \mid toothache \wedge catch $)$
$=\alpha \mathbf{P}($ toothache \wedge catch \mid Cavity $) \mathbf{P}($ Cavity $)$
$=\alpha \mathbf{P}($ toothache \mid Cavity $) \mathbf{P}($ catch \mid Cavity $) \mathbf{P}($ Cavity $)$
This is an example of a naive Bayes model:

$$
\mathbf{P}\left(\text { Cause }, E f f^{\text {fect }}, \ldots, E f \text { fect }_{n}\right)=\mathbf{P}(\text { Cause }) \Pi_{i} \mathbf{P}\left(\text { Effect }_{i} \mid \text { Cause }\right)
$$

Total number of parameters is linear in n

Example 1: State Estimation

Suppose a robot obtains measurement z
What is P(doorOpen/z)?

Causal vs. Diagnostic Reasoning

$P(o p e n / z)$ is diagnostic.
$P(z$ lopen $)$ is causal.
Often टeursal knowledge is easier to obtain.
Bayes rule aktews us to use causal knowledge:
count frequencies!

$$
P(\text { open } \mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z)}
$$

State Estimation Example

$$
\begin{aligned}
& P(z \mid \text { open })=0.6 \quad P(z \mid \neg \text { open })=0.3 \\
& P(\text { open })=P(\neg \text { open })=0.5
\end{aligned}
$$

$P($ open $\mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z \mid \text { open }) p(\text { open })+P(z \mid \neg \text { open }) p(\neg \text { open })}$
$P($ open $\mid z)=\frac{0.6 \cdot 0.5}{0.6 \cdot 0.5+0.3 \cdot 0.5}=\frac{2}{3}=0.67$

Measurement z raises the probability that the door is open from 0.5 to 0.67

Combining Evidence

Suppose our robot obtains another observation z_{2}.
How can we integrate this new information?
More generally, how can we estimate

$$
P\left(x \mid z_{1} \ldots z_{n}\right) ?
$$

Recursive Bayesian Updating

$$
P\left(x \mid \mathrm{Z}_{1}, \ldots, \mathrm{Z}_{n}\right)=\frac{P\left(\mathrm{Z}_{n} \mid x, \mathrm{Z}_{1}, \ldots, \mathrm{Z}_{n-1}\right) P\left(x \mid \mathrm{Z}_{1}, \ldots, \mathrm{Zn}_{n-1}\right)}{P\left(\mathrm{Z}_{n} \mid \mathrm{Z}_{1}, \ldots, \mathrm{Zn}_{n-1}\right)}
$$

Markov assumption: z_{n} is independent of $z_{1, \ldots,} z_{n-1}$ given x.

$$
\begin{aligned}
& P\left(x \mid Z_{1}, \ldots, Z_{n}\right)=\frac{P\left(Z_{n} \mid x, Z_{1}, \ldots, z_{n-1}\right) P\left(x \mid Z_{1}, \ldots, Z_{n-1}\right)}{P\left(Z_{n} \mid Z_{1}, \ldots, Z_{n-1}\right)} \\
&=\frac{P\left(Z_{n} \mid x\right) P\left(x \mid Z_{1}, \ldots, Z_{n-1}\right)}{P\left(Z_{n} \mid Z_{1}, \ldots, Z_{n-1}\right)} \\
&=\alpha P\left(Z_{n} \mid x\right) P\left(x \mid Z_{1}, \ldots, Z_{n-1}\right) \\
& \text { Recursive! }
\end{aligned}
$$

Incorporating a Second Measurement

$$
\begin{aligned}
& P\left(z_{2} \mid \text { open }\right)=0.5 \quad P\left(z_{2} \mid \neg \text { open }\right)=0.6 \\
& P\left(\text { open } \mid z_{1}\right)=2 / 3=0.67
\end{aligned}
$$

$$
P\left(\text { open } \mid z_{2}, z_{1}\right)=\frac{P\left(z_{2} \mid \text { open }\right) P\left(\text { open } \mid z_{1}\right)}{P\left(z_{2} \mid \text { open }\right) P\left(\text { open } \mid z_{1}\right)+P\left(z_{2} \mid \neg \text { open }\right) P\left(\neg \text { open } \mid z_{1}\right)}
$$

$$
=\frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3}+\frac{3}{5} \cdot \frac{1}{3}}=\frac{5}{8}=0.625
$$

z_{2} lowers the probability that the door is open.

These calculations seem laborious to do for each problem domain is there a general representation scheme for probabilistic inference?

Enter...Bayesian networks

What are Bayesian networks?

