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II  would like to present the objectives that I had in mind when I started to write the first

lines of code of Joone.
My dream was (and still is) to create a framework to implement a new approach the use
of neural networks.
I felt this necessity because the biggest (and unresolved until now) problem is to find the
fittest network for a given problem, without falling into local minima, thus finding the best
architecture.
Okay - you'll say - this is what we can do simply by training some randomly initialised
neural network with a supervised or unsupervised algorithm.
Yes, it's true, but this is just scholastic theory, because training only one neural network,
especially for hard problems of the real life, is not enough.
To find the best neural network is a really hard task because we need to determine many
parameters of the net such as the number of the layers,  how many neurons for  each
layer,  the transfer  function,  the value  of  the  learning rate,  the momentum,  etc...  often
causing frustrating failures.
The basic idea is to have an environment to easily train many neural networks in parallel,
initialised with different weights, parameters or different architectures, so the user can find
the best NN simply by selecting the fittest neural network after the training process.
Not only that but this process could continue retraining the selected NNs until some final
parameter  is  reached  (i.e.  a  low  RMSE  value)  like  a  distillation  process.  The  best
architecture  is  discovered by Joone,  not  by the user!  Many programs today exist  that
permit selection of the fittest neural network applying a genetic algorithm. I want to go
beyond this, because my goal is to build a flexible environment programmable by the end
user,  so  any  existing  or  newly  discovered  global  optimisation  algorithm  can  be
implemented. This is why Joone has its own distributed training environment and why it is
based on a cloneable engine.
My  dreams  aren't  finished,  because  another  one  was  to  make  easily  usable  and
distributable a trained NN by the end user.  For  example,  I'm imagining an assurance
company that continuously trains many neural  networks on customer’s  risk evaluation1

(using the results of historical cases), distributing the best ‘distilled’ resulting network to its
sales force, so that they can use it on their mobile devices.
This is why a neural network built with Joone is serializable and remotely transportable
using any wired and wireless protocol, and it is easily runnable using a simple, small and
generalized program.
Moreover, my dream can become a more solid reality thanks to the advent of handheld
devices like mobile phones and PDA having inside a java virtual machine. Joone is ready
to run on them, too.

Hoping you’ll find our work interesting and useful, I thank you for your interest in Joone.
   Paolo Marrone
and the Joone's team

1 The  ethics  (and  the  law  in  many  countries)  forbids  to  make  racial,  sexual,  religious  (and  others)
discriminations. Consequently, a decisional system based on such personal characteristics cannot be built.
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1 Introduction

1.1 Intended Audience

This  paper  describes  the  technical  concepts  underlying  the  core  engine  of  Joone,
explaining in detail the architectural design that is at its foundation.
This paper is intended to provide the users - or anyone interested to use Joone - with the
knowledge of the basic mechanisms of the core engine, so that anyone can understand
how to use it and expand it to resolve one’s needs.

A  basic  knowledge  of  the  basic  concepts  underlying  the  artificial  neural  networks  is
required,  consequently,  who doesn’t  own such  a  know-how should  read some good
introductory book on the argument.

1.2 What is Joone

Joone (http://www.joone.org/) is a Java framework to build and run AI applications based
on neural networks. Joone applications can be built on a local machine, be trained on a
distributed environment and run on whatever device.
Joone  consists  of  a  modular  architecture  based  on linkable  components  that  can be
extended to build new learning algorithms and neural networks architectures. 

All the components have some basic specific features, like persistence, multithreading,
serialization  and parameterisation.  These  features  guarantee  scalability,  reliability  and
expansibility,  all  mandatory  features  to  reach  the  final  goal  to  represent  the  future
standard on the AI world.

Joone applications are built out of components. Components are pluggable, reusable, and
persistent  code  modules.  Components  are  written  by  developers.  AI  experts  and
designers can build applications by gluing together components with graphical editors,
and controlling the logic with scripts.

Around the components will be based all the modules and applications written with Joone.
Joone  can  be  used  to  build  Custom  Systems,  adopted  in  an  Embedded manner  to
enhance an existing application, or employed to build applications on Mobile Devices:

http://www.joone.org 6
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1.2.1 Custom systems
A  great  need  of  the  industrial  market  is  to  have  the  possibility  to  resolve  business
problems suitable with neural networks (or with AI applications in general). Joone wants
to represent the optimal solution to build applications to satisfy such needs (i.e. bank loan
assessment, sales forecasting, etc.).

Its characteristics are optimal to build custom applications driven from the user’s needs,
where it’s important to have flexibility, scalability and portability.
Each  enhancement  of  Joone  will  be  compatible  also  with  the  necessity  of  build
applications more quickly than other product on the market, so Joone can gain a large
market share and become the most  used neural network framework.

1.2.2 Embedded systems
Into the core engine,  the components are the bricks  to build whatever  neural  network
architecture. Their purpose is to create AI applications writing Java code that uses the
Joone’s API.
In the respect of the goal that aims to obtain a wide adoption of Joone from the market,
the license of the core engine is the Lesser General Public License (LGPL), so everyone
can freely embed the engine into existing or new applications. This will never change.

The business model of Joone contemplates the possibility of provide more components to
satisfy the users needs to create several neural network architectures and algorithms, so
they can embed Joone into whatever  application (i.e.  data mining  systems,  automatic
categorization for search engines, customer classification for One-to-One marketing, etc.)

1.2.3 Mobile Devices
One  long-term  goal  of  Joone  is  to  become  the  basic  framework  to  provide  a
computational  engine to AI applications suitable for  the mobile devices  (phones,  PDA,
etc.).
The demand for software products available for such kind of devices is growing, therefore
in the future a new market of applications to satisfy these needs will be open, gaining the
interest of the industrial world.

Joone wants to be present in that market and represent the main framework to distribute
and  run  personal  or  corporate  AI  applications  (i.e.  handwriting  and voice  recognition,
support to the sales force, marketing or financial forecasting, etc.).
The core engine of Joone is already suitable for small devices, having a small footprint
and being runnable on Personal Java environments.

1.3 About this Guide

http://www.joone.org 7
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This complete guide is composed by the following chapters (the asterisks indicate the skill
required  to  correctly  understand  the  exposed  concepts,  as  listed  at  the  end  of  this
paragraph):

Chapter 1 – Introduction (*)
This Chapter contains a brief description of Joone, what it is and what are its possible
applications in several fields of the professional world.

Chapter 2 – Getting and installing Joone (*)
This is a starter guide to learn how to download and install all the Joone framework and
how to obtain a runnable version from the source code.

Chapters 3-7 – Concepts and technical details (**)(***)
These chapters illustrate the basic concepts underlying the core engine. They explain the
main features of the core engine from a functional point of view, and, for whose that are
interested to the technical implementation, each chapter ends with a paragraph named
‘technical  details’,  where a more detailed look about how the described features have
been implemented is given. 

Chapter 8 – Common Architectures (**)
This  is  a  practical  guide  about  how  to  build  the  most  common  neural  network
architectures, like the temporal, recurrent, unsupervised and the mixed ones. For each of
them an example  is  built  using  the  visual  editor.  This  Chapter  can  be intended as  a
complement of  the Editor  User  Guide,  and its  goal  is  to give a first  look about  some
potential applications of Joone. / TO BE COMPLETED /

Chapter 9 – Applying Joone (***)
This Chapter explains the main features of Joone using concrete and useful examples
written  in  java  code.  Applying  the  programming  techniques  described  in  this  chapter
everyone can build a custom java application that uses joone as internal neural network
engine.  / TO BE COMPLETED /

Legend:
* No specific skill required
** Basic knowledge about artificial neural networks
*** Good understanding of UML and Java code
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1.4 Acknowledgements

Joone was made possible thanks to the many people that have agreed my initial idea and
have extended the initial code adding new ideas, suggestions and, mainly, good and often
documented source code. This is the demonstration that also in a complex stuff like the
Artificial  Intelligence,  thanks  to  the  Open  Source model  it’s  possible  to  obtain  the
collaboration of valid and skilled programmers to build a complete, stable and powerful
framework.

Paolo Marrone, the founder and project manager of Joone, wants to thank five persons
that have contributed continuously for a long period of time, writing good java code, and
also giving a great support  represented by very interesting proposals and suggestions
(listed in alphabetical order):

Harry Glasgow 
Boris Jansen
Julien Norman
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Thomas Lionel Smets

Thanks also to the following people for their valuable contribution:
Mark Allen, Ka-Hing Cheung, Jan Erik Garshol, Jack Hawkins, Nathan
Hindley, Olivier Hussenet, Shen Linlin, Casey Marshall, Christian Ribeaud,
Anat Rozenzon, Jerry R. Vos

Do you want to see your name listed above? Join us: any contribution is always welcome, therefore if
you  have  built  some  new  component,  new  feature,  or  you  have  fixed  some  bug,  contact  me
(pmarrone@users.sourceforge.net) and I'll be very happy to insert your name in the above list of contributors.
You can also contact me even if you're not a java developer, but, as expert of neural networks, you'd like to
help me to implement some new component or new training algorithm.
Of course the Forums on the web site and my email address are always open for any idea or suggestion.
Thanks.

I want also to thank all the authors of the following O.S. external packages used by
Joone:
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• jEdit-Syntax http://sourceforge.net/projects/jedit-syntax 
• Log4J http://jakarta.apache.org/log4j
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• VisAD http://www.ssec.wisc.edu/~billh/visad.html
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• Zero G Software, Inc. for InstallAnywhere, the multi platform auto installer
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2 Getting and Installing Joone

2.1 Platform and requirements

Joone is written in 100% pure Java and can run on whatever platform for which a Java
Runtime Environment v. 1.4 or later is available.
Due to his direct experience, or because he has received information from other users,
the author can assure the compatibility of Joone with the following operating systems2:

• Linux
• Mac OSX
• Windows 2000
• Windows XP
• SUN Solaris

About the memory requirement, it depends on the complexity of the neural network used,
but generally the availability of at least 128MB of RAM, even if not mandatory, is strongly
recommended. 

Due to its small footprint, a minimal version of the Joone’s core engine can run also on
mobile devices (PDA) running J2ME Personal Profile. The author ran without problems
the sample XOR neural network on a HP-Compaq IPAQ device provided with 32MB of
flash memory using successfully both Jeode and IBM J9 JVMs.

2.2 Installing the binary distribution

Joone is distributed both in source and compiled form. The compiled distribution (named
also the binary distribution) is available both for the core engine and the GUI editor. We’ll
see how to download and install them on your machine.

2 InstallAnywhere is a registered trademark of Zero G Software, Inc.

Mac OS is a registered trademark of Apple Computer, Inc.
Solaris and Java are trademarks of Sun Microsystems, Inc.
Windows is a registered trademark of Microsoft Corporation.
All other marks are properties of their respective owners.
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2.2.1 The Core Engine

The compiled form of the core engine can be useful to run a whatever application written
in java that uses the Joone’s engine API, as deeply described in the next chapters. All the
classes  are  contained  into  the  library  joone-engine.jar.  This  library  cannot  run  stand-
alone, as it doesn’t contain any  main class, but it must be put into the classpath of the
application that needs to use Joone.
Depending on which Joone engine’s  packages  are used,  you need also to  put  in the
classpath some external packages provided in a separate downloadable file.

Here are explained the steps to execute to correctly install the core engine’s libraries:

1. Download the core engine’s binary distribution file joone-engine-x.y.z.zip (where x,
y and z are respectively the major/minor version and the build number of the last
available distribution)

2. Download joone-ext.zip, the file containing the needed external libraries
Unzip both the above files into a predefined directory of your file system (we’ll
name it <base_dir>). At this point you should have a directory tree as below (we
omitted the unessential files):

<base_dir>
Joone-engine.jar
...
<ext>

bsh.jar
crimson.jar
jakarta-poi.jar
log4j.jar
...

<samples>
...

3. Put the joone-engine.jar ando also the <ext>*.jar files into your classpath
4. Run your own application

Depending on the engine’s  packages your application uses,  you need to put  only the
needed libraries on your classpath, as depicted in the following table:

Library Purpose When used
joone-engine.jar The Joone’s core engine Mandatory
log4j.jar The configurable logger Mandatory
bsh.jar The BeanShell interpreter Optional. Needed only if you want to use the scripting

features
jakarta-poi.jar The Jakarta Excel libraries Optional.  Needed  only  if  you  use  the  Excel

Input/Output synapses
jh.jar The Java Help libraries Never.  Used  only  in  conjunction  with  the GUI  editor

contained into the joone-editor.jar file
jhotdraw.jar The drawing framework Never.  Used  only  in  conjunction  with  the GUI  editor

contained into the joone-editor.jar file

http://www.joone.org 12
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Library Purpose When used
visad.jar The external graphic library to

plot graphs
Never.  Used  only  in  conjunction  with  the GUI  editor
contained into the joone-editor.jar file

As  you  can  see,  only  the  first  two  libraries  have  to  be  present  into  your  classpath,
whereas the next two are needed only if you use some specific feature of the core engine.

The last  three libraries,  instead, must be used only in conjunction with the GUI editor
contained into the joone-editor.jar file; but, in this case, you don’t need to install manually
the editor, as you can use an auto-installer, like depicted in the following paragraph. 

