MCMC analysis: Outline

Transition probability ¢(y — y')
Occupancy probability m;(y) at time ¢

Equilibrium condition on 7; defines stationary distribution 7 (y)
Note: stationary distribution depends on choice of ¢(y — y')

Pairwise detailed balance on states guarantees equilibrium

Gibbs sampling transition probability:
sample each variable given current values of all others
= detailed balance with the true posterior

For Bayesian networks, Gibbs sampling reduces to
sampling conditioned on each variable’s Markov blanket
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Stationary distribution

m:(y) = probability in state y at time ¢
m:41(y’) = probability in state y' at time ¢t + 1

741 in terms of m; and ¢(y — y')
m1(y) = 2ym(y)a(y = ¥
Stationary distribution: 7, = m 1 =7
m(y') = Xyn(y)e(y = y')  forally’
If = exists, it is unique (specific to ¢(y — y’))

In equilibrium, expected “outflow” = expected “inflow”

AIMA Slides ©Stuart Russell and Peter Norvig, 1998

Chapter 15.3-4 + new

23




Detailed balance

“Outflow” = “inflow” for each pair of states:

m(y)gly = y)=7(y)y —=y) foraly, y

Detailed balance =- stationarity:

ym(y)aly = y'") = Lyn(y)a(y' =)
m(y) Lya(y' = y)
= 7(y')

/

MCMC algorithms typically constructed by designing a transition
probability ¢ that is in detailed balance with desired 7
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Gibbs sampling

Sample each variable in turn, given all other variables

Sampling Y;, let Y; be all other nonevidence variables
Current values are y; and y;; e is fixed
Transition probability is given by

oy =) =a(yi, ¥ = v, ¥:) = P(yilyi, e)
This gives detailed balance with true posterior P(yle):
T(y)aly = y') = Pyle)P(yily: e) = P(yi,yile) P(yily; )

= P(ly.e) P e)P(yly,e) (chain rule)
P(yily;, e)P(y., y;|e) (chain rule backwards)

= q(y = y)r(y) =7(y)aly’ — y)
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