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What’s on our menu today?What’s on our menu today?
Propositional Logic

• Resolution
• WalkSAT

Reasoning with First-Order Logic
• Unification
• Forward/Backward Chaining
• Resolution
• Wumpus again

Uncertainty
• Bayesian networks
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Recall from Last Time: 
Inference/Proof Techniques

Recall from Last Time: 
Inference/Proof Techniques

Two kinds (roughly):
Successive application of inference rules

– Generate new sentences from old in a sound way
– Proof = a sequence of inference rule applications
– Use inference rules as successor function in a 

standard search algorithm
– E.g., Resolution

Model checking
– Done by checking satisfiability: the SAT problem
– Recursive depth-first enumeration of models using 
heuristics: DPLL algorithm (sec. 7.6.1 in text)

– Local search algorithms (sound but incomplete)
e.g., randomized hill-climbing (WalkSAT)

4

Understanding ResolutionUnderstanding Resolution
IDEA: To show KB ╞ α, use proof by 
contradiction, 
i.e., show KB ∧ ¬ α unsatisfiable

KB is in Conjunctive Normal Form (CNF):
KB is conjunction of clauses

E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

Literals

Clause
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Generating new clausesGenerating new clauses
General Resolution inference rule (for CNF):

l1 ∨… ∨ l k m1 ∨ … ∨ mn

l1 ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ l k ∨ m1 ∨ … ∨ mj-1 ∨ mj+1…∨ mn

where li and mj are complementary literals (l i = ¬mj)

E.g., P1,3 ∨ P2,2 ¬P2,2

P1,3

6

Why this is soundWhy this is sound
Proof of soundness of resolution inference rule: 

¬ (l1 ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ l k)  ⇒ l i
¬mj ⇒ (m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn)

¬ (li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk) ⇒ (m1 ∨ … ∨ mj-1 ∨
mj+1 ∨... ∨ mn)

(since l i = ¬mj)
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Resolution exampleResolution example

Empty clause

Recall that KB is a conjunction of all these clauses

Is P1,2 ∧ ¬P1,2 satisfiable? No!

Therefore, KB ∧ ¬ α is unsatisfiable, i.e., KB ╞ α

You got a literal and its negation
What does this mean?

KB ¬α

8

Back to Inference/Proof TechniquesBack to Inference/Proof Techniques

Two kinds (roughly):
Successive application of inference rules

– Generate new sentences from old in a sound way
– Proof = a sequence of inference rule applications
– Use inference rules as successor function in a 

standard search algorithm
– E.g., Resolution

Model checking
– Done by checking satisfiability: the SAT problem
– Recursive depth-first enumeration of models using 
heuristics: DPLL algorithm (sec. 7.6.1 in text)

– Local search algorithms (sound but incomplete)
e.g., randomized hill-climbing (WalkSAT)
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Why Satisfiability?Why Satisfiability?

Can’t get
¬satisfaction
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Why Satisfiability?Why Satisfiability?
Recall: KB ╞ α iff KB ∧ ¬α is unsatisfiable
Thus, algorithms for satisfiability can be used for 
inference by showing KB ∧ ¬α is unsatisfiable

BUT… showing a sentence is 
satisfiable (the SAT problem) 

is NP-complete!
Finding a fast algorithm for SAT 

automatically yields fast algorithms 
for hundreds of difficult (NP-

complete) problems

I really can’t get
¬satisfaction
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Satisfiability ExamplesSatisfiability Examples

E.g. 2-CNF sentences (2 literals per clause):

(¬A ∨ ¬B) ∧ (A ∨ B) ∧ (A ∨ ¬B)
Satisfiable?
Yes (e.g., A = true, B = false)

(¬A ∨ ¬B) ∧ (A ∨ B) ∧ (A ∨ ¬B) ∧ (¬A ∨ B)
Satisfiable?
No

12

The WalkSAT algorithmThe WalkSAT algorithm
Local hill climbing search algorithm

• Incomplete: may not always find a 
satisfying assignment even if one exists

Evaluation function? 
= Number of satisfied clauses

WalkSAT tries to maximize this function

Balance between greediness and randomness
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The WalkSAT algorithmThe WalkSAT algorithm