2.2.2 The GUI Editor

To permit to everyone to correctly install and run the GUI Editor, this is distributed in an
auto-installing form. Using the ZeroG Software InstallAnywhere product we have prepared
auto-installers for the following platforms3:

• Linux4

• Windows
• Mac OSX

You don’t need to be aware about the installation of the Java runtime environment, as all
the  installers  are  available  both  with  and  without  an  embedded  java  virtual  machine
(except  for  the Mac version,  because on the OSX platform a suitable  JVM is  already
installed).
All you need to do is to download the appropriate installer depending on your platform,
and run it as described below:

Linux Instructions:
After downloading open a shell and,  cd to the directory where you downloaded the
installer. 
At the prompt type:  sh ./JooneEditorX_Y_Z.bin 
If  you  do  not  have  a  Java  virtual  machine  installed,  be  sure  to  download  the
package which includes one. Otherwise you may need to download one from Sun's
Java web site or contact your OS manufacturer. 

Windows Instructions:
After downloading, double-click JooneEditorX.Y.Z.exe 

3 InstallAnywhere is a registered trademark of Zero G Software, Inc.

Mac OS is a registered trademark of Apple Computer, Inc.
Solaris and Java are trademarks of Sun Microsystems, Inc.
Windows is a registered trademark of Microsoft Corporation.
All other marks are properties of their respective owners.

4 The Linux installer works also on the Solaris OS (of course only that one without the JVM)

http://www.joone.org 13
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If  you  do  not  have  a  Java  virtual  machine  installed,  be  sure  to  download  the
package which includes one. 

Mac OS X Instructions:
After downloading, double-click JooneEditorX.Y.Z.zip (Requires Mac OS X 10.0 or
later). 
The compressed  installer  should be  recognized by  Stuffit  Expander  and should
automatically  be  expanded  after  downloading.  If  it  is  not  expanded,  you  can
expand it manually using StuffIt Expander 6.0 or later. 
If you have any problems launching the installer once it has been expanded, make
sure that the compressed installer was expanded using Stuffit Expander. 

After the launch of the installer, you should see the following panel:

By clicking on the Next button you can advance in the installation process. In any
moment, pressing the  Cancel button, you can abort and exit from the installation.

http://www.joone.org 14
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In this panel you must specify the directory where you want to install Joone.
The Choose button will open an explorer window, where you can make the choice,
whereas using the ‘Restore Default Folder’ button you can reset the directory to its initial
value.

http://www.joone.org 15
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Here you can choose where to put the Joone launcher’s icon.

This panel can contain several available choices depending on the platform where you’re
installing on.
By checking the ‘Create Icon for All Users’ box – if not greyed – will give the visibility of
the icon to all the users of the system.

http://www.joone.org 16
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At this point a panel showing the summary of the made choices will appears.
If it’s all ok, press the Next button, otherwise, pressing the Previous button, you can go
back to the previous panels to review and change some parameter.

http://www.joone.org 17
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Now the panel showing the GNU LESSER GENERAL PUBLIC LICENSE, the license
under which Joone is released.

Be aware: Open Source doesn’t mean ‘no license’, hence, before to continue, you must
carefully read the license agreement, and press the ‘Install’ button only if  you agree to
the terms of the license. A copy of the LGPL license is contained in one of  the last
Chapters of this paper.

If  you continue, the installation process starts  and a panel indicating the progress  will
appear.
At the end, the following panel indicating the success of the operation will be shown.

http://www.joone.org 18
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Press Done to exit.

After the installation, you should found a file named Joone (or Joone.bat for the Windows
platforms) into the chosen installation directory. You must execute it (a double click from
within the file explorer should work on all the platforms) to run the editor.
If you have chosen to add a shortcut to the Start Menu or to the Desktop, you can press it
to start the application.

2.3 Building from the source distribution

In this paragraph we'll show how to build joone starting from the source distribution, but
first of all you need to install on your system some useful tool.

2.3.1 Prerequisites
You need to have installed on your system:

1.  a Java Development Kit version 1.4 or above (http://java.sun.com)
2.  the ANT build tool v. 1.5.1 or above (http://ant.apache.org)
3.  the sources of joone, and to do it, you can either get the last released version, or

download the last (unstable) code from the CVS repository.
The instructions to get Java JDK and ANT installed and running on your system go over
the scope of this document, but you can read a lot of documentation available on Internet.

http://www.joone.org 19
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Now we'll see how to get the joone's source code.

2.3.2 Getting the last released source code
The released version is preferable if you need to use a stable and tested version of joone,
without be worried about possible unknown or not fixed bugs.
To do it, open your preferred browser and simply go to the download page of joone at
http://sourceforge.net/project/showfiles.php?group_id=22635 and  get  the  files  joone-
engine-x.y.z.zip  (the  core  engine),  joone-editor-x.y.z.zip (the  GUI  editor)  and
joone-ext.zip (the external libraries). 
Note: x, y and z are respectively the major/minor version and the build number of the last
available distribution.
Unzip them on a directory of your file system (say  c:\joone for Windows or /home/joone
for Linux).

2.3.3 Getting the CVS sources
If  you need to use some new feature of joone still  not released,  you can get the last
developed source code from the CVS repository.
To do it,  you need to have a cvs  client  installed on your  system. Unix/Linux systems
normally  have  it  already  installed,  whereas  for  the  Windows  system  go  to
http://www.cvshome.org/ and download a suitable version for your OS.
The CVS repository of Joone is hosted at SourceForge, so here is an extract from the
instructions gave from SF cvs page:

“...This project's SourceForge.net CVS repository can be checked out through
anonymous (pserver) CVS with the following instruction set. The module you wish to
check out must be specified as the modulename. When prompted for a password for
anonymous, simply press the Enter key. 

cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/joone login 
cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/joone co joone 

Information about accessing this CVS repository may be found in our document titled,
"Basic Introduction to CVS and SourceForge.net (SF.net) Project CVS Services"
(http://sourceforge.net/docman/display_doc.php?docid=14033&group_id=1).

Updates from within the module's directory do not need the -d parameter.

NOTE: UNIX file and directory names are case sensitive. The path to the project
CVSROOT must be specified using lowercase characters (i.e. /cvsroot/joone)”

Anyway you need to download the file containing the external libraries (joone-ext.zip) and
unzip  it  into  the  same  directory  where  you  have  checked  out  from  cvs  (read  at  the
previous chapter how to download it).
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2.3.4 Compiling
Regardless of which repository you have decided to download from, you should have on
your file system the following directory tree:

<base_dir>
   <joone>

<lib>
<org>

<joone>
<data>
<edit>
<engine>
<exception>
<images>
<inspection>
<io>
<net>
<samples>
<script>
<util>

Before to start  the build  process,  you need to edit  the build.xml file  found in the root
installation directory. Open it with a text editor and search the following line:
        <property name="base" value="/usr/SourceForge"/>
change the path  into  the quotes  with  your  previous  chosen installation  directory  (e.g.
c:\\joone or /home/joone) and save the file.

Assuming you have the Java JDK and ANT correctly installed and running (to verify, try to
launch in a console the commands 'javac' and 'ant'), you need to cd into the installation
directory and launch at the prompt the command 'ant'.

At the end of the operation, under the installation directory, if no error occurs, you should
have a subdirectory named 'build' containing all the compiled classes. 
At this point, to run the GUI editor, you need to:
1.  Put  the  <base_dir>/build  directory  and  all  the  <base_dir>/lib/*.jar  files  on  your

classpath
2.  Open a console and launch the following command: java org.joone.edit.JoonEdit

The main window of the editor should appear.
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3 Inside the Core Engine

3.1 Basic Concepts

Each neural network (NN) is composed of a number of components (layers) connected
together  by  connections  (synapses).  Depending  on  how  these  components  are
connected,  several  neural  network  architectures  can  be  created  (feed  forward  NN,
recurrent NN, etc).
This section deals with feed forward neural networks (FFNN) for simplicity’s sake, but it is
possible to build whatever neural network architecture is required with Joone.
A FFNN is composed of a number of consecutive layers, each one connected to the next
by a synapse. In a FFNN recurrent connections from a layer to a previous one are not
permitted. Consider the following figure:

 

Layers 

Synapse 

This  is  a  sample  FFNN  with  two  layers  connected  with  one  synapse.  Each  layer  is
composed of a certain number of neurons, each of which have the same characteristics
(transfer function, learning rate, etc).
A neural net built with Joone can be composed of whatever number of layers of different
kinds of layer.
Each layer  processes  its  input  signal  by applying  a transfer  function  and sending the
resulting pattern to the synapses that connect it to the next layer. So a neural network can
process an input pattern, transferring it from its input layer to the output layer.
This is the basic concept upon which the entire engine is based.

3.2 The Transport Mechanism
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To ensure that it is possible to build whatever neural network architecture is required with
Joone, a method to transfer the patterns through the net is required without the need of a
central point of control.

To accomplish this goal, each layer of Joone is implemented as a  Runnable object, so
each layer runs independently from the other layers (getting the input pattern, applying
the transfer function to it and putting the resulting pattern on the output synapses so that
the next layers can receive it, processing it and so on) as depicted by the following basic
scheme:

 

 I1 

I2 

Ip 

XN 

wN1 

wN2 

wNP 

f(X) 

YN 
… 

Where for each neuron N:
XN – The weighted net input of each neuron = (I1 * WN1) + … + (IP * WNP)
YN – The output value of each neuron = f(XN)
f(X) – The transfer function (depending on the kind of layer’s property)

This transport  mechanism is also used to bring the error from the output layers to the
input layers during the training phases, allowing the weights and biases to be changed
according to the chosen learning algorithm (for example the backprop algorithm).
In  other  words,  the  Layer  object  alternately  ‘pumps’  the  input  signal  from  the  input
synapses to the output synapses, and the error pattern from the output synapses to the
input synapses.
To accomplish this,  each layer has two opposing transport  mechanisms,  one from the
input to the output to transfer the input pattern during the recall phase, and another from
the output to the input to transfer the learning error during the training phase, as depicted
in the following figure:
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adjustment  

Each Joone component (both layers and synapses) has its own pre-built mechanisms to
adjust the weights and biases according to the chosen learning algorithm.
Complex  neural  network  architectures  can  be  easily  built,  either  linear  or  recursive,
because there is no necessity for a global controller of the net. 

Imagine each layer acts as a pump that ‘pushes’ the signal (the pattern) from its input to
its output, where one or more synapses connect it to the next layers, regardless of the
number, the sequence or the nature of the layers connected.
This is the main characteristic of Joone, guaranteed by the fact that each layer runs on its
own thread, representing the unique active element of  a neural network based on the
Joone’s core engine.

Look at the following figure (the arrows represent the synapses):

 Output Layer  Hidden Layers Input Layer 

Layer 1 

Layer 4 

Layer 2 

Layer 5 

Layer 3 

In this manner any kind of neural networks architecture can be built. 

To build  a  neural  network,  simply  connect  each layer  to another  as required using  a
synapse, and the net will run without problems. Each layer (running in its own thread) will
read its input, apply the transfer function, and write the result in its output synapses, to
which there are other layers connected running on separate threads, and so on.

Joone allows any kind of net to be built through its modular architecture, like a
LEGO bricks system!
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By this means: 

• The  engine  is  flexible:  you  can  build  any  architecture  you  want  simply  by
connecting each layer to another with a synapse, without being concerned about
the architecture.  Each layer  will  run independently,  processing the signal  on its
input  and  writing  the  results  to  its  output,  where  the  connected  synapses  will
transfer the signal to the next layers, and so on. 

• The engine is scalable: if you need more computation power, simply add more
CPU to the system. Each layer, running on a separated thread, will be processed
by a different CPU, enhancing the speed of the computation. 

• The engine closely mirrors reality: conceptually, the net is not far from a real
system  (the  brain),  where  each  neuron  works  independently  from  each  other
without a global control system.

3.3 The Processing Elements

Now we’ll see the principal kind of layers and synapses implemented into the core engine,
and for everyone we’ll show the transfer function and the most common usage.

3.3.1 The Layers

The Layer object is the basic element that forms the neural net. 
It is composed of neurons, all having the same characteristics. This component transfers
the input pattern to the output pattern by executing a transfer function. The output pattern
is  sent  to  a vector  of  Synapse  objects  attached  to  the  layer's  output.  It  is  the  active
element of a neural net in Joone, in fact it runs in a separated thread (it implements the
java.lang.Runnable interface)  so that it can run independently from other layers in the
neural net.

3.3.1.1 The Linear Layer

Description
The Linear Layer is the simplest kind of layer, as it simply transfers the input pattern to the
output  applying a linear  transformation,  i.e.  multiplying it  by a constant  term, the Beta
term. If it is equal to 1 (one), then the input pattern is transferred without modifications.

The Linear Layer is commonly used as a buffer, placed, for instance, as the first layer of a
neural  network  to  permit  to send an unmodified copy of  the  input  patterns  to  several
hidden layers, as depicted in the following figure:
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Hidden 
Layer 1 

Hidden 
Layer 2 

Without a Linear Layer,  in these cases it would be impossible to send the same input
pattern to many subsequent layers, because the input component (the InputSynapse here
represented by a cylinder) can be attached only to one layer.

