

Propositional vs. First-Order

Propositional logic Facts: p, q, $\neg r$, $\neg P_{1,1}$, $\neg W_{1,1}$ etc. ($p \land q$) v ($\neg r \lor q \land p$) First-order logic Objects: George, Monkey2, Raj, 573Student1, etc. Relations: Curious(George), Curious(573Student1), ... Smarter(573Student1, Monkey2) Smarter(Monkey2, Raj) Stooges(Larry, Moe, Curly) PokesInTheEyes(Moe, Curly) PokesInTheEyes(573Student1, Raj)

Nested Qu Order r	uantifiers: natters!
$\forall x \exists y P(x,y)$	$\neq \exists y \forall x P(x,y)$
Examples Every monkey has a tail	Every monkey <i>shares</i> a tail!
∀ <i>m∃t</i> has(<i>m,t</i>)	$\exists t \forall m has(m,t)$
Try:	
Everybody loves somebody <i>vs.</i>	Someone is loved by everyone
$\forall x \exists y \ loves(x, y)$	$\exists y \forall x \ loves(x, y)_{25}$

Prop	ositional. Log	gic vs. First Order
Ontology	Facts (P, Q,)	Objects, Properties, Relations
Syntax	Atomic sentences Connectives	Variables & quantification Sentences have structure: terms father-of(mother-of(X)))
Semantics	Truth Tables	Interpretations (Much more complicated)
Inference Algorithm	DPLL, WalkSAT Fast in practice	Unification Forward, Backward chaining Prolog, theorem proving
Complexity	NP-Complete	Semi-decidable

Leaving time before 6pm	P(arrive-in-time)
20 min	0.05
30 min	0.25
45 min	0.50
60 min	0.75
120 min	0.98
1 day	0.99999
Decision about when to le	ave depends on both:
Decision Theory = Probab	ility + Utility Theory

Logic v	s. Probability
Symbol: Q, R	Random variable: Q
Boolean values: T, F	Values/Domain: you specify e.g. {heads, tails}, [1,6]
State of the world: Assignment of T/F to all Q, R Z	Atomic event: a complete assignment of values to Q Z • Mutually exclusive • Exhaustive
	Prior probability aka Unconditional prob: P(Q)
	Joint distribution: Prob. of every atomic event

Prior and Joint Probability

Prior or unconditional probabilities of propositions

e.g., P(Cavity = true) = 0.2 and P(Weather = sunny) = 0.72correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:

 $\mathbf{P}(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle \text{ (normalized, i.e., sums to 1)}$

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s

 $\mathbf{P}(Weather, Cavity) = a \ 4 \times 2 \text{ matrix of values:}$

Weather =sunnyraincloudysnowCavity = true0.1440.020.0160.02Cavity = false0.5760.080.0640.08

We will see later how any question can be answered by the joint distribution

	toot	hache	⊐ too	othache
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

toothachetoothache \neg toothachecatch \neg catch \neg catchcavity.108.012.072.008 \neg cavity.016.064.144.576C(toothache v cavity) = ?	Infer	rence	e by Ei	nume	ration
catch \neg catchcatch \neg catchcavity.108.012.072.008 \neg cavity.016.064.144.576C(toothachevcavity) = ?		toothache		<i>¬ toothache</i>	
cavity .108 .012 .072 .008 ¬ cavity .016 .064 .144 .576 P(toothache∨cavity) = ?		catch	\neg catch	catch	\neg catch
¬ cavity .016 .064 .144 .576 P(toothache∨cavity) = ?	cavity	.108	.012	.072	.008
P(toothachevcavity) = ?	¬ cavity	.016	.064	.144	.576
	P(tooth	ache	/cavity)	= ?	0.0 (10.0
	=	.28			
= .28					

Conditional Independence P(Toothache, Cavity, Catch) has $2^3 - 1 = 7$ independent entries If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache: (1) P(catch|toothache, cavity) = P(catch|cavity)The same independence holds if I haven't got a cavity: (2) $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$ Catch is conditionally independent of Toothache given Cavity: P(Catch|Toothache, Cavity) = P(Catch|Cavity)Instead of 7 entries, only need 5 (why?)

77

Conditional Independence II P(catch | toothache, cavity) = P(catch | cavity) p(catch | toothache, -, cavity) = P(catch | -, cavity) P(catch | toothache, -, cavity) = P(catch | -, cavity) P(Toothache|Catch, Cavity) = P(Toothache|Cavity) P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity) Mite out full joint distribution using chain rule: P(Toothache, Catch, Cavity) = P(Toothache|Catch, Cavity)P(Catch, Cavity) = P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity) = P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity) = P(Toothache|Cavity)P(Catch|Cavity)P(Cavity) I.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

Bayes' rule is used to Compute <u>Diagnostic</u> $P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$ **F.g. let M be meningitis, S be stiff neck** P(M) = 0.0001, P(S) = 0.1, P(S) = 0.8 (note: these can be estimated from patients) $P(M|S) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$ Note: posterior probability of meningitis still very small!

<equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

 $P(x | z_{1},...,z_{n}) = \frac{P(z_{n} | x, z_{1},..., z_{n-1}) P(x | z_{1},..., z_{n-1})}{P(z_{n} | z_{1},..., z_{n-1})}$ Markov assumption: z_{n} is independent of $z_{1},...,z_{n-1}$ given x. $P(x | z_{1},...,z_{n}) = \frac{P(z_{n} | x, z_{1},..., z_{n-1}) P(x | z_{1},..., z_{n-1})}{P(z_{n} | z_{1},..., z_{n-1})}$ $= \frac{P(z_{n} | x) P(x | z_{1},..., z_{n-1})}{P(z_{n} | z_{1},..., z_{n-1})}$ $= \alpha P(z_{n} | x) P(x | z_{1},..., z_{n-1})$ Recursive!

Incorporating a Second Measurement

$$P(z_{2}|open| = 0.5 \qquad P(z_{2}|\neg open| = 0.6 P(open|z_{1}) = 2/3 = 0.67$$

$$P(open|z_{2}, z_{1}) = \frac{P(z_{2} | open| P(open|z_{1}))}{P(z_{2} | open| P(open|z_{1}) + P(z_{2} | \neg open| P(\neg open|z_{1}))}$$

$$= \frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3} + \frac{3}{5} \cdot \frac{1}{3}} = \frac{5}{8} = 0.625$$
• *z*₂ lowers the probability that the door is open.