Greed Randomness

14

Hard Satisfiability ProblemsHard Satisfiability Problems
Consider random 3-CNF sentences. e.g.,
(¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨ ¬C) ∧ (¬C ∨ ¬B ∨ E) ∧
(E ∨ ¬D ∨ B) ∧ (B ∨ E ∨ ¬C)

m = number of clauses 
n = number of symbols

• Hard instances of SAT seem to cluster near 
m/n = 4.3 (critical point)
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Hard Satisfiability ProblemsHard Satisfiability Problems

16

Hard Satisfiability ProblemsHard Satisfiability Problems

Median runtime for random 3-CNF sentences, n = 50
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What about me?What about me?

18

Putting it all together:
Logical Wumpus Agents
Putting it all together:
Logical Wumpus Agents

A wumpus-world agent using propositional logic:
¬P1,1

¬W1,1

For x = 1, 2, 3, 4 and y = 1, 2, 3, 4, add 
(with appropriate boundary conditions):
Bx,y ⇔ (Px,y+1 ∨ Px,y-1 ∨ Px+1,y ∨ Px-1,y) 
Sx,y ⇔ (Wx,y+1 ∨ Wx,y-1 ∨ Wx+1,y ∨ Wx-1,y)

W1,1 ∨ W1,2 ∨ … ∨ W4,4

¬W1,1 ∨ ¬W1,2

¬W1,1 ∨ ¬W1,3

…
⇒ 64 distinct proposition symbols, 155 sentences!

At most 1 wumpus

At least 1 wumpus
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KB contains "physics" sentences for every single 
square

For every time step t and every location [x,y], 
we need to add to the KB:

Lx,y ∧ FacingRight t ∧ Forward t ⇒ Lx+1,y

Rapid proliferation of sentences!

Limitations of propositional logicLimitations of propositional logic

t+1t

What we’d like is a way to talk about 
objects and groups of objects, and to 

define relationships between them

What we’d like is a way to talk about 
objects and groups of objects, and to 

define relationships between them

Enter…First-Order Logic 

(aka “Predicate logic”)
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Propositional vs. First-OrderPropositional vs. First-Order
Propositional logic

Facts: p, q, ¬r, ¬P1,1, ¬W1,1 etc.
(p ∧ q) v (¬r v q ∧ p)

First-order logic
Objects: George, Monkey2, Raj, 573Student1, etc.
Relations:

Curious(George), Curious(573Student1), …
Smarter(573Student1, Monkey2)
Smarter(Monkey2, Raj)
Stooges(Larry, Moe, Curly)
PokesInTheEyes(Moe, Curly)
PokesInTheEyes(573Student1, Raj)

22

FOL Definitions
Constants: George,  Monkey2, etc.

• Name a specific object. 
Variables: X, Y.  

• Refer to an object without naming it.
Functions: banana-of, grade-of, etc.

• Mapping from objects to objects.
Terms: banana-of(George), grade-of(stdnt1)

• Logical expressions referring to objects
Relations (predicates): Curious, PokesInTheEyes, etc.

• Properties of/relationships between objects.
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Logical connectives:  and, or, not, ⇒, ⇔
Quantifiers:  

• ∀ For all (Universal quantifier)
• ∃ There exists  (Existential quantifier)

Examples
• George is a monkey and he is curious

• All monkeys are curious

• There is a curious monkey

More Definitions

Monkey(George) ∧ Curious(George)

∀m: Monkey(m) ⇒ Curious(m)

∃m: Monkey(m) ∧ Curious(m)

24

Quantifier / Connective 
Interaction

Quantifier / Connective 
Interaction

∀x:  M(x) ∧ C(x)

∀x:  M(x) ⇒C(x)

∃x:  M(x) ∧ C(x)

∃x:  M(x) ⇒ C(x)

M(x) == “x is a monkey”
C(x) == “x is curious”

“Everything is a curious monkey”

“All monkeys are curious”

“There exists a curious monkey”

“There exists an object that is either a curious
monkey, or not a monkey at all”
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Nested Quantifiers: 
Order matters!

Nested Quantifiers: 
Order matters!