Transfer Function
y=⋅x

3.3.1.2 The Sigmoid Layer

Description
The Sigmoid Layer applies a sigmoid transfer function to its input patterns, representing a
good non-linear element to build the hidden layers of the neural network. 
The sigmoid layer can be used to build whatever layer of a neural network.
Its output is smoothly limited within the range 0 and 1.

Transfer Function

y= 1
1e−x

3.3.1.3 The Tanh Layer

Description
The  Tanh  Layer  is  similar  to  the  sigmoid  layer  except  that  the  applied  function  is  a
hyperbolic tangent function, that limits its output within the range –1 and 1.

   Transfer Function  

y=ex−e−x

exe−x

3.3.1.4 The Logarithmic Layer

Description
This layer applies a logarithmic transfer function to its input patterns, resulting in an output
that, unlike from the above two previous layers, ranges from 0 to ∞ . This behaviour
permits to avoid the saturation of the processing elements of a layer in presence of a lot
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of input synapses connected, or in presence of input values very near to the limits 0 and
1, where the sigmoid and tanh layers have a response curve very flat.

Transfer Function
y = log(1 + x) if x0
y = log(1 – x) if x0

3.3.1.5 The Delay Layer

Description
The delay layer applies the sum of the input values to a delay line, so that the output of
each neuron is delayed a number of iterations specified by the taps parameter.
To  understand  the  meaning  of  the  taps  parameter,  look  at  the  following  picture  that
contains two different delay layers, one with 1 rows and 3 taps, and another with 2 rows
and 3 taps:
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-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

Rows = 1 
Taps = 3 

Rows = 2 
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X1(t - 2) 

X1(t - 1) 

X1(t) 

X2(t) 

X2(t - 3) 

X2(t - 2) 

X2(t - 1) 

X2(t) 

the delay layer has:
• the number of inputs equal to the rows parameter
• the number of outputs equal to the rows * (taps + 1)

The  taps  parameter  indicates  the  number  of  output  delayed  cycles  for  each  row  of
neurons, plus one because the delayed layer also presents the actual input sum signal Xn
(t)  to the output.  During a training phase,  error  values are fed backwards through the
delay layer as required.
This  layer  is  very  useful  to train  a neural  network  to predict  a time-series,  giving it  a
‘temporal window’ of the input raw data.
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Transfer Function
yN=xt−N

where: 0Ntaps

3.3.1.6 The Context Layer

Description
The  context  layer  is  similar  to  the  linear  layer  except  that  it  has  an  auto-recurrent
connection between its output and input, like depicted in the following figure:

 

PE 

w 

x y 

 

The recurrent  weight  w is  named ‘timeConstant’  because it  back-propagates  the past
output signals and, as its value is less than one, the contribute of the past signals decays
slowly toward zero at each cycle. Its value is constant, hence doesn’t change during the
training phase.
In this manner the context layer has a own ‘memory’ embedded mechanism.
This layer is used in recurrent neural networks like the Jordan-Elman ones.

Transfer Function
y=⋅xyt−1⋅w

where:
 = the beta parameter (inherited from the linear layer)

  w = the fixed weight of the recurrent connection (not learned)

3.3.1.7 The WinnerTakeAll Layer

Description
The WinnerTakeAll layer is one of the components – along with the GaussianLayer and
the KohonenSynapse – useful to build unsupervised self-organized-map (SOM) networks.
This  kind  of  networks  learns  without  an  external  teacher,  simply  by  detecting  the
similarities of the input patterns and categorizing (i.e. projecting) them on a (1D or 2D)
map. 
This layer implements the Winner Takes All SOM strategy.  The layer expects to receive
Euclidean distances between the previous synapse (the KohonenSynapse) weights and
it's input.  The layer simply works out which node is the winner and passes 1.0 for that
node and 0.0 for the others.
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In this manner the attached KohonenSynapse can adjust its own weights according to the
winner  neuron,  updating  the  internal  connections  so  that,  when  a  similar  input  is
presented, the same neuron will be activated (or one near it, depending on how much that
pattern is similar to that seen during the learning phase).

Transfer Function
yn = 1 if n is the most active neuron,
yn = 0  otherwise

3.3.1.8 The Gaussian Layer

Description
The  Gaussian  layer  performs  a  similar  work  like  the  WTA  layer,  but  in  this  case  it
activates  the  output  neurons  according  a  gaussian  shape  centered  around  the  most
active neuron (the winner).
This  layer  implements  the  Gaussian  Neighborhood  SOM  strategy.   It  receives  the
Euclidean distances between the input vector and weights and calculates the distance fall
off between the winning node and all other nodes.  These are passed back allowing the
previous synapse (the KohonenSynapse) to adjust it's weights.

The distance fall off is calculated according to a Gaussian distribution from the winning
node.
In  this  manner  the  in  the  KohonenSynapse  not  only  the  weights  feeding  the  winner
neuron will be adjusted, but also its neighbor, with a strength inversely proportional to the
distance from  the winner neuron.

Transfer Function
Better than by a complex formula, the transfer function can be represented by a graphic
representation  of  the  output  values  in  correspondence  of  both  the  distance  from  the
winner node and the actual epoch.
 
The neighborhood around the winner node starts very large and then is reduced following
a gaussian curve, as depicted in the following image:
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the curves represent how the neighborhood function changes during the training epochs;
the X axis represents the distance from the winner node ( ±10 in this example), the Y
axis contains the output values of the layer, and the numbers in the legend (put on the Z
axis) represent the number of epochs (from 1 to 700 in this example).
As you can see, an initial phase exists,  within which the algorithm maintains large the
neighborhood size to permit a large number of weights to participate to the adjustments
(this phase is named  ordering phase), after which the neighborhood is maintained very
small  (the  weights  are  frozen  after  they  have  chosen  the  input  vectors  to  which  to
respond).
A similar mechanism is implemented into the KohonenSynapse object.

3.3.2 The Synapses

The Synapse represents the connection between two layers, permitting a pattern to be
passed from one layer to another.

The Synapse is also the ‘memory’ of a neural network. During the training process the
weigh of each connection is modified according the implemented learning algorithm.
Remember that, as described above, a synapse is both the output synapse of a layer and
the input synapse of the next connected layer in the NN, hence it represents a shared
resource between two Layers (no more than two, because a Synapse can be attached
only once as the input or the output of a Layer).
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To avoid a layer trying to read the pattern from its input synapse before the other layer
has written it, the shared synapse in synchronized; in other terms, a semaphore based
mechanism prevents two Layers from accessing simultaneously to a shared Synapse.

3.3.2.1 The Direct Synapse

The DirectSynapse represents a direct connection 1-to-1 between the nodes of the two
connected layers, as depicted in the following figure:

Each connection has a weight equal to 1, and it doesn't change during the learning phase.
Of  course,  a  DirectSynapse  can  connect  only layers  having  the  same  numbers  of
neurons, or nodes.

3.3.2.2 The Full Synapse

The FullSynapse connects all the nodes of a layer with all the nodes of the other layer, as
depicted in the following figure:

This  is  the most  common type of synapse  used in a neural  network,  and its  weights
change during the learning phase according to the implemented learning algorithm.
It  can  connect  layers  having  a whatever  number  of  neurons,  and  the  number  of  the
weights contained is equal to N1 x N2, where Nx is the number of nodes of the Layerx
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3.3.2.3 The Delayed Synapse

This  Synapse  has  an  architecture  similar  to  which  of  the  FullSynapse,  but  each
connection is implemented using a matrix of FIR Filter elements of size NxM.

The following figure illustrates how a DelaySynapses can be represented:

 
As you can see in the first figure, each connection – represented with a greyed rectangle -
is implemented as a FIR (Finite Impulse Response) filter  and in the second figure the
internal detail of a FIR filter is shown. 
A  FIRFilter  connection  is  a  delayed connection  that  permits  to  implement  a  temporal
backprop algorithm functionally equivalent to the TDNN (Time Delay Neural Network), but
in a more efficient and elegant manner.
To learn more on this kind of synapses, read the article Time Series Prediction Using a
Neural Network with Embedded Tapped Delay-Lines, Eric Wan, in Time Series
Prediction: Forecasting the Future and Understanding the Past, editors A. Weigend and
N. Gershenfeld, Addison-Wesley, 1994. Moreover, at
http://www.cs.hmc.edu/courses/1999/fall/cs152/firnet/firnet.html you can find some good
examples using FIR filters.

3.3.2.4 The Kohonen Synapse

The  KohonenSynapse  belongs  to  a  special  kind  of  components  that  permit  to  build
unsupervised neural networks. 
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This components, in particular, is the central element of the SOM (Self Organizing Maps)
networks.  A  KohonenSynapse  must  be  followed  necessarily  by  a  WTALayer  or  a
GaussianLayer component, forming so a complete SOM, like depicted in this figure:

As you can see, a SOM is composed normally by three elements:
1. A LinearLayer that is used as input layer
2. A WTALayer (or GaussianLayer) that's used as output layer 
3. A KohonenSynapse that connects the two above layers

During the training phase, the KohonenSynapse's  weights are adjusted to map the N-
dimensional input patterns to the 2D map represented by the output synapse.

What is the difference between the WTA and the Gaussian layers? The answer is very
simple, and depends on the precision of the response we want from the network.
If we're, for instance, using a SOM to make predictions (for instance to forecast the next
day's weather), probably we need to use a GaussianLayer as output, because we want a
response in terms of percentage around a given value (it will be cloudy and maybe it will
rain),  whereas  if  we're  using  a SOM to recognize  handwritten  characters,  we need a
precise response, (like 'the character is A', but not 'the character could be A or B') hence
in this case we need to use a WTALayer, that activates one (and only one) neuron for
each input pattern.

3.3.2.5 The Sanger Synapse

The SangerSynapse serves to build unsupervised neural networks that apply the PCA
(Principal Component Analysis) algorithm.
The PCA is a well  known and widely  used technique that permits  to extract  the most
important  components  from a signal.  The Sanger  algorithm,  in  particular,  extracts  the
components in ordered mode – from the most meaningful to the less one – so permitting
to separate the noise from the true signal. 
This components, by reducing the number of input values without diminishing the useful
signal, permits to train the network on a given problem reducing considerably the training
time.
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The SangerSynapse normally is posed between two LinearLayers, and the output layer
has less neurons than the input layer, as depicted in the following figure:

By using this synapse along with the Nested Neural Network component it's very easy to
build modular neural networks where the first NN acts as a pre-processing element that
reduces the number of the input columns and consequently its noise.

3.4 The Monitor: a central point to control the neural network

Obviously a neural network can’t be composed only by the above two kinds of processing
elements  -  layers  and  synapses  -  because  there  is  the  necessity  to  control  all  the
parameters interested in the running and/or training process.
For  this  purpose  the  engine  is  composed  by  several  other  components  designed  to
provide the neural network with a series of services.

The main component that is ever present in each joone’s based neural network is the
Monitor object.  It  represents  the  central  point  within  which  are  contained  all  the
parameters needed by the other components to work properly, like the learning rate, the
momentum, the number of training epochs, the current cycle, etc.

Each component of a neural network (both layers and synapses) receive a pointer to an
instance of the monitor object. This instance can be different for each component,  but
usually only a unique instance is created and used, so that each component can access
to the same parameters for the entire neural network, as depicted in the following figure:
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Monitor 

Layer 1 Layer 2 Layer 3 

Learning Rate 

Momentum 

Training Epochs 

In this manner, when the user wants to change any of such parameters, s/he must simply
change the corresponding value in the Monitor object; as a result each component of the
neural network will receive the new value of the changed parameter.

The Monitor provides services not only to the internal components of a neural network,
but also to the external application that uses it.
The  Monitor  object,  in  fact,  provides  any  external  application  with  a  notification
mechanism based on several events raised when a particular action is performed. For
instance, an external application can be advised when the neural network starts or stop
the training epochs, when it finishes a cycle or when the value of the global error (the
RMSE) changes during the training phase.

In this manner any application using Joone can asynchronously perform a certain action
in response of a specific event of the controlled neural network as, for instance, to stop
the training when a low RMSE is reached, or to check the generalisation level of the net
using a separate input validation set, or to display in some graphical window the actual
values of the parameters of the net, etc…

The following is a list of the Monitor object’s features.

3.4.1 The Monitor as a container of the NN Parameters

The  Monitor  contains  all  the  parameters  needed  during  the  training  phases,  e.g.  the
learning rate, the momentum, etc. Each parameter has its own getter and setter method,
conforming to the JavaBeans specifications.
These parameters can be used by an external application, for example, to display them in
a user interface, or by an internal component to calculate the formulas to implement the
recall/training phases, representing in this way a standard and centralized mechanism for
getting and setting the parameters needed for its work.

3.4.2 The Monitor as the NN controller

The Monitor object is also a central point for controlling the start/stop times of a neural
network.
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It has some parameters that are useful to control the behaviour of the NN, e.g. the total
number of epochs, the total number of the input patterns, etc.
Before  explaining  how  does  this  works,  an  explanation  is  required  of  how  the  input
components of a neural network work.
When the first Layer of a neural network calls its connected InputSynapse component to
read a pattern from an external source (see the I/O components chapter), this object calls
the Monitor to advise it that a new cycle must be processed.
The Monitor, according to its internal state (current cycle, current epoch, etc.), verifies if
the next input pattern must be normally processed.
If yes, the InputSynapse simply receives the permission to continue to elaborate the next
pattern, and all the counters internal to the Monitor object are updated.
If no (i.e. the net reached the last epoch), the Monitor object doesn’t give the permission
to continue and also it notifies all the external applications raising an event that describes
the nature of the notification.

