MCMC analysis: Outline

Transition probability $q(\mathbf{y} \to \mathbf{y}')$

Occupancy probability $\pi_t(\mathbf{y})$ at time t

Equilibrium condition on π_t defines stationary distribution $\pi(\mathbf{y})$ Note: stationary distribution depends on choice of $q(\mathbf{y} \to \mathbf{y}')$

Pairwise detailed balance on states guarantees equilibrium

Gibbs sampling transition probability:

sample each variable given current values of all others

 \Rightarrow detailed balance with the true posterior

For Bayesian networks, Gibbs sampling reduces to sampling conditioned on each variable's Markov blanket

Stationary distribution

 $\pi_t(\mathbf{y}) = \text{probability in state } \mathbf{y} \text{ at time } t$ $\pi_{t+1}(\mathbf{y}') = \text{probability in state } \mathbf{y}' \text{ at time } t+1$

 π_{t+1} in terms of π_t and $q(\mathbf{y} \to \mathbf{y}')$

$$\pi_{t+1}(\mathbf{y}') = \sum_{\mathbf{y}} \pi_t(\mathbf{y}) q(\mathbf{y} \to \mathbf{y}')$$

Stationary distribution: $\pi_t = \pi_{t+1} = \pi$

$$\pi(\mathbf{y}') = \Sigma_{\mathbf{y}} \pi(\mathbf{y}) q(\mathbf{y} \to \mathbf{y}')$$
 for all \mathbf{y}'

If π exists, it is unique (specific to $q(\mathbf{y} \to \mathbf{y}')$)

In equilibrium, expected "outflow" = expected "inflow"

Detailed balance

"Outflow" = "inflow" for each pair of states:

$$\pi(\mathbf{y})q(\mathbf{y} \to \mathbf{y}') = \pi(\mathbf{y}')q(\mathbf{y}' \to \mathbf{y})$$
 for all \mathbf{y}, \mathbf{y}'

Detailed balance \Rightarrow stationarity:

$$\Sigma_{\mathbf{y}}\pi(\mathbf{y})q(\mathbf{y}\to\mathbf{y}') = \Sigma_{\mathbf{y}}\pi(\mathbf{y}')q(\mathbf{y}'\to\mathbf{y})$$
$$= \pi(\mathbf{y}')\Sigma_{\mathbf{y}}q(\mathbf{y}'\to\mathbf{y})$$
$$= \pi(\mathbf{y}')$$

MCMC algorithms typically constructed by designing a transition probability q that is in detailed balance with desired π

Gibbs sampling

Sample each variable in turn, given all other variables

Sampling Y_i , let $\bar{\mathbf{Y}}_i$ be all other nonevidence variables Current values are y_i and $\bar{\mathbf{y}}_i$; \mathbf{e} is fixed Transition probability is given by

$$q(\mathbf{y} \to \mathbf{y}') = q(y_i, \bar{\mathbf{y}}_i \to y_i', \bar{\mathbf{y}}_i) = P(y_i'|\bar{\mathbf{y}}_i, \mathbf{e})$$

This gives detailed balance with true posterior $P(\mathbf{y}|\mathbf{e})$:

$$\pi(\mathbf{y})q(\mathbf{y} \to \mathbf{y}') = P(\mathbf{y}|\mathbf{e})P(y_i'|\bar{\mathbf{y}}_i, \mathbf{e}) = P(y_i, \bar{\mathbf{y}}_i|\mathbf{e})P(y_i'|\bar{\mathbf{y}}_i, \mathbf{e})$$

$$= P(y_i|\bar{\mathbf{y}}_i, \mathbf{e})P(\bar{\mathbf{y}}_i|\mathbf{e})P(y_i'|\bar{\mathbf{y}}_i, \mathbf{e}) \quad \text{(chain rule)}$$

$$= P(y_i|\bar{\mathbf{y}}_i, \mathbf{e})P(y_i', \bar{\mathbf{y}}_i|\mathbf{e}) \quad \text{(chain rule backwards)}$$

$$= q(\mathbf{y}' \to \mathbf{y})\pi(\mathbf{y}') = \pi(\mathbf{y}')q(\mathbf{y}' \to \mathbf{y})$$