Examples
Every monkey has a tail

∀x ∃y P(x,y)  ≠ ∃y ∀x P(x,y) 

∀m ∃t has(m,t)

Everybody loves somebody vs. Someone is loved by everyone

∃t ∀m has(m,t)

Every monkey shares a tail!

Try:

∃y ∀x loves(x, y)∀x ∃y loves(x, y)

26

Semantics
Semantics = what the arrangement of symbols means in 
the world

Propositional logic
• Basic elements are variables

(refer to facts about the world)
• Possible worlds: mappings from variables to T/F

First-order logic
• Basic elements are terms

(logical expressions that refer to objects)
• Interpretations: mappings from terms to real-
world elements. 
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Example: A World of Kings and LegsExample: A World of Kings and Legs

Syntactic elements:

Richard  John
Constants:           Functions:          Relations:

• LeftLeg(p) On(x,y)  King(p)

28

Interpretation IInterpretation I
Interpretations map syntactic tokens to model elements

• Constants:          Functions:           Relations:
•

Richard  John LeftLeg(p) On(x,y)  King(p)
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Interpretation IIInterpretation II
• Constants:       Functions:           Relations:
•Richard  John LeftLeg(p) On(x,y)  King(p)

30

Two constants (and 5 objects in world)

• Richard, John  (R, J, crown, RL, JL)

One unary relation
King(x)

Two binary relations
• Leg(x, y); On(x, y)

How Many Interpretations?How Many Interpretations?

52 = 25 object mappings

Infinite number of values for x infinite mappings
Even if we restricted x to: R, J, crown, RL, JL:

25 = 32 unary truth mappings

Infinite.  But even restricting x, y to five objects 
still yields 225 mappings for each binary relation
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Satisfiability, Validity, & 
Entailment

Satisfiability, Validity, & 
Entailment

S is valid if it is true in all interpretations

S is satisfiable if it is true in some interp

S is unsatisfiable if it is false in all interps

S1 ╞ S2 (S1 entails S2) if 
For all interps where S1 is true, 
S2 is also true

32

Propositional. Logic vs. First Order

Ontology

Syntax

Semantics

Inference
Algorithm

Complexity

Objects, 
Properties, 
Relations

Atomic sentences
Connectives

Variables & quantification
Sentences have structure: terms
father-of(mother-of(X)))

Unification
Forward, Backward chaining 
Prolog, theorem proving

DPLL, WalkSAT
Fast in practice

Semi-decidableNP-Complete

Facts (P, Q,…)

Interpretations 
(Much more complicated)Truth Tables
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First-Order Wumpus WorldFirst-Order Wumpus World
Objects

• Squares, wumpuses, agents,
• gold, pits, stinkiness, breezes

Relations
• Square topology (adjacency),
• Pits/breezes,
• Wumpus/stinkiness

34

Wumpus World: SquaresWumpus World: Squares

Better: Squares as lists:
[1, 1], [1,2], …, [4, 4]

Square topology relations:
∀x, y, a, b: Adjacent([x, y], [a, b]) 

[a, b] Є {[x+1, y], [x-1, y], [x, y+1], [x, y-1]}

• Each square as an object:
Square1,1, Square1,2, …, 
Square3,4, Square4,4

•Square topology relations?
Adjacent(Square1,1, Square2,1)
…
Adjacent(Square3,4, Square4,4)



18

35

Wumpus World: PitsWumpus World: Pits

List only the pits we have?
Pit3,1, Pit3,3, Pit4,4

Problem?
No reason to distinguish pits (same properties)

Better: pit as unary predicate
Pit(x)
Pit([3,1]); Pit([3,3]); Pit([4,4]) will be true

•Each pit as an object:
Pit1,1, Pit1,2, …, 
Pit3,4, Pit4,4

• Problem?
Not all squares have pits

36

Wumpus World: BreezesWumpus World: Breezes

“Squares next to pits are 
breezy”:
∀x, y, a, b:
Pit([x, y]) ∧ Adjacent([x, y], [a, b]) ⇒ Breezy([a, b])

• Represent breezes like pits,
as unary predicates:

Breezy(x)
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Wumpus World: WumpusesWumpus World: Wumpuses

Better: Wumpus’s home as a function:
Home(Wumpus) references the wumpus’s home square.