In this manner the following services are made available using the Monitor object:

1. The  InputSynapse knows  if  it  can  read  and  process  the  next  input  pattern
(otherwise it stops), being advised by the returned Boolean value.

2. An external application can start/stop a neural network simply by setting the initial
parameters of the Monitor. To simplify these actions, some simple methods - Go
(to start), Stop (to stop) and runAgain (to restore a previous stopped network to
running) - have been added to the Monitor.

3. The observer objects (e.g. the main application) connected to the Monitor can be
advised when a particular event raises, as when an epoch or the entire training
process  has finished (for  example  either  to  show to the  user  the  actual  epoch
number or the actual training error). 
To see how to manage the events of the  Monitor to read the parameters of the
neural network, read the following paragraph.
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3.4.3 Managing the events

To explain how the events of the Monitor object can be used by an external application,
the following explains in detail what happens when a neural network is trained and when
the last epoch is reached.

 Monitor 

Input 
Synapse 

Input 
Layer 

Hidden 
Layer 

Output 
Layer 

Teacher 
Synapse 

Training 
Data 

Desired 
Data 

Suppose to have a neural network composed, as depicted in the above figure, of three
layers: a InputSynapse to read the training data, a TeacherSynapse to calculate the error
for the backprop algorithm, and a Monitor object that controls the overall training process.
As already mentioned, all the components of a neural network built with Joone obtain a
reference to the Monitor object, represented in the figure by the dotted lines.

Supposing  the  net  is  started  in  training  mode,  in  the  following figures  all  the  phases
involved  in  the  process  are  shown  when  the  end  of  the  last  epoch  is  reached. The
numbers in the label boxes indicate the sequence of the processing:
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1: the input layer calls the 
fwdGet method on its 
InputSynapse 

2: the inputSynapse 
calls the nextStep 
method 
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When the input layer calls the InputSynapse (1), the called object interrogates the Monitor
to know if the next pattern must be processed (2).
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5: the InputSynapse 
creates and injects in the 
net a ‘stop pattern’ 

4: the Monitor 
returns a false 
Boolean value 

3: the Monitor raises 
the netStopped event 

Since, as said, the last epoch is finished, the Monitor object raises a netStopped event (3)
and returns a false Boolean value to the InputSynapse (4).

The InputSynapse, because receives a false value, creates a ‘stop pattern’ composed of
a Pattern object with the counter set to –1, and injects it in the neural network (5). 
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Data 

6: all the layers stop their 
running threads when 
receive the ‘stop pattern’ 

All the layers of the net stop their threads – simply exiting from the run() method – when
they receive a ‘stop pattern’ (6).

The resulting behaviour is that the neural network is stopped, and no more patterns are
elaborated.
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7: the Teacher calculates 
and sets the global error 
contained in the Monitor  

8: the Monitor raises 
the errorChanged 
event  

The  TeacherSynapse  calculates  the  global  error  and  communicates  this  value  to  the
Monitor object (7), which raises an errorChanged event to its listeners (8).

Warning: As explained in the above process, the netStopped event raised by the Monitor
cannot be used to read the last error value of the net, nor to read the resulting output
pattern  from  a  recall  phase,  because  this  event  could  be  raised  when  the  last  input
pattern is still  travelling across the layers, before it reaches the last output layer of the
neural network.

So, to be sure to read the right values from the net, the rules explained below must be
followed:

Reading the error: to read the error of the neural network, the errorChanged event must
be waited for, so a neural network listener must be built, so the last error of the training
cycle can be read and elaborated at the end of the elaboration.  

Reading the outcome: to be sure to have received all the resulting patterns of a cycle
from a recall phase, a ‘stop pattern’ must be waited for from the output layer of the net. To
do this, an object belonging to the I/O components family must be built, and the code to
manage the output pattern must be written into it.
Appropriate  actions  can  be  taken  by  checking  the  ‘count’  parameter  of  the  received
Pattern.   Some pre-built  output  synapse  classes  are  provided  with  Joone,  and  many
others will be released in future versions.

3.4.4 How the patterns and the internal weights are represented 

3.4.4.1 The Pattern
The Pattern  object  is  the  ‘container’  of  the  data  used to  interrogate  or  train  a  neural
network.
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It  is  composed  of  two  parameters:  an  array  of  doubles  to  contain  the  values  of  the
transported pattern, and an integer to contain the sequence number of that pattern (the
counter).
The  dimensions  of  the  array  are  set  according  to  the  dimensions  of  the  pattern
transported.
The Pattern object is also used to ‘stop’ all the Layers in the neural network. When its
‘count’ parameter contains the value –1, all the layers that will receive that pattern will exit
from their ‘running’ state and will stop (the unique safe way to stop a thread in Java is to
exit  from its ‘run’  method).  Using this  simple mechanism the threads within which the
Layer objects run can easily be controlled.

3.4.4.2 The Matrix
The matrix object simply contains a matrix of doubles to store the values of the weights of
the connections and the biases. An instance of a matrix object is contained within both the
Synapse (weights) and Layer (biases) components.
Each element of a matrix contains two values: the actual value of the represented weight,
and the corresponding delta value. The delta value is the difference between the actual
value and the value of the previous cycle.
The  delta  value  is  useful  during  the  learning  phase,  permitting  the  application  of
momentum  to  quickly  find  the  best  minimum  of  the  error  surface.  The  momentum
algorithm adds the previous  variation to  the actual  calculated  weight’s  value.  See the
literature for more information about the algorithm.
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3.5 Technical details

The core  engine  of  Joone is  composed of  a small  number  of  interfaces  and abstract
classes  forming a nucleus of objects  that  implement the basic  behaviours of a neural
network illustrated in the previous chapter.
The following UML class diagram contains the main objects constituting the model of the
core engine of Joone:

All the objects implement the  java.io.Serializable interface, so each neural network built
with Joone can be saved as a byte stream to be stored in a file system or data base, or
be transported to other machines to be used remotely.
The two main components are represented by two abstract classes (both contained in the
org.joone.engine package): the Layer and the Synapse objects.

3.5.1 The Layer abstract class

The Layer object is the basic element that forms the neural net. 
It is composed of neurons, all having the same characteristics. This component transfers
the input pattern to the output pattern by executing a transfer function. The output pattern
is  sent  to  a vector  of  Synapse  objects  attached  to  the  layer's  output.  It  is  the  active
element of a neural net in Joone, in fact it runs in a separated thread (it implements the
java.lang.Runnable interface)  so that it can run independently from other layers in the
neural net.
Its heart is represented by the method run:
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    public void run() {
        while (running) {
            int dimI = getRows();
            int dimO = getDimension();
            // Recall phase
            inps = new double[dimI];

            this.fireFwdGet();
            if (m_pattern != null) {
                forward(inps);
                m_pattern.setArray(outs);
                fireFwdPut(m_pattern);
            }

            if (step != -1)
                // Checks if the next step is a learning step
                m_learning = monitor.isLearningCicle(step);
            else
                // Stops the net
                running = false;

  // Learning phase
            if ((m_learning) && (running)) {  
                gradientInps = new double[dimO];

                this.fireRevGet();
                backward(gradientInps);
                m_pattern = new Pattern(gradientOuts);
                m_pattern.setCount(step);
                fireRevPut(m_pattern);

            }
        }  // END while (running = false)
        myThread = null;
    }

The end of the cycle is controlled by the running variable, so the code loops until some
ending event occurs.
The two main sections of the code have been highlighted with a border:

3.5.1.1 The Recall Phase
The  code  in  the  first  block  reads  all  the  input  patterns  from  the  input  synapses
(fireFwdGet),  where  each  input  pattern  is  added  to  the  others  to  produce  the  inps
vector of doubles. It then calls the Forward method, which is an abstract method in the
Layer object. In the forward method the inherited classes must implement the required
formulas  of  the  transfer  function,  reading  the  input  values  from  the  inps vector  and
returning the result in the outs vector of doubles. By using this mechanism based on the
template pattern, new kind of layer can easily be built by extending the Layer object.
After this, the code calls the  fireFwdPut method to write the calculated pattern to the
output  synapses,  from which  subsequent  layers  can process  the  results  in  the  same
manner.
In more simple terms the layer object’s behaviour acts like a pump that decants the liquid
(the pattern) from one recipient (the synapse) to another.
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3.5.1.2 The Learning Phase
After  the  recall  phase,  if  the  neural  net  is  in  a  training  cycle,  the  code  calls  the
fireRevGet method  to  read  the  error  obtained  on  the  last  pattern  from  the  output
synapses, then calls the abstract  backward method where, like in the forward method,
the inherited classes must implement the processing of the error to modify the biases of
the neurons constituting the layer. The code does this task by reading the error pattern in
the gradientInps vector and writing the result to the gradientOuts vector.
After this, the code writes the error pattern contained in the gradientOuts vector to the
input  synapses (fireRevPut),  from which other layers can subsequently  process the
back propagated error signal.
To summarize the concepts described above, the Layer object  alternately ‘pumps’  the
input signal from the input synapses to the output synapses, and the error pattern from
the  output  synapses  to  the  input  synapses,  as  depicted  in  the  following  figure  (the
numbers indicate the sequence of the execution):
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3.5.2 Connecting a Synapse to a Layer
To connect a synapse to a layer, the program must call the Layer.addInputSynapse
method for an input synapse, or the Layer.addOutputSynapse method for an output
synapse.
These two methods, inherited from the NeuralLayer interface, are implemented in the
Layer object as follows:

    /** Adds a new input synapse to the layer
     * @param newListener neural.engine.InputPatternListner
     */
    public synchronized void addInputSynapse(InputPatternListener newListener) {
        if (aInputPatternListener == null) {
            aInputPatternListener = new java.util.Vector();
        };
        aInputPatternListener.addElement(newListener);
        if (newListener.getMonitor() == null)
            newListener.setMonitor(getMonitor());
        this.setInputDimension(newListener);
        notifyAll();
    }
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The Layer object has two vectors containing the list of the input synapses and the list of
the output synapses connected to it.
In the fireFwGet and fireRevPut methods the Layer scans the input vector and, for
each  input  synapse  found,  it  calls  the  fwGet and  the  revPut methods  respectively
(implemented by the input synapse from the InputPatternListener interface).
Look at the following code that implements the fireFwGet method:

    /**
     * Calls all the fwdGet methods on the input synapses to get the input
patterns
     */
    protected synchronized void fireFwdGet() {
        double[] patt;
        int currentSize = aInputPatternListener.size();
        InputPatternListener tempListener = null;

        for (int index = 0; index < currentSize; index++){
            tempListener = (InputPatternListener)
aInputPatternListener.elementAt(index);
            if (tempListener != null) {
                m_pattern = tempListener.fwdGet();
                if (m_pattern != null) {
                    patt = m_pattern.getArray();
                    if (patt.length != inps.length)
                        inps = new double[patt.length];
                    sumInput(patt);
                    step = m_pattern.getCount();
                }
            };
        };

    }

In the bordered code there is a loop that scans the vector of input synapses.
The same mechanism exists for the  fireFwPut and  fireRevGet methods applied to
the vector of output synapses implementing the OutputPatternListener interface.
This  mechanism is derived from the  Observer  Design Pattern,  where the Layer is the
Subject and the Synapse is the Observer.
Using these two vectors, it is possible to connect many synapses (both input and output)
to a Layer, permitting complex neural net architectures to be built.

3.5.3 The Synapse abstract class
The Synapse object represents the connection between two layers, permitting a pattern to
be passed from one layer to another.
The Synapse is also the ‘memory’ of a neural network. During the training process the
weighs  of  the  synapse  (contained  in  the  Matrix  object)  are  modified  according  the
implemented learning algorithm.
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As  described  above,  a  synapse  is  both  the  output  synapse  of  a  layer  and  the  input
synapse of the next connected layer in the NN. To do this, the synapse object implements
the InputPatternListener and the OutputPatternListener interfaces.
These interfaces contain respectively the described methods fwGet, revPut, fwPut and
revGet.

The following code describes how they are implemented in the Synapse object:

    public synchronized void fwdPut(Pattern pattern) {
        if (isEnabled()) {
            count = pattern.getCount();
            if ((count > ignoreBefore) || (count == -1)) {
                while (items > 0) {
                    try {
                        wait();
                    } catch (InterruptedException e) {
                        return; }
                }
                m_pattern = pattern;
                inps = (double[])pattern.getArray();
                forward(inps);
                ++items;
                notifyAll();
            }
        }
    }
   public synchronized Pattern fwdGet() {
        if (!isEnabled())
            return null;
        while (items == 0) {
            try {
                wait();
            } catch (InterruptedException e) {
                return null;
            }
        }
        --items;
        notifyAll();
        m_pattern.setArray(outs);
        return m_pattern;
    }

The Synapse is a shared resource of two Layers that, as already mentioned, run on two
separate threads. To avoid a layer trying to read the pattern from its input synapse before
the other layer has written it, the shared synapse in synchronized.