Simple, graphical notation for conditional independence assertions

Allows compact specification of full joint distributions
Syntax:

- a set of nodes, one per random variable
- a directed, acyclic graph (link \approx "directly influences")
- a conditional distribution for each node given its parents: $P\left(X_{i} \mid\right.$ Parents $\left.\left(X_{i}\right)\right)$

For discrete variables, conditional distribution = conditional probability table (CPT) = distribution over X_{i} for each combination of parent values

Back at the Dentist's

Topology of network encodes conditional independence assertions:

Weather is independent of the other variables
Toothache and Catch are conditionally independent of each other given Cavity

Example 2: Burglars and Earthquakes

You are at a "Done with the AI class" party.
Neighbor John calls to say your home alarm has gone off (but neighbor Mary doesn't).
Sometimes your alarm is set off by minor earthquakes.
Question: Is your home being burglarized?
Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Burglars and Earthquakes

Compact Representation of Probabilities in Bayesian Networks

A CPT for Boolean X_{i} with k Boolean parents has 2^{k} rows for the combinations of parent values

Each row requires one number p for $X_{i}=$ true (the other number for $X_{i}=$ false is just 1-p)

If each variable has no more than k parents, an n variable network requires $O\left(n \cdot 2^{k}\right)$ numbers

- This grows linearly with n vs. $O\left(2^{n}\right)$ for full joint distribution

For our network, $1+1+4+2+2=10$ numbers (vs. $2^{5}-1=$ 31)

Semantics
Full joint distribution is defined as product of local conditional distributions:

$$
\begin{gathered}
P\left(X_{1}, \ldots, X_{n}\right)=\pi_{i=1}^{n} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right) \\
\text { e.g.. } P(j \wedge m \wedge a \wedge \neg b \wedge \neg e) \\
=P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)
\end{gathered}
$$

Probabilistic Inference in BNs

The graphical independence representation yields efficient inference schemes

We generally want to compute

- $P(X \mid E)$ where E is evidence from sensory measurements etc. (known values for variables)
- Sometimes, may want to compute just $P(X)$

One simple algorithm:

- variable elimination (VE)

$P(B \mid J=$ true,$M=$ true $)$

$$
P(b \mid j, m)=\alpha P(b, j, m)=\alpha \Sigma_{e, a} P(b, j, m, e, a)
$$

Computing $P(B \mid J=t r u e, ~ M=t r u e)$

$$
\begin{aligned}
P(b \mid j, m) & =\alpha \Sigma_{e, a} P(b, j, m, e, a) \\
& =\alpha \Sigma_{e, a} P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a) \\
& =\alpha P(b) \Sigma_{e} P(e) \Sigma_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)
\end{aligned}
$$

Structure of Computation

Repeated computations \Rightarrow use dynamic programming?

Variable Elimination

A factor is a function from some set of variables to a specific value: e.g., f(E, A, Mary)

- CPTs are factors, e.g., $P(A / E, B)$ function of A, E, B

VE works by eliminating all variables in turn until there is a factor with only the query variable
To eliminate a variable:

1. join all factors containing that variable (like DBs/SQL), multiplying probabilities

- 2. sum out the influence of the variable on new factor
$P(b \mid j, m)=\alpha P(b) \Sigma_{e} P(e) \Sigma_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)$

Example of VE: $P(J)$

$$
\begin{aligned}
& \text { P(J) } \\
& =\Sigma_{\mathrm{M}, \mathrm{~B}, \mathrm{E}} \mathrm{P}(\mathrm{~J}, \mathrm{M}, \mathrm{~A}, \mathrm{~B}, \mathrm{E}) \\
& =\Sigma_{\text {M,AB,E }} P(J \mid A) P(M \mid A) P(B) P(A \mid B, E) P(E) \\
& =\Sigma_{A} \mathrm{P}(J \mid A) \Sigma_{M} \mathrm{P}(\mathrm{M} \mid \mathrm{A}) \Sigma_{\mathrm{B}} \mathrm{P}(\mathrm{~B}) \Sigma_{\mathrm{E}} \mathrm{P}(\mathrm{~A} \mid \mathrm{B}, \mathrm{E}) \mathrm{P}(\mathrm{E}) \\
& =\Sigma_{A} P(J \mid A) \Sigma_{M} P(M \mid A) \Sigma_{B} P(B) f(A, B) \\
& =\Sigma_{A} \mathrm{P}(\mathrm{~N} 1 \mid \mathrm{A}) \Sigma_{\mathrm{M}} \mathrm{P}(\mathrm{M} \mid \mathrm{A}) \mathrm{f} 2(\mathrm{~A}) \\
& =\Sigma_{A} \mathrm{P}(\mathrm{~J} \mid \mathrm{A}) \mathrm{f} 3(\mathrm{~A}) \\
& =f 4(\mathrm{~J})
\end{aligned}
$$

Other Inference Algorithms

Direct Sampling:

- Repeat N times:
- Use random number generator to generate sample values for each node
- Start with nodes with no parents
- Condition on sampled parent values for other nodes
- Count frequencies of samples to get an approximation to joint distribution
Other variants: Rejection sampling, likelihood weighting, Gibbs sampling and other MCMC methods (see text)
Belief Propagation: A "message passing" algorithm for approximating $P(X \mid e v i d e n c e)$ for each node variable X
Variational Methods: Approximate inference using distributions that are more tractable than original ones
(see text for details)

Summary

Bayesian networks provide a natural way to represent conditional independence
Network topology + CPTs = compact representation of joint distribution
Generally easy for domain experts to construct
BNs allow inference algorithms such as VE that are efficient in many cases

Next Time

Guest lecture by Dieter Fox on Applications of Probabilistic Reasoning
To Do: Work on homework \#2