• Wumpus as object:
Wumpus

• Wumpus home as unary 
predicate:

WumpusIn(x)

38

FOL Reasoning: OutlineFOL Reasoning: Outline
Basics of FOL reasoning
Classes of FOL reasoning methods

• Forward & Backward Chaining 
• Resolution
• Compilation to SAT
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Universally quantified sentence:
• ∀x: Monkey(x) ⇒ Curious(x)

Intutively, x can be anything:
• Monkey(George) ⇒ Curious(George)

• Monkey(473Student1) ⇒ Curious(473Student1)

• Monkey(DadOf(George)) ⇒ Curious(DadOf(George))

Formally: (example)
∀x  S ∀x  Monkey(x) Curious(x)

Subst({x/p}, S) Monkey(George) Curious(George)

Basics: Universal InstantiationBasics: Universal Instantiation

x is replaced with p in S, 
and the quantifier removed

x is replaced with George in S, 
and the quantifier removed

40

Existentially quantified sentence:
• ∃x: Monkey(x) ∧ ¬Curious(x)

Intutively, x must name something.  But what?
• Monkey(George) ∧ ¬Curious(George)  ???
• No!  S might not be true for George!

Use a Skolem Constant :
• Monkey(K) ∧ ¬Curious(K)
…where K is a completely new symbol (stands for the monkey 

for which the statement is true)

Formally:
∃x  S
Subst({x/K}, S)

Basics: Existential InstantiationBasics: Existential Instantiation

K is called a Skolem constant
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Basics: Generalized SkolemizationBasics: Generalized Skolemization
What if our existential variable is nested?

• ∀x ∃y: Monkey(x) ⇒ HasTail(x, y)

• ∀x: Monkey(x) ⇒ HasTail(x, K_Tail) ???

Existential variables can be replaced by Skolem
functions

• Args to function are all surrounding ∀ vars

∀x: Monkey(x) ⇒ HasTail(x, f(x))

“tail-of” function

42

What if we want to use modus ponens?
Propositional Logic:
a ∧ b,     a ∧ b ⇒ c
c

In First-Order Logic?
Monkey(x) ⇒ Curious(x)
Monkey(George)
????

Must “unify” x with George: 
Need to substitute {x/George} in Monkey(x) ⇒ Curious(x) to 

infer Curious(George)

Motivation for UnificationMotivation for Unification
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What is Unification?What is Unification?

Not this kind of unification…

44

What is Unification?What is Unification?
Match up expressions by finding variable
values that make the expressions identical

Unify(x, y) returns most general unifier (MGU). 
MGU places fewest restrictions on values of variables 

Examples:

• Unify(city(x), city(seattle)) returns  {x/seattle}

• Unify(PokesInTheEyes(Moe,x), PokesInTheEyes(y,z)) 

returns {y/Moe,z/x} 
– {y/Moe,x/Moe,z/Moe} possible but not MGU
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Unification and SubstitutionUnification and Substitution
Unification produces a mapping from variables to 
values (e.g., {x/kent,y/seattle})

Substitution: Subst(mapping,sentence) returns new 
sentence with variables replaced by values

• Subst({x/kent,y/seattle}),connected(x, y)), 
returns connected(kent, seattle)

46

Unification Examples IUnification Examples I
Unify(road(x, kent), road(seattle, y))

• Returns {x / seattle,   y / kent}
• When substituted in both expressions, the 
resulting expressions match:

• Each is   (road(seattle, kent))

Unify(road(x, x), road(seattle, kent))
• Not possible – Fails! 
• x can’t be seattle and kent at the same time!
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Unification Examples IIUnification Examples II
Unify(f(g(x, dog), y)), f(g(cat, y), dog)

• {x / cat,  y / dog}
Unify(f(g(x)), f(x))

• Fails: no substitution makes them identical.
• E.g.  {x / g(x) } yields f(g(g(x))) and f(g(x))
which are not identical!