Looking  at  the  code,  the  variable  called  ‘items’  represents  the  semaphore  of  this
synchronization mechanism. After  the first  Layers  calls the  fwdPut method, the items
variable  is  incremented  to  indicate  that  the  synapse  is  ‘full’.  Conversely,  after  the
subsequent Layer calls the fwdGet method, this variable is decremented, indicating that
the synapse is ‘empty’.
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Both the above methods control the ‘items’ variable when they are invoked:

1. If  a layer  tries  to  call  the  fwPut method when  items is  greater  then zero,  its
thread falls in the wait state, because the synapse is already full.

2. In the fwGet method, if a Layer tries to get a pattern when items is equal to zero
(meaning  that  the  synapse  does  not  contain  a  pattern)  then  its  corresponding
thread falls in the wait state.

The notifyAll call at the end of the two methods permits the ‘awakening’ of the other
waiting  layer,  signalling  that  the  synapse  is  ready  to  be  read  or  written.  After  the
notifyAll,  at  the end of the method,  the running thread releases  the owned object
permitting another waiting thread to take ownership. Note that although all waiting threads
are notified by notifyAll, only one will acquire a lock and the other threads will return to
a wait state.
The synchronizing mechanism is the same in the corresponding  revGet and  revPut
methods for the training phase of the neural network.
The fwPut method calls the abstract forward method (at the same time as the revPut
calls  the  abstract  backward method)  to  permit  to  the inherited  classes  to  implement
respectively  the  recall  and  the  learning  formulas,  as  already  described  for  the  Layer
object (according to the Template design pattern).
By writing the appropriate code in these two methods, the engine can be extended with
new synapses and layers implementing whatever learning algorithm and architecture is
required.
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4 I/O components: a link with the external world

The  I/O  components  of  the  core  engine  implement  the  mechanism  needed  to  make
possible the connection of a neural network to external sources of data, either to read the
patterns to elaborate, or to store of the results of the network to whatever output device is
required.
All the I/O components extend the Synapse object, so they can be ‘attached’ to the input
or the output of a generic Layer object since they expose the same interface required by
any i/o listener of a Layer.
Using this simple mechanism the Layer is not affected by the kind of synapse connected
to it because as they all have the same interface, the Layer will continue to call the Get
and Put methods without needing to know more about their specialization.

4.1 The Input mechanism

To permit the user to utilize any source of data as input of a neural network, a complete
input mechanism has been designed into the core engine.
The  main  concept  underlying  the  input  system  is  that  a  neural  network  elaborates
‘patterns’.  A pattern is composed by a row of values  [x11,  x12,  …, x1N]  representing an
instance of the input dataset.
The neural network reads and elaborates sequentially all the input rows (all constituted by
the same number of values – or columns) and for each one it generates an output pattern
representing the outcome of the entire process.
Now we need two main features to reach the goal to make this mechanism as more as
flexible we can:

Firstly, to represent a row of values Joone uses an array of double, hence to permit to use
whatever format of data from whatever source, we need a ‘format converter’. It’s based
on the concept that a neural network can elaborate only numerical data (integer or real),
hence a system to convert any external format to numeric values is provided. This acts as
a ‘pluggable’  driver:  with  Joone  is  provided  an  interface  and  some basic  drivers  (for
instance one to read ASCII values and another to read Excel sheets) to convert the input
values to an array of double - the unique format accepted by a neural network to work
properly.
This  mechanism  is  expansible,  as  everyone  can  write  new  drivers  implementing  the
provided interfaces.

Secondly, because, normally, not all the available rows and columns have to be used as
input data, a ‘selection mechanism’ to select the input values is provided. This second
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feature is implemented as a component interposed between the above driver and the first
layer of the neural network.

The overall input system is depicted in the following figure:
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Note that the component connected to the first layer of the neural network is built like a
synapse, as it implements the corresponding interface, so the input layer is not bothered
about the kind of synapse attached to it.

This is one of the most important characteristics of Joone, permitting to build whatever
architecture simply gluing together several components. 

4.2 The Output: using the outcome of a neural network

The Output components allow a neural network to write output patterns to a whatever
storing support.
They write all the values of the pattern passed by the calling attached Layer to an output
stream, permitting the output patterns from an interrogation phase to be written as, for
example, ASCII files, FTP sites, spreadsheets, charting visual components, etc.

Joone has several  real  implementations  of  the output  classes  to write  patterns  in the
following formats:

• Comma separated ASCII values
• Excel spreadsheets
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• Java Arrays - to write the output in a 2D array of doubles, to use the output of a
neural network from an embedding or external application.

In the Chapter 9 some techniques to get and use the outcome of a neural network will be
shown.
Many  others  output  components  can  be  added  simply  extending  the  basic  abstract
classes provided with the core engine; in this manner Joone could be used to manipulate
several  physical  devices  like  robots  arms  servomotors,  regulator  valves,
servomechanisms, etc.

4.3 The Switching Mechanism

Sometime it is  useful  to change the input source of a neural network depending on a
network’s state or on some event. For example it might be the necessity to test a trained
neural network on several input patterns, or to train a net using input patterns coming
from several sources.
The same idea would also be useful on the output of a neural network because the user
might need to dynamically change the destination of the network output stream.

This mechanism is shown in the following figure:
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Joone  has  a  mechanism  to  dynamically  change  the  input  source  and  the  output
destination of a neural network. This is based on two components: the  Input Switch
and the Output Switch.

4.3.1 The InputSwitch
Any InputSynapse (any object capable to read external source of data) can be attached to
this  component.  As  it  acts  as  a  switch,  the  active  input  source  (i.e.  the  input  source
attached to  the neural  network)  can be changed dynamically  simply  by  indicating  the
name of the input synapse that is to be made the active input of the neural network.

4.3.2 The OutputSwitchSynapse
Any Output synapse can be attached to this component. As it acts as an output switch,
the active output target can be dynamically changed simply by indicating the name of the
output synapse that is to be made the active output of the neural network.

4.4 The Validation Mechanism

Validating  a  neural  network  during  its  training  cycles  is  very  useful  to  determine  the
generalization capability of the net. This verification is made by measuring the error of the
net using a set of patterns that have not been used by the net during the training cycles.

It is a good rule to reserve a certain number of rows of the training patterns to execute the
validation check. The following outlines how this would be done with a neural network
built with Joone.
First of all, a mechanism is required to automatically switch between the training and the
validation data sets. To do this, an extension of the Input Switch has been built.

The following schema illustrates the required architecture:
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The  LearningSwitch can  change its  state  according  to  the  value  of  the  validation
parameter  of  the Monitor  object.  Hence,  depending  on this  parameter,  the  switch  will
either  connect  the  training  or  the  validation  data  set  to  the  input  layer  of  the  neural
network. 

The  same  schema  must  also  be  applied  to  the  desired data  sets,  inserting  a
LearningSwitch  between  them (the  training  and  validation  desired  data  sets)  and  the
TeachingSynapse.

After having built a neural network according to the described architecture, the validation
check can be performed in the following manner:

1. The neural network is trained for a certain number of cycles.
2. A  clone  of  the  neural  network  is  obtained  by  calling  the  NeuralNet.cloneNet()

method.
3. The Monitor of the cloned net is set to these values:

a. The totCycles parameter is set to 1.
b. The validation parameter is set to true.

4. The neural network is interrogated, and the RMSE value is measured.
5. If the RMSE value is less than a desired threshold, the training cycle is stopped,

otherwise the cycle continues from the step 1.

Steps 2, 3,  4 and 5 can be performed in response to a cycleTerminated event of  the
trainee neural network.

Note that it is not necessary to explicitly set the validation parameter of the net before
the step 1 because its default value is equal to false (i.e. the training data set is connected
to the input layer).
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The cloning of the net in the step 2 is performed to obtain a ‘dummy’ neural network to
change and use for the validation steps, without having to save and then restore the old
state to correctly continue the  training.

A complete example about how to implement this technique is described in the Chapter 9.
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4.5 Technical details

The I/O components of the core engine are stored in the org.joone.io package.
They permit both the connection of a neural network to external sources of data and the
storage of the results of the network to whatever output device is required.
The object model is shown in the following figure:

The abstract StreamInputSynapse and StreamOutputSynapse classes represent the core
elements of the IO package.

They extend the abstract Synapse class, so they can be ‘attached’  to the input or the
output of a generic Layer object since they expose the same interface required by any i/o
listener of a Layer.
Using  this  simple  mechanism  the  Layer  is  not  affected  by  the  category  of  synapses
connected to it because as they all have the same interface, the Layer will continue to call
the xxxGet and xxxPut methods without needing to know more about their specialization.

4.5.1 The StreamInputSynapse
The StreamInputSynapse object is designed to provide a neural network with input data
by providing a simple method to manage data that is organized as rows and columns, for
instance as semicolon-separated ASCII input data streams.
Each value in a row will be made available as an output of the input synapse, and the
rows will be processed sequentially by successive calls to fwdGet method. 
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As some files may contain  information additional  to the required data,  the parameters
firstRow,  lastRow,  firstCol and  lastCol, derived  from  the  InputSynapse
interface, may be used to define the range of usable data.
The  Boolean  parameter  stepCounter indicates  if  the  object  is  to  call  the
Monitor.nextStep() method for each pattern read.

By default it is set to TRUE but in some cases it must be set to FALSE. Read below to
see when and why:
In  a  neural  network  that  is  to  be  trained,  there  needs  to  be  at  least  two
StreamInputSynapse objects: one to give the sample input patterns to the neural network
and  another  to  provide  the  net  with  the  desired  output  patterns  to  implement  some
supervised learning algorithm.
Since the Monitor object is the same for all the components in a neural network built with
Joone, there can be only one input component that calls the Monitor.nextStep() method,
otherwise the counters  of the Monitor  object  will  be modified twice (or more) for  each
cycle.
To avoid  this  side  effect,  the  stepCounter  parameter  of  the  StreamInputSynapse  that
provides the desired output data to the neural network, is set to FALSE.   

A StreamInputSynapse can store its input  data  permanently  by setting the  buffered
parameter to TRUE (the default).  So an input component can be saved or transported
along with its input data, permitting a neural network to be used without the initial input
file.  This  feature  is  very  useful  for  remotely  training  a neural  network  in  a  distributed
environment, as provided by the Joone framework.

The  FileInputSynapse and  URLInputSynapse objects are real implementations of
the abstract StreamInputSynapse class which read input patterns from files and http/ftp
sockets respectively.

To extract all the values from a semicolon-separated input stream, the above two classes
use the StreamInputTokenizer object. These are able to parse each line of the input data
stream to extract all the single values from it and return them by the  getTokenAt and
getTokensArray methods.

To  better  understand  the  concepts  underlying  the  I/O  model  of  Joone,  we  must
considerate that the I/O component  package is based on two distinct  tiers  to logically
separate the neural network from its input data.

Since a neural network can natively process only floating point values, the I/O of Joone is
based on this assumption, then if the nature of the input data is already numeric (integer
or float/double), the user doesn’t need to make further format transformations on them.

The I/O object model is based on two separated levels of abstraction, like depicted in the
following figure:
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The two colored blocks represent the objects that must be written to add a new input data
format  and/or device to the neural network.

The first  is  the  ‘driver’  that  knows  how to  read the input  data  from the specific  input
device.
It converts the specific input data format to the neural network’s accepted numeric double
format,  also  exposing  a  line/token  (e.g.  row/column)  based  interface  to  provide  the
xxxInputSynapse with the patterns read. 

The latter is the ‘adapter’ that reads the data provided by the xxxInputTokenizer,  selects
only  the  desired  columns  and encapsulates  them into  a Pattern  object,  one for  each
requested row.
Each call to its fwdGet() method will provide the caller with a new read Pattern.

To add a new xxxInputSynapse that reads patterns from a different kind of input data to
semicolon separated values, you must:

1. Create  a  new  class  implementing  the  PatternTokenizer  interface  (e.g.
xxxInputTokenizer)

2. Write all the code necessary to implement all the public methods of the inherited
interface.

3. Create a new class inherited from StreamInputSynapse (e.g. xxxInputSynapse).
4. Override  the  abstract  method  initInputStream,  writing  the  code  necessary  to

initialise the ‘token’ parameter of the inherited class. To do this, you must call the
method  super.setToken  from within  initInputStream,  passing  the  newly  created
xxxInputTokenizer  after  having  initialised  it.  For  more  details  see  the
implementation built into FileInputSynapse.
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The  actual  implemented  StreamInputTokenizer is  an  object  to  transform  semicolon
separated ASCII values to numeric  double values,  and it  was the first  implementation
made because the most common format of data is contained in text files; if the input data
are already contained in this ASCII format,  you can just use it,  without implement any
transformation.

For data contained in array of doubles, (i.e. for input provided from another application),
we have built the  MemoryInputTokenizer and the  MemoryInputSynapse classes that
implement the above two layers to provide the neural network with data contained in a 2D
array of doubles.
To use them, simply create a new instance of the MemoryInputSynapse and set the input
array calling its  setInputArray method, then connect it to the input layer of the neural
network.

4.5.2 The StreamOutputSynapse

The StreamOutputSynapse object allows a neural network to write output patterns. 
It writes all the values of the pattern passed by the call of fwdPut method to an output
stream.

The  values  are  written  separated  by  the  character  contained  in  the  separator
parameter (the default is the semicolon), and each row is separated by a carriage return.
Extending this class allows output patterns from an output device to be written as, for
example, ASCII files, FTP sites, spreadsheets, charting visual components, etc.

4.5.3 The Switching mechanism’s object model

The following class diagram shows the corresponding object model:
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4.5.3.1 The InputSwitchSynapse
Using the  addInputSynapse method, any xxxInputSynapse (any object inheriting the
StreamInputSynapse class) can be attached to this component. As it acts as a switch, the
active input source can be changed dynamically simply by calling the setActiveInput
(name) method, passing as a parameter the name of the input synapse that has to be
made the active input of the neural network.
Calling the  setDefaultInput(name) method sets the default input connected to the
net.

4.5.3.2 The OutputSwitchSynapse
Using the  addOutputSynapse method, any object inheriting the OutputPatternListener
class can be attached to this component. As it acts as an output switch, the active output
target  can  be  dynamically  changed  simply  by  calling  the  setActiveOutput(name)
method, passing as a parameter the name of the output synapse that has to be made the
active output of the neural network.
As with the InputSwitchSynapse object, calling the setDefaultOutput(name) method
sets the default output connected to the net.

4.5.3.3 The LearningSwitch
As described above, the LearningSwitch permits to change dynamically the input source
connected to a neural network according to its validation flag.
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By calling the addTrainingSet method, whatever xxxInputSynapse (any object inheriting
the StreamInputSynapse class) can be attached to this component containing the training
input  patterns,  whereas  by  calling  the  addValidationSet  permits  to  set  the
xxxInputSynapse containing the validation patterns that will be used when the validation
parameter is true.
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5 Teaching a neural network: the supervised
learning

To implement the supervised learning techniques, some mechanism is needed to provide
the  neural  network  with  the  error  for  each input  pattern,  expressed  as  the  difference
between the output generated by the actual processed pattern and the desired output
value for that pattern.

5.1 The Teacher component

The  function  of  this  component  (the  TeacherSynapse)  is  to  calculate  the  difference
between  the  output  of  the  neural  network  and  a  desired  value  obtained  from  some
external data source.
The calculated difference is injected backward into the neural network starting from the
output layer of the net, so each component can process the error pattern to modify the
internal connections by applying some learning algorithm.

The TeacherSynapse object, as its name suggests, implements the Synapse object so
that it can be attached as the output synapse of the last layer in the neural network.
This basic rule, as you probably have already noticed, is a rule of thumb of all the main
processing elements of Joone, permitting in this manner to easily attach each component
to each other (compatibly with their nature) without to be worried about their particular
specialization.

The internal composition of the Teacher object is depicted in the following figure:
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The TeacherSynapse object receives – as does any other Synapse – the pattern from the
preceding  Layer.  The  Teacher  reads  the  desired  pattern  for  that  cycle  from  an
InputSynapse and calculates the difference between the two patterns, making the result
available to the connected Layer,  which can get and inject  it  in the neural  network  to
backpropagate the measured error.

So the training cycle is complete! The error pattern can be transported from the last to the
first layer of the neural network using the mechanism illustrated in the previous chapters
of this paper.
In  this  simple  manner  the  output  layer  doesn’t  concern  itself  about  the  nature  of  the
attached  output  synapse,  since  it  continues  to  call  the  same methods  known  for  the
Synapse object.

To give to an external application the RMSE – root mean squared error - calculated on
the last cycle, at the end of each cycle the TeacherSynapse pushes this value into a FIFO
– First-In-First-Out - structure. From here any external application can get the resulting
RMSE value in any moment during the training cycle.
The use of a FIFO structure permits loose coupling between the neural network and the
external thread that reads and processes the RMSE value, avoiding the training cycles
having to wait before processing of the RMSE pattern.

In fact, to get the RMSE values, simply connect another Layer - that runs on a separate
Thread - to the output of the TeacherSynapse object, and connect to the output of this
Layer, for instance, a FileOutputSynapse object, to write the RMSE values to an ASCII
file, as depicted in the following figure:
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To simplify  the  construction  of  the  above  described  chain  –  teacher -> fifo ->
layer – a new object (called TeachingSynapse) has been built and inserted in the core
engine.
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This compound object is a fundamental example about how to use the basic components
of  Joone to  built  more  complex  components  that  implement  some more sophisticated
feature. In other words, this is an additional example of the simplicity of the LEGO bricks
system philosophy on which Joone is based.

5.2 Comparing the desired with the output patterns

In some cases it  should be useful  to compare the actual  output of  the trainee neural
network  with  the  desired  patterns  used  during  the  training  phase.  To  do  this,  the
ComparingSynapse has been built.

It implements the same interface of the TeachingSynapse class, so it can be used exactly
like that component.

The unique difference is its output, represented by a pattern that is the composition of the
two  input  patterns  (that  one  coming  from the  output  layer  and  the  desired  one),  like
depicted in the following figure:

As you can see, the output pattern's length is the double of that of the two inputs, and
contains the composition of their content.

This component can be used to plot, for instance, the two signals into the same chart
component, or can be used to write the output+desired patterns as columns of the same
output file for further uses. 

5.3 The Supervised Learning Algorithms

As  everybody  already  knows,  in  the  supervised  learning,  a  neural  network  learns  to
resolve a problem simply by modifying its internal connections (biases and weights) by
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back-propagating the difference between the current output of the neural network and the
desired response.

In order to obtain that, each bias/weight of the network's components (both layers and
synapses) is adjusted according to some specific algorithm.

Of course,  as there isn't  just  one algorithm to change the internal weights of a neural
network, we need a flexible mechanism in order to be able to set the training algorithm
suitable for a determined problem.
Joone provides the user with several learning algorithms, and in the following paragraphs
we'll see them in detail.

Before to start, I want to advise all you that there isn't any optimal algorithm that is good
for whatever problem. You need to try several of them in order to find the best one for
your  own  specific  application  (this  is  why  Joone  comes  with  a  distributed  training
environment – the DTE - to permit to train in parallel mode different neural networks in
order to efficiently find the best one).

5.3.1 The basic On-Line BackProp algorithm

This is the most common used training algorithm.
It  adjusts  the  Layers'  biases  and  the  Synapses'  weights  according  to  the  gradient
calculated by the TeacherSynapse, and back-propagated by the backward-transportation
mechanism already illustrated in the previous chapters.

It is called 'On-Line' because it adjusts the biases and weights after each input pattern is
read  and  elaborated,  so  each  new  pattern  will  be  elaborated  using  the  new
weights/biases calculated during the previous cycles.

The algorithm searches for a optimal combination of net's biases/weights by moving a
virtual point along a multi-dimensional error surface, until a good minimum is found, like
represented  by  the  following  figure  (represented  in  two  dimensions  for  the  sake  of
semplicity):
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The algorithm uses two parameters to work: the learning rate, that represents the 'speed'
of  the  virtual  point  along  the  error  surface,  and  the  momentum,  that  represents  the
'inertia' of that point.
Both these parameters must be set to a value in the range [0, +1], and good values can
be found only through several trials. 
Remember that the momentum can be set to 0, whereas the learning rate must be always
set to a value greater than zero, otherwise the network cannot learn.

5.3.2 The Batch  BackProp algorithm
This is a variation of the on-line algorithm, because it works exactly like that one, except
that the biases/weights adjustments are applied only at the end of each epoch (i.e. after
all the input patterns of an entire epoch have been elaborated). 
It works by storing in a separate array all the changes calculated for each pattern, and by
applying them only when the current epoch is finished.

In this manner each pattern belonging to the same epoch will  be elaborated using an
unmodified copy of the weights/biases. This causes more memory to be consumed by the
network, but in some cases the batch algorithm converges in less epochs.

This  algorithm uses,  beside the same parameters  of  the on-line version,  also another
parameter named batch size. It indicates the number of input patterns during which we
want to use the batch mode, before to apply the on-line modification of the biases/weighs.
This parameter, normally, is set to the number of training patterns, but by setting it to a
smaller value, we can train our network also in mixed-mode.

5.3.3 The Resilient BackProp algorithm (RPROP)
This is an enhanced version of the batch backprop algorithm, and for several problems it
converges very quickly.
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It uses only the sign of the backpropagated gradient to change the biases/weights of the
network, instead of the magnitude of the gradient itself.

This because, when a Sigmoid transfer function is used (characterized by the fact that its
slope  approaches  zero  as  the  input  gets  large),  the  gradient  can  have  a  very  small
magnitude, causing small changes in the weights and biases, even though the weights
and biases are far from their optimal values. 

Based  on  this  modified  algorithm,  Rprop  is  generally  much  faster  than  the  standard
steepest descent algorithm.  
As said, it is a batch training algorithm, and uses only the batch size property.

Note:  the  value  of  the learning  rate  and  the  momentum properties  doesn't  affect  the
calculus of the Rprop algorithm.

5.3.4 How to set the learning algorithm
In order to choose the needed learning algorithm of a neural network, the Monitor object
exposes the getter/setter methods of the following properties:

Learners: it's a indexed list containing all the declared learners (i.e. objects implementing
the org.joone.engine.Learner interface – see the technical details)
learningMode: it's an integer containing the index of the chosen Learner object from the
above list

In order to set a learning algorithm you need to write the following java code before to
start the network:

Monitor.getLearners().add(0, "org.joone.engine.BasicLearner"); // On-line
Monitor.getLearners().add(1, "org.joone.engine.BatchLearner"); // Batch
Monitor.getLearners().add(2, "org.joone.engine.RpropLearner"); // RPROP
Monitor.getLearners().add(3, "<whatever_else_learner_class>"); // ...

Monitor.setLearningMode(1); // We have chosen the Batch learning in this case

As you can see,  you can add whatever  learning modes you want,  after  that  you can
choose the current one simply by setting the learningMode property.

Of  course  you  need  to  declare  only  the  learner  objects  you want  to  use,  not  all  the
existing ones! And if you need to use only the basic on-line mode, then you don't need to
do anything, as that learning mode is the default learner, and it's activated whenever no
learners have been declared.
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5.4 Technical details

5.4.1 The learning components object model

All the learning components are in the org.joone.engine.learning package, and its
object model is represented in the following figure:

As you can see, all the above described components are represented.
The TeachingSynapse is a compound object containing, other than a TeacherSynapse
object, also a LinearLayer.
When you put a TeachingSynapse within a neural network, you must simply connect it to
the last Layer of the net (using Layer.addOutputSynapse) and set the desired property to
the StreamInputSynapse object containing the desired output patterns.

Nothing else, as the TeachingSynapse will provide you with all the services needed to
calculate the error to feed the neural network during the training supervised phase.
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The error is transmitted, by the LinearLayer, to the attached OutputPatternListener object.

The ComparingSynspase is also contained in this class diagram, and inherits the same
interface of the TeachingSynapse class (the ComparingElement interface), hence it can
be used in the same manner, permitting, in this case, to compose the two different input
data sets – the output and the desired one – to compare them.

As  you  can  see,  both  the  two  families  of  components  –  Theaching/Teacher  and
Comparing/Comparison – belong to the same class of components, and have the same
internal composition.
Both they read two external sources of data: 

1.  the output pattern from the output layer of the neural network and
2.  the desired pattern from an external data source

Therefore the unique difference is represented by the pattern calculated as output:

1.  The  Teaching  family  calculates  the  difference between  the  two  patterns  (i.e.  the
current training error of the neural network)

2.  whereas  the  Comparing  family  calculates  the  composite  pattern  obtained  by
combining the above two patterns 

5.4.2 The Learners object model

The following is the scheme of the Learner/Learnable mechanism:
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The org.joone.engine.Learner interface describes all the methods that each learner
must implement. A Learner contains all the formulas that implement the corresponding
learning algorithm, and, within each of them exist the implementations for both the Layer
biases'  changes  (requestBiasUpdate)  and  the  Synapse  weights'  changes
(requestWeightUpdate).

Based on the content  of  the learningMode property  of  the Monitor,  at  the start  of  the
neural network both the Layers and the Synapses receive a pointer to the active learner,
so each component  will  be able to call  the needed Learner's  method according  to its
nature, in order to permit their biases/weights to be adjusted during the training phase.

Each  component  that  can  be  manipulated  by  a  Learner  must  implement  the
org.joone.engine.Leaneable  interface  and,  as  described  by  the  above  diagram,  two
Learnable  objects  exist:  LeanableLayer –  implemented  by  the  Layer  –  and
LearnableSynapse – implemented by the Synapse object.
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6 The Plugin based expansibility mechanism

The  core  Joone  engine  is  built  to  be  extended  and  controlled  by  any  custom  class
implemented by the user.
This extensibility is obtained by using plugins that can be attached to some components
of the neural network.
Three main kind of plugins exist in Joone:

1. The input plugins
2. The output plugins
3. The monitor plugins

These are described here in detail.

6.1 The Input Plugins

These plugins are very useful for implementing mechanisms to control the pre-processing
of the input data for a neural network.

Several input plugins have been implemented:
• The NormalizerPlugin to limit the input data into a predefined range of values
• The  CenterOnZeroPlugin to  center  the  input  values  subtracting  their  average

value around the origin
• The MinMaxExtractorPlugin to extract the turning points of a time series
• The MovingAveragePlugin to calculate the average values of a time series

Other pre-processing plugins can be built simply by extending the above classes.