48

Unification Examples IIIUnification Examples III
Unify(f(g(cat, y), y), f(x, dog))

• {x / g(cat, dog),  y / dog}
Unify(f(g(y)), f(x))

• {x / g(y)}

Back to curious monkeys:

Unify and then use modus ponens =
generalized modus ponens 
(“Lifted” version of modus ponens)

Monkey(x) Curious(x)
Monkey(George)
Curious(George)
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Inference I: Forward Chaining Inference I: Forward Chaining 
The algorithm:

• Start with the KB
• Add any fact you can generate with GMP (i.e., 

unify expressions and use modus ponens)
• Repeat until: goal reached or generation halts.

50

Inference II: Backward 
Chaining 

Inference II: Backward 
Chaining 

The algorithm:
• Start with KB and goal.
• Find all rules whose results unify with goal:

Add the premises of these rules to the goal list
Remove the corresponding result from the goal list

• Stop when:
Goal list is empty (SUCCEED) or
Progress halts (FAIL)
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Inference III: Resolution
[Robinson 1965]

Inference III: Resolution
[Robinson 1965]

{ (p ∨ q), (¬ p ∨ r ∨ s) } (q ∨ r ∨ s)

Recall Propositional Case: 
•Literal in one clause
•Its negation in the other
•Result is disjunction of other literals

52

First-Order Resolution
[Robinson 1965]

First-Order Resolution
[Robinson 1965]

{ (p(x) ∨ q(A),   (¬ p(B) ∨ r(x) ∨ s(y)) }  

(q(A) ∨ r(B) ∨ s(y))

• Literal in one clause
• Negation of something which unifies in other
• Result is disjunction of all other literals with 

substitution based on MGU

Substitute
MGU {x/B} 
in all 
literals
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Inference using First-Order 
Resolution

Inference using First-Order 
Resolution

As before, use “proof by contradiction”
To show KB╞ α, show KB ∧ ¬α unsatisfiable

Method
• Let S = KB ∧ ¬goal
• Convert S to clausal form

– Standardize apart variables (change names if needed)
– Move quantifiers to front, skolemize to remove ∃
– Replace ⇒ with ∨ and ¬
– DeMorgan’s laws to get CNF (ands-of-ors)

• Resolve clauses in S until empty clause 
(unsatisfiable) or no new clauses added

54

First-Order Resolution 
Example

First-Order Resolution 
ExampleGiven

• ∀x man(x) ⇒ human(x)
• ∀x woman(x) ⇒ human(x)
• ∀x singer(x) ⇒ man(x) ∨ woman(x)
• singer(M)

Prove
• human(M)

CNF representation (list of clauses):
[¬m(x),h(x)]  [¬w(y), h(y)]  [¬s(z),m(z),w(z)] [s(M)] [¬h(M)] 
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FOL Resolution ExampleFOL Resolution Example
[¬m(x),h(x)]  [¬w(y), h(y)]  [¬s(z),m(z),w(z)]        [s(M)]   [¬h(M)] 

[m(M),w(M)]

[w(M), h(M)]

[]

[h(M)]

56

Back To the Wumpus WorldBack To the Wumpus World
Recall description:

• Squares as lists: [1,1] [3,4] etc.
• Square adjacency as binary predicate.
• Pits, breezes, stenches as unary predicates: 

Pit(x)
• Wumpus, gold, homes as functions: 

Home(Wumpus)
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Back To the Wumpus WorldBack To the Wumpus World
“Squares next to pits are breezy”:

∀x, y, a, b: 
Pit([x, y]) ∧ Adjacent([x, y], [a, b]) ⇒

Breezy([a, b])

“Breezes happen only and always next to pits”:
• ∀a,b Breezy([a, b]) 

∃ x,y Pit([x, y]) ∧ Adjacent([x, y], [a, b])

That’s nice but these algorithms 
assume complete knowledge of the 

world!

Hard to achieve in most cases

That’s nice but these algorithms 
assume complete knowledge of the 

world!

Hard to achieve in most cases
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Enter…
Uncertainty

60

Example: Catching a flightExample: Catching a flight
Suppose you have a flight at 6pm
When should you leave for SEATAC?

• What are the traffic conditions?
• How crowded is security?
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Leaving time before 6pm P(arrive-in-time)
20 min 0.05
30 min 0.25
45 min 0.50
60 min 0.75
120 min 0.98
1 day 0.99999

Probability Theory: Beliefs about events
Utility theory: Representation of preferences

Decision about when to leave depends on both:
Decision Theory = Probability + Utility Theory

62

What Is Probability?What Is Probability?
Probability: Calculus for dealing with nondeterminism and 
uncertainty

Probabilistic model: Says how often we expect different 
things to occur

Where do the numbers for probabilities come from?
• Frequentist view (numbers from experiments)
• Objectivist view (numbers inherent properties of universe)
• Subjectivist view (numbers denote agent’s beliefs)
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Why Should You Care?Why Should You Care?
The world is full of uncertainty 

• Logic is not enough
• Computers need to be able to handle uncertainty

Probability: new foundation for AI (& CS!)

Massive amounts of data around today
• Statistics and CS are both about data
• Statistics lets us summarize and understand it
• Statistics is the basis for most learning

Statistics lets data do our work for us

64

Logic     vs. ProbabilityLogic     vs. Probability

Symbol: Q, R … Random variable: Q …

Boolean values: T, F Values/Domain: you specify
e.g. {heads, tails}, [1,6]

State of the world: 
Assignment of T/F to 
all Q, R … Z

Atomic event: a complete
assignment of values to Q… Z
• Mutually exclusive
• Exhaustive

Prior probability aka
Unconditional prob: P(Q)
Joint distribution: Prob.
of every atomic event



33

65

Types of Random VariablesTypes of Random Variables

66

Axioms of Probability TheoryAxioms of Probability Theory
Just 3 are enough to build entire theory!

1. All probabilities between 0 and 1
0 ≤ P(A) ≤ 1

2. P(true) = 1   and P(false) = 0
3. Probability of  disjunction of events is:

)()()()( BAPBPAPBAP ∧−+=∨

A
B

A ∧ B

Tr
ue
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Prior and Joint ProbabilityPrior and Joint Probability

We will see later how any question can be answered by 
the joint distribution

0.2

sunny, rain, cloudy, snow

68

Conditional ProbabilityConditional Probability
Conditional probabilities

e.g., P(Cavity = true | Toothache = true) = 
probability of cavity given toothache

Notation for conditional distributions:
P(Cavity | Toothache) = 2-element vector of 2-
element vectors (2 P values when Toothache is true 
and 2 P values when false)

If we know more, e.g., cavity is also given (i.e. Cavity = 
true), then we have

P(cavity | toothache, cavity) = ?

New evidence may be irrelevant, allowing simplification:
P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8

1
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Conditional Probability Conditional Probability 
P(A | B) is the probability of A given B
Assumes that B is the only info known.
Defined as:

)(
)(

)(
),()|(

BP
BAP

BP
BAPBAP ∧==

A        BA∧B

70

Dilemma at the Dentist’sDilemma at the Dentist’s

What is the probability of a cavity given a toothache?
What is the probability of a cavity given the probe catches?
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P(toothache) = ?

Probabilistic Inference by EnumerationProbabilistic Inference by Enumeration

P(toothache)= .108+.012+.016+.064
= .20  or 20%

72

Inference by EnumerationInference by Enumeration

P(toothache∨cavity) = ? 
.2 +   ?.108 + .012 + .072 + .008 - (.108+.012)

= .28



37

73

Inference by EnumerationInference by Enumeration

74

Problems with EnumerationProblems with Enumeration
Worst case time: O(dn)

where d = max arity of random variables  
e.g., d = 2 for Boolean (T/F)

and n = number of random variables
Space complexity also O(dn)  

• Size of joint distribution
Problem: Hard/impossible to estimate all O(dn) 
entries for large problems
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IndependenceIndependence
A and B are independent iff:

)()|( APBAP =

)()|( BPABP =

)(
)(

)()|( AP
BP

BAPBAP =∧=

)()()( BPAPBAP =∧

These two constraints are 
logically equivalent

Therefore, if A and B are independent:

76

IndependenceIndependence

Complete independence is powerful but rare
What to do if it doesn’t hold?

4 values
2 values
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Conditional IndependenceConditional Independence

Instead of 7 entries, only need 5 (why?)