6.2 The Output Plugins

The output plugins are very useful to post-process the outcome of a neural network. This
could be useful to rescale an output signal to obtain a range equal to that of the original
input patterns.

At this moment only one output plugin exists - the UnNormalizerOutputPlugin class.
It,  as already said,  serves to rescale the output values to a predefined range, and it's
useful when a NormalizerInputPlugin is used to normalize the input patterns. It can be
used  simply  attaching  it  to  an  xxxOutputSynapse,  and  setting  its  OutDataMin  and
OutDataMax parameters to the desired min/max output range values.
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As for each other component in the joone's core engine, obviously also in this case it's
possible to build new output plugins simply extending the basic ones. 

6.3 The Monitor Plugins

As mentioned in earlier, a notification mechanism has been implemented in Joone’s core
engine to inform all the interested objects about some events of the neural network. Using
this mechanism, a plugin system has been implemented that permits useful behaviour to
be added in response to events raised by the net.
This mechanism is very simple, and permits to provide the network with pre-built useful
behaviours in response to particular events.
The events that can be handled are:

• the netStarted event
• the netStopped event
• the CycleTerminated event
• the ErrorChanged event

They can be subdivided into two categories:

1. One-time events, like the netStarted and netStopped events
2. Cyclic events, like the CycleTerminated and ErrorChanged events

With Joone are delivered two Monitor Plugins that permit to control some parameters of
the neural network during the learning phase by handling the cyclic ErrorChanged event:

The  Linear  Annealing plugin  changes  the  values  of  the  learning  rate  (LR)  and  the
momentum parameters linearly during training. The values vary from an initial value to a
final value linearly, and the step is determined by the following formulas:

step = (FinalValue - InitValue) / numberOfEpochs
LR = LR – step

The  Dynamic Annealing  plugin controls the change of the learning rate based on the
difference between the last two global error (E) values as follows:

• If E(t) > E(t-1) then LR = LR * (1 - step/100%).
• If E(t) <= E(t-1) then LR remains unchanged.

The ‘rate’  parameter indicates how many epochs occur between an annealing change.
These plugins are useful  to implement the annealing (hardening)  of  a neural  network,
changing the learning rate during the training process. 
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With the Linear Annealing plugin, the LR starts with a large value, allowing the network to
quickly find a good minimum, and then the LR reduces permitting the found minimum to
be fine tuned toward the best value, with little the risk of escaping from a good minimum
by a large LR.

The Dynamic Annealing plugin is an enhancement to the Linear concept, reducing the LR
only as required, when the global error of the neural net augments are larger (worse) than
the previous step’s error. This may at first appear counter-intuitive, but it allows a good
minimum to be found quickly and then helps to prevent its loss.

To explain why the learning rate has to diminish as the error increases, look at the above
figure:
 
 

Error surface 

Actual error 
of the NN 

Absolute minimum 

Relative minimum 

All the weights of a network represent an error surface of n-dimensions (for simplicity, in
the  figure  there  are  only  two  dimensions).  To  train  a  network  means  to  modify  the
connection weights so as to find the best group of values that give the minimum error for
certain input patterns.

In the above figure, the red ball represents the actual error. It ‘runs’ on the error surface
during the training process, approaching the minimum error. Its velocity is proportionate to
the value of the learning rate, so if  this velocity  is too high, the ball  can overstep the
absolute minimum and become trapped in a relative minimum.

To avoid this side effect, the speed (learning rate) of the ball needs to be reduced as the
error becomes worse (the grey ball).

6.4 The Scripting Mechanism

http://www.joone.org 70



Joone Core Engine The Complete Guide

Joone  has  its  own  scripting  mechanism  based  on  the  BeanShell
(http://www.beanshell.org) scripting engine. 
It  takes  advantage  of  the  possibility  of  intercepting  all  the  events  raised  by  a  neural
network from within a Monitor plugin. To make possible the management of the neural
network’s events by an external script, a complete system has been implemented with the
following features:

1. It is expansible, as makes possible the addition of new scripting interpreters simply
by creating new classes inheriting a basic interface, without having to change any
other class

2. The entire mechanism,  being isolated by the rest  of  the core engine,  does not
depends on the BeanShell’s libraries, making possible the distribution of a neural
network  without  having  to  also  distribute  the  scripting  interpreter  if  the  neural
network does not use this feature.

3. It  permits  to write macros  in response to any of the events raised by a neural
network,  permitting  to  implement  whatever  behaviour  at  run-time  without  the
necessity to write and compile java code.

4. The  macros  are  embedded  in  the  neural  network,  and  therefore  they  are
stored/transported  along  with  the  neural  network  at  which  belong.  This  is  a
powerful mechanism capable to transport and remotely run some kind of ‘custom
logic’ to control the run-time behaviour of a neural network.

The scripting mechanism contains two types of macros:  event-driven and user-driven
macros.

Event-driven macros are all macros associated with the defined events of the neural
network. It is possible to execute these scripts in response to a net event. It is impossible
to add, remove or rename these macro because they are inherently connected to the
events that a neural network can raise. The user can only set their text. If no action is
required for an event, the corresponding text must be cleared (i.e. set to an empty string).

User-driven macros  are  macros  added  by  the  user  that  are  executed  at  the  user’s
request by calling a method. These macros can be added, removed or renamed as they
are not linked to any net’s event.
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6.5 Technical details

6.5.1 The Input/Output Plugins object model

The mechanism, contained in the  org.joone.util package, is based on the abstract
classes ConverterPlugin and OutputConverterPlugin.

The following figure depicts the object model of the input/output plugin mechanism:

The ConverterPlugin can be attached to a StreamInputSynapse with the setPlugIn
() method, and can be extended to implement any required pre-processing of the input
patterns read by the parent Input Synapse.
To provide the processing, classes inheriting the ConverterPlugin must implement the
abstract method convert() with the necessary code to pre-process the data.
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The code for the  NormalizerPlugin is shown as an example. This class normalizes
the input pattern to a range delimited by the min and the max parameters:

    protected void convert(int serie) {
        int s = getInputVector().size();
        int i;
        double v, d;
        double vMax = getValuePoint(0, serie);
        double vMin = vMax;
        Pattern currPE;

  /* Calculates the max and the min values of the input patterns */
        for (i = 0; i < s; ++i) {
            v = getValuePoint(i, serie);
            if (v > vMax)
                vMax = v;
            else
                if (v < vMin)
                    vMin = v;
        }
        
        d = vMax - vMin;

  /* Calculates the new normalized values */
        for (i = 0; i < s; ++i) {
            if (d != 0.0) {
                v = getValuePoint(i, serie);
                v = (v - vMin) / d;
                v = v * (getMax() - getMin()) + getMin();
            }
            else
                v = getMin();
            currPE = (Pattern) getInputVector().elementAt(i);
            currPE.setValue(serie, v);
        }
    }

Firstly, in the first for(…) loop, the min and the max values of the input data are calculated,
then in the second for(…) loop the new normalized values of the input data are calculated
using the following formula:

normx=
x−minx

max x−min x
⋅UpperLimit−LowerLimit LowerLimit

Note the methods used to read/write the input values:
• getValuePoint(row, serie) is used to extract an input value
• Pattern.setValue(serie, value) instead is used to write the new calculated value

The serie variable represents the column affected by the pre-processing action, and it is
passed as a parameter to the convert method.
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Because many pre-processing calculations require all the values of the input data to be
read before  the data can actually  be processed  (as  in  the  above example),  the input
plugins can be attached only to a buffered input synapse. So calling the setPlugIn method
on an unbuffered synapse sets its state to ‘buffered’.

To allow more than one pre-processing calculation to be applied to the input data, the
input plugins can be attached in sequence, building a chain structure.

To  do  this,  the  ConverterPlugin  itself  has  a  setPlugIn  method,  like  the
StreamInputSynapse class. This allows one plugin to be attached to another plugin, pre-
processing the input data using as many as plugins as required.
Note the auto-association link on the ConverterPlugin class in the above object model.
The chained input plugins will be invoked in the same order that they have been attached
in the chain. 

To allow the input synapse and the attached plugins to be informed of changes to any
parameter in any plugin constituting the chain, a notification mechanism based on the
InputPluginEvent object has been implemented.

Once an input plugin is attached to an input synapse or to another input plugin, the parent
object is registered as a listener to the newly attached object. Any change made to any
plugin attached to the chain raises an event to its parent, which is propagated up to the
chain until  it  reaches  the parent  input  synapse.  Here,  a new pre-processing  action is
invoked calling the convert() method on each attached input plugin. Thus the new pre-
processed input data can be calculated.

For this reason, when a new input plugin is implemented, the fireDataChanged method
must be called from within the setXXX( ) method of any parameter that affects the pre-
processing calculations. 

As an example, consider the setMin() method of the NormalizerPlugin class:

    /**
     * Sets the min value of the normalization range
     */
    public void setMin(double newMin) {
        min = newMin;
        super.fireDataChanged();
    }

6.5.2 The Monitor Plugin object model

The following figure illustrates the object model of the monitor plugin system contained in
the org.joone.util package: 
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As depicted in the above class diagram, the system is based around the MonitorPlugin
object, which implements the NeuralNetListener interface.
To attach a plugin to a Monitor object, the  addNeuralNetListener method must be
invoked, passing the object inheriting the MonitorPlugin as parameter.

To build a  new plugin,  the  MonitorPlugin object  must  be extended.  To implement  the
actions needed for each raised event,  the corresponding  manageXXX abstract  method
must be coded, where XXX is:

• Start to manage the netStarted event
• Stop  to manage the netStopped event
• Cycle to manage the CycleTerminated event
• Error to manage the ErrorChanged event

The monitor plugins are very useful for dynamically controlling the parameters and/or the
behaviour of a neural network.

For instance, to stop the training of a neural network when its RMSE is less than 0.01, an
object could be written that extends  the  MonitorPlugin class containing the following
code:

Public class stopCondition extends MonitorPlugin {
protected void manageError(Monitor mon) {

double rmse = mon.getGlobalError();
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if (rmse < 0.01)
    mon.Stop();
}

}

The  MonitorPlugin.rate parameter allows the interval (number of cycles)  between
two events’ calls to be set. This is useful for the recurring events (the  cycleTerminated
and the errorChanged events) to avoid calling that event handler too often, which would
reduce valuable CPU resource available to the running of the neural network.

6.5.3 The Scripting mechanism object model

The actual implementation of the scripting mechanism is based on the BeanShell scripting
library, but indeed it has been built to be used with whatever else scripting library, simply
by extending some basic interfaces.

The complete object model, contained in the org.joone.script package, is depicted
in the following class diagram:

The  NeuralNet  object  has  a  pointer  to  the  MacroInterface interface,  which  is
implemented by the  MacroPlugin object. This interface has been introduced to avoid
having direct dependencies between the NeuralNet class and the BeanShell’s libraries.
There are two reasons for this:

• The  MacroInterface  makes  the  addition  of  new  scripting  interpreters  possible
simply by creating new classes inheriting that interface, without having to change
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any other class, as the MacroPlugin is the unique class that in this object model
must reference.

• The  NeuralNet  object,  pointing  to  an  interface,  does  not  depends  on  the
BeanShell’s libraries, making possible the distribution of a neural network without
having to also distribute the scripting interpreter if the neural network doesn't need
to use this feature.

The MacroManager object is a class ‘container’ of all the macros defined in the neural
network.  Each macro is represented by an instance of the  JooneMacro class,  which
contains  the  script’s  text  that  will  be  interpreted  by  the  scripting  engine  when  the
corresponding macro will be executed.
The MacroManager contains both the two defined types of macros: event-driven macros
and user-driven macros.

The following rules are applied:

• All  the  macro  added  with  the  addMacro method  are  inserted  as  user-driven
macro

• Trying to remove or rename an event-driven macro results in a null action, and in
this case the corresponding method returns false

• Macros  can  be  updated  by  passing  the  new  text  for  an  existing  macro  as  a
parameter of the addMacro method. This saves having to remove and then add
that macro. 

The  MacroManager.isEventMacro(name) returns  true if  the  string  passed  as
parameter is the name of an event-driven macro.
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7 Using the Neural Network as a Whole

As we have seen, a neural network is composed by several components linked together
to form a particular architecture suitable to resolve a given problem.
In some circumstances, however, it’s not convenient to handle the network as a group of
single components when, for instance, we need to store, reload or transport it.

To  elegantly  resolve  these  needs,  we  have  built  an  object  that  can  contain  a  neural
network, and in the meantime also it provides the developers with a set of useful features.
This object is the NeuralNet object, and resides in the org.joone.net package.

7.1 The NeuralNet object

The NeuralNet object represents a container of a neural network, giving the developer the
possibility of managing a neural network as a whole.
With this component a neural network can be saved and restored using a unique write
and read operation, without be concerned about its internal composition.
Also by using a NeuralNet object, we can easily transport a neural network on remote
machines and run it there by writing a small generalized Java program.

The NeuralNet provides the following services:

A neural network ‘container’

The main purpose of the NeuralNet object is represented by the possibility to contain a
whole neural network.  It  exposes several  methods useful  to add, remove and get the
layers constituting the contained neural network.