78

Conditional Independence IIConditional Independence II
P(catch | toothache,  cavity) = P(catch |  cavity)
P(catch | toothache,¬cavity) = P(catch |¬cavity)

Why only 5 entries in table?
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Power of Cond. IndependencePower of Cond. Independence
Often, using conditional independence reduces the 
storage complexity of the joint distribution from 
exponential to linear!!

Conditional independence is the most basic & robust 
form of knowledge about uncertain environments.

80

Thomas BayesThomas Bayes

Publications:
Divine Benevolence, or an 
Attempt to Prove That 
the Principal End of the 
Divine Providence and 
Government is the 
Happiness of His 
Creatures (1731)

An Introduction to the 
Doctrine of Fluxions
(1736)

An Essay Towards Solving 
a Problem in the 
Doctrine of Chances
(1764) 

Reverand Thomas Bayes
Nonconformist minister

(1702-1761)
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Recall: Conditional Probability Recall: Conditional Probability 
P(x | y) is the probability of x given y
Assumes that y is the only info known.
Defined as:
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Therefore?
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Bayes’ RuleBayes’ Rule
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What this useful for?
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Bayes’ rule is used to Compute Diagnostic
Probability from Causal Probability

Bayes’ rule is used to Compute Diagnostic
Probability from Causal Probability

E.g. let M be meningitis, S be stiff neck
P(M) = 0.0001, 
P(S) = 0.1, 
P(S|M)= 0.8    (note: these can be estimated from patients)

P(M|S) =

84

Normalization in Bayes’ RuleNormalization in Bayes’ Rule
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α is called the normalization constant
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Cond. Independence and the Naïve Bayes ModelCond. Independence and the Naïve Bayes Model

86

Example 1: State EstimationExample 1: State Estimation

Suppose a robot obtains measurement z
What is P(doorOpen|z)?
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Causal vs. Diagnostic ReasoningCausal vs. Diagnostic Reasoning

P(open|z) is diagnostic.
P(z|open) is causal.
Often causal knowledge is easier to obtain.
Bayes rule allows us to use causal knowledge:

)(
)()|()|( zP

openPopenzPzopenP =

count frequencies!
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State Estimation ExampleState Estimation Example

P(z|open) = 0.6 P(z|¬open) = 0.3
P(open) = P(¬open) = 0.5

67.0
3
2
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==
⋅+⋅

⋅=

¬¬+
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openpopenzPopenpopenzP
openPopenzPzopenP

Measurement z raises the probability that 
the door is open from 0.5 to 0.67
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Combining EvidenceCombining Evidence

Suppose our robot obtains another observation z2.

How can we integrate this new information?

More generally, how can we estimate
P(x| z1...zn )?
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Recursive Bayesian UpdatingRecursive Bayesian Updating
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Recursive!
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Incorporating a Second Measurement Incorporating a Second Measurement 

P(z2|open) = 0.5 P(z2|¬open) = 0.6
P(open|z1)=2/3 = 0.67
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• z2 lowers the probability that the door is open.
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These calculations seem laborious 
to do for each problem domain –

is  there a general 
representation scheme for 

probabilistic inference?

Yes!
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Enter…Bayesian networksEnter…Bayesian networks

94

What are Bayesian networks?What are Bayesian networks?
Simple, graphical notation for conditional independence 
assertions

Allows compact specification of full joint distributions

Syntax:
• a set of nodes, one per random variable
• a directed, acyclic graph (link ≈ "directly influences")
• a conditional distribution for each node given its parents:

P (Xi | Parents (Xi))

For discrete variables, conditional distribution = 
conditional probability table (CPT) = distribution over 
Xi for each combination of parent values
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Back at the Dentist’sBack at the Dentist’s
Topology of network encodes conditional independence 
assertions:

Weather is independent of the other variables
Toothache and Catch are conditionally independent of 
each other given Cavity
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Example 2: Burglars and EarthquakesExample 2: Burglars and Earthquakes
You are at a “Done with the AI class” party.
Neighbor John calls to say your home alarm has gone 
off (but neighbor Mary doesn't). 

Sometimes your alarm is set off by minor earthquakes.

Question: Is your home being burglarized?

Variables: Burglary, Earthquake, Alarm, JohnCalls, 
MaryCalls

Network topology reflects "causal" knowledge:
• A burglar can set the alarm off
• An earthquake can set the alarm off
• The alarm can cause Mary to call
• The alarm can cause John to call
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Burglars and EarthquakesBurglars and Earthquakes

98

Compact Representation of Probabilities in 
Bayesian Networks

Compact Representation of Probabilities in 
Bayesian Networks

A CPT for Boolean Xi with k Boolean parents has 2k

rows for the combinations of parent values

Each row requires one number p for Xi = true
(the other number for Xi = false is just 1-p)

If each variable has no more than k parents, an n-
variable network requires O(n · 2k) numbers

• This grows linearly with n vs. O(2n) for full joint 
distribution

For our network, 1+1+4+2+2 = 10 numbers (vs. 25-1 = 
31)
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SemanticsSemantics
Full joint distribution is defined as product of local 
conditional distributions:

P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))

e.g., P(j ∧ m ∧ a ∧ ¬b ∧ ¬e)
= P (j | a) P (m | a) P (a | ¬b, ¬e) P (¬b) P (¬e)

n

100

Probabilistic Inference in BNsProbabilistic Inference in BNs
The graphical independence representation yields 
efficient inference schemes

We generally want to compute 

• P(X|E) where E is evidence from sensory measurements etc. 
(known values for variables)

• Sometimes, may want to compute just P(X)
One simple algorithm: 

• variable elimination (VE)
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P(B | J=true, M=true)P(B | J=true, M=true)

Earthquake Burglary

Alarm

MaryJohn

P(b|j,m) = α P(b,j,m) = α Σe,a P(b,j,m,e,a)
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Computing P(B | J=true, M=true)Computing P(B | J=true, M=true)

Earthquake Burglary

Alarm

MaryJohn

P(b|j,m) = α Σe,a P(b,j,m,e,a)
= α Σe,a P(b) P(e) P(a|b,e) P(j|a) P(m|a)
= α P(b) Σe P(e) Σa P(a|b,e)P(j|a)P(m|a)
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Structure of ComputationStructure of Computation

Repeated computations ⇒ use dynamic programming?

104

Variable EliminationVariable Elimination
A factor is a function from some set of variables to a 
specific value: e.g., f(E,A,Mary)

• CPTs are factors, e.g., P(A|E,B) function of 
A,E,B

VE works by eliminating all variables in turn until     
there is a factor with only the query variable

To eliminate a variable:
1. join all factors containing that variable (like 

DBs/SQL), multiplying probabilities
• 2. sum out the influence of the variable on new 
factor

P(b|j,m) = α P(b) Σe P(e) Σa P(a|b,e)P(j|a)P(m|a)
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Example of VE: P(J)Example of VE: P(J)

Earthqk Burgl

Alarm

MJ

P(J)

= ΣM,A,B,E P(J,M,A,B,E) 

= ΣM,A,B,E P(J|A)P(M|A) P(B)P(A|B,E)P(E)

= ΣAP(J|A) ΣMP(M|A) ΣBP(B) ΣEP(A|B,E)P(E)

= ΣAP(J|A) ΣMP(M|A) ΣBP(B) f1(A,B)

= ΣAP(N1|A) ΣMP(M|A) f2(A)

= ΣAP(J|A) f3(A)

= f4(J)
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Other Inference AlgorithmsOther Inference Algorithms
Direct Sampling:

• Repeat N times:
– Use random number generator to generate sample values for each 

node
– Start with  nodes with no parents
– Condition on sampled parent values for other nodes

• Count frequencies of samples to get an approximation to 
joint distribution

Other variants: Rejection sampling, likelihood weighting, Gibbs sampling 
and other MCMC methods (see text)

Belief Propagation: A “message passing” algorithm for approximating 
P(X|evidence) for each node variable X

Variational Methods: Approximate inference using distributions 
that are more tractable than original ones

(see text for details)
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SummarySummary
Bayesian networks provide a natural way to represent 
conditional independence

Network topology + CPTs = compact representation 
of joint distribution

Generally easy for domain experts to construct
BNs allow inference algorithms such as VE that are 
efficient in many cases 
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Next TimeNext Time
Guest lecture by Dieter Fox on 
Applications of Probabilistic Reasoning

To Do: Work on homework #2

Bayes
rules!