The NeuralNet object, in fact, provides the user with some useful features to manage feed
forward neural  networks  by exposing methods to add/remove layers  (addLayer(layer)
and  removeLayer(layer)), to get a Layer by its name (getLayer(name)) and to extract
the first and the last tier of a neural network (getInputLayer() and  getOutputLayer()),
giving either the declared input/output layers, or searching them following these simple
rules:

1. A layer is an input layer if:
a. It has been added by using the NeuralNet.addLayer(layer, INPUT_LAYER)

method, or...
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b. It has not input synapses connected, or...
c. It has an input synapse belonging to the StreamInputSynapse or the

InputSwitchSynapse classes

2. A layer is an output layer if:
a. It has been added by using the NeuralNet.addLayer(layer,

OUTPUT_LAYER) method, or...
b. It has not output synapses connected, or...
c. It has an output synapse belonging to the StreamOutputSynapse or the

OutputSwitchSynapse or the TeacherSynapse or TheachingSynapse
classes

The knowledge of all these methods is very important to manage the input/output of a
neural network,  when, for instance, we want to dynamically change the connected I/O
devices.

A neural network ‘helper’

The  NeuralNet  object  provides  the  contained  neural  network  with  some  components
useful to its work. Starting from the assumption that to build a neural network with Joone
we must  connect  to it  both a Monitor  and a TeachingSynapse object  (see the above
chapters), the NeuralNet already contains internally these two objects.
The NeuralNet creates an instance of the Monitor object and connects it automatically to
any layer added to it.
It also holds a pointer to a TeachingSynapse object and permits this to be externally set
by calling the get/setTeacher methods.

A neural network ‘manager’

The NeuralNet object is also the ‘manager’  of all the behaviour of the contained neural
network  exposing  methods  like  Start,  addNoise,  Randomize,  resetInput,  etc.  taking
care to apply these methods to its contained components. The Start method, for instance,
starts all the Layers of the net, avoiding the user having to invoke this methods on each
separate Layer.

Moreover, starting from the v.1.1.0, the NeuralNet object exposes the method join useful
to wait for the termination of all the network's running threads. Its behaviour is like that of
the  Thread.join  method.  It's  very  important  to  use  it  when  we  need  to  wait  for  the
termination  of  the  running  of  a  neural  network  without  the  necessity  to  use  CPU-
consuming loops to interrogate the state of the network. 

7.2 The NestedNeuralLayer object
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This object is the fundamental component to use when we want to build a modular neural
network, i.e. a neural network composed by several other neural networks.
This feature is very useful when, for example, we want to use a neural network as a pre-
processing  layer  of  another  one,  or  we  want  to  teach  separately  several  network  to
recognize particular aspects of the problem to solve.

The NestedNeuralLayer class, contained in the org.joone.net package, comes in our aid
by providing a 'container' able to hold another entire neural network. It exposes a method
– setNeuralNet(nnet) – that permits to set the embedded neural network by indicating as
parameter the name of a file containing the serialized form of a NN (obtained, for instance
by exporting a NN from the GUI Editor).

The NestedNeuralLayer class has a property named 'learning',  used to determine if the
embedded  neural  network's  weights  and  biases  must  be  changed  during  the  training
phase when inserted in the main neural network.
When  the 'learning' property is false, the weights of the embedded NN are not adjusted
during  the  main  neural  network's  training,  and  also  the  embedded  NN  ignores  the
'randomize'  and  'addNoise'  commands  given  to  the  main  neural  network,  in  order  to
preserve the weights learned in the initial phase.

The purpose of this property becomes clear when we explain how the NestedNeuralLayer
is normally used.

Let us want to use a PCA as pre-processing layer of a neural network, and we want to
train the same NN until we find a good one having a low RMSE. In this case we need to
execute the following steps:

1.  Build a PCA NN (by using the SangerSynapse) and train it in unsupervised mode
2.  Export it to a file in a serialized format (after having removed the i/o components used

during the training)
3.  Build the main neural network, and insert a NestedNeuralLeyer as first layers
4.  Import the above serialized PCA NN into the NestedNeuralLayer
5.  Set to false the 'learning' property of the NestedNeuralLayer (it should already be set

to that value by default)
6.  Set to true the learning mode of the main NN
7.  Randomize the weights of the main neural network
8.  Start the training phase
9.  Repeat the steps 7 and 8 until you get a good RMSE

As you can see, at the steps 7 and 8 we shuffle the weights and then train the main
neural network several times, but we don't need to do so also for the embedded one,
because we have already trained it at the step 1, hence at the step 5 we need to freeze
the learned weights of the embedded NN. 
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The following figure depicts the final neural network as it would appear in the GUI Editor.

In this example the PCA is used to reduce the input layer's size from 10 to only 5 nodes,
reducing in this manner the neural network's complexity.
In fact we need only to train 30 weights (5x5+5) instead of 55 (10x5+5), reducing  in this
manner the training time and limiting the curse of dimensionality.
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7.3 Technical details

The following figure depicts the object model of the org.joone.net package, showing the
NeuralNet and its link with other classes and interfaces of the core engine:

First of all, we must note that the NeuralNet object implements the NeuralLayer interface
– the same implemented by the Layer object – making possible to use it as whatever else
Layer  in  a  neural  network;  in  this  manner  it's  possible  to  build  very  complex  neural
networks where each Layer could be represented itself by an entire neural network.

As  you  can  see,  the  NeuralNet  object  contains  a  pointer  to  an  embedded
TeachingSynapse and a Monitor object, providing, in this manner, the objects necessary
to buid correctly a neural network.

The NeuralNet class, also, contains a pointer to the NeuralNetAttributes class. It contains
several parameters of the attached neural network useful during the training or validation
phases (like, for instance, the neural network's name and the last training and validation
errors).
This class, of course, can be extended adding new custom attributes.

Anyway if we need to add dynamically new attributes to a neural network without being
constrained  to  write  and  compile  new  java  classes,  the  NeuralNet  object  contains  a
mechanism to store custom parameters at run time, based on an Hashtable that stores
key-value pairs.

They can be used calling the following methods:
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•  void setParam(String key, Object value) – to store a key-value pair
•  Object getParam(String key) – to retrieve a saved parameter given its key
 
This possibility is very useful, for example, when the neural network is trained remotely in
a  distributed  environment,  because  some  parameters  can  be  set  during  the  remote
training phase and then recalled and used by the central machine where the results must
be collected.

This technique is made even more useful by the possibility to set/get these parameters
from within the java scripting code.
A good example of the use of this mechanism is shown in the MultipleValidation sample
provided with the core engine distribution package.
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8 Common Architectures

8.1 Modular Neural Networks

As said in the previous chapters, Joone exposes a modular engine that permits to build
any neural network architecture, and also it permits to build modular networks, i.e. neural
networks composed by several other embedded neural networks.
The central component of this feature is represented by the NestedNeuralLayer.
In the following paragraph we'll illustrate a classical example by building a modular neural
network to resolve the parity problem.

8.1.1 The Parity Problem
This is a classical problem, like the XOR, used to show the learning capabilities of the
neural networks applied to non-linearly separable problems.

The truth table of the 4-bits parity problem is the following:

I1 I2 I3 I4 Output

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

 
The 4-bit  parity  problem can be resolved  by  a feed forward  neural  network  with  one
hidden layer, but if you try to do it, you'll notice that the training time is very long, and
sometime the neural network will not learn to resolve the problem.
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A better approach is represented by a modular network composed by three XOR NNs, as
depicted in the following figure:

The three XOR neural networks are marked with a red rectangle, and you can see that
the output nodes of the first two neural networks are used as input nodes of the last one.
Let us show now how to build the above architecture with joone.

1. First of all, build a XOR neural network with the GUI Editor and train it until the RMSE
goes below 0.01

2. Export that neural network (by using the 'File->Export NeuralNet...” menu item), after
having deleted all the i/o and the teacher components

3. Create a file named 'parity.txt' and write into it the parity truth table using semicolons as
columns separator, like in the following example:
0;0;0;0;0
0;0;0;1;1
0;0;1;0;1
....
1;1;1;1;0

4. Build a neural network following the architecture shown in the figure:

You can recognize the three XOR NNs, bordered by the red boxes as in the previous
figure.
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Now perform the following tasks:

 4.Import the above exported XOR neural network into the two NestedANN components
(named 'XOR 1' and 'XOR 2' in the figure)

 5.Set the two File Input components in order to read the parity.txt file, setting their
advancedColumnSelector as follows: “1-2” for 'Parity Data1' and “3-4” for 'Parity
Data2'. Remember also to set to false the 'stepCounter' parameter of 'Parity Data2'.

 6.Set the desired File Input component in order to read the column 5 of the parity.txt file.
 7.Open the ControlPanel and set: 

 a) learning = true
 b) learning rate = 0.7
 c) momentum = 0.7
 d) training patterns = 16
 e) epochs = 5000

 8. Run the training phase.

You should see the a descending RMSE value, that demonstrates that the neural network
is able to learn the parity problem by using a modular architecture.
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8.2 Temporal Feed Forward Neural Networks

In this chapter we'll show some potential application of the neural networks in the field of
the time series elaboration in order to predict the future values given the past history of
the temporal series.

8.2.1 Time Series Forecasting
First  of all, we want to warn about the difficulties that arise when we try to make time
series prediction applied to problems of the real life, like weather or financial predictions.
Reading the email that we receive from the users of Joone, we know that about the 60%
of them want to use the neural networks to make financial predictions.
Be aware: may people think that a neural network is like the Aladdin's lamp, but soon they
discover that the reality is different, and that it's very difficult to obtain good results.
Very few people know that by using simply the past prices as training data is not enough.
You must fight and eliminate your main enemy: the noise.

Therefore the following paragraphs want to give you just an initial knowledge about the
most  famous  and  used  techniques,  but  you  need  to  try  many  and  many  different
architectures and pre-processing techniques in order to have some possibility to obtain
some good result.

8.2.1.1 Preprocessing
To  make  financial  forecasting  is  one  of  the  most  famous  applications  of  the  neural
networks.  In  this  section  we  want  to  explain  the  use  of  a  particular  pre-processing
technique useful to make trend predictions.

One  of  the  most  used  techniques  is  to  sample  the  time  series  at  discrete  moments
(hourly, daily, weekly, etc.) and use the measured values as input patterns of the neural
network.
Because a time series, to be predictable, needs to have an internal dependency on the
past  values  (otherwise  the  time  series  would  be  just  a  noisily  random  sequence),  a
common pre-processing  technique  is  represented  by  feeding  a neural  network  with  a
temporal window of the time series, like depicted in the following figure:
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As you can see, each input pattern is composed by the values at times t, t-1, t-2,...,t-n+1
where n is the temporal window's size. 

How to obtain a temporal window of a given size starting from a single-column stored time
series?
Joone provides the user with a component, the DelayLayer, useful to create a temporal
window to feed the input layer of a neural network.
Look at the following figure containing an example built with the GUI editor of Joone:

As you can see, we have used a YahooFinance input component to get the stock prices
time series from Yahoo, and have connected it to a Delay layer.
The properties panel for this component, other than the rows, permits to set the 'taps'
parameter,  that indicates the size of the temporal window we'll  use to feed our neural
network. 
By setting taps to '5', we obtain a window of size 6 composed by the following values:

[x(t), x(t-1), x(t-2), x(t-3), x(t-4), x(t-5)]

Remember that the size of the temporal window is always equal to (taps+1), because the
Delay layer outputs also the actual value x(t) of the time series.
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Of course this is just an example, and you can experiment several configurations, either
using windows of different size, and/or using as input not only the 'raw' data, but also
some pre-elaborated values, as for instance the N-days' average (calculated by using the
Moving Average Plugin component attached to the Yahoo Finance Input), as illustrated in
the following figure:

In this example we want to train the neural network using the 15 and 50 days moving
averages.
The YahooFinance component has the following settings:

As you can see,  the AdvancedColumnSelector  has been set  to “4,4,4”,  so the  fourth
column (the Close value) will be extracted three time, and now we'll see why.
As the data must be normalized, we have used a NormalizerPlugin having the following
properties:
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the AdvancedSerieSelector  is equal to “1-3”,  thus we will  normalize all  the three input
values between 0 and 1.
And now the MovingAverage Plugin settings:

where  you  can  see  that  we  calculate  the  15-days  and  the  50-days  moving  average
(property Moving Average set to ”15,50”)  respectively on the second and third column
(property AdvancedSerieSelector set to ”2,3”).

The result is that we'll feed the neural network with the following three normalized values
of the time series:
1.  The daily Close value
2.  The 15-days moving average of the Close values
3.  The 50-days moving average of the Close values
Now it  should  be  clear  why  we have  extracted  three  times  the  same value  from the
YahooFinance component.
Of course, in this case, the Delay Layer must have rows=3 and taps=5 (or the windows'
size we have chosen to use).

That said, we now need to decide how we'll train the neural network, and to do it, we must
to set the desired data of our training phase.
Normally,  as desired data,  the value at time t+1 is used,  so the network is trained to
predict the next value of the time series in base of the past n values.

Indeed it's very difficult to predict the exact value of a noisily time series, hence we want
to explain a different technique to make trend predictions, instead of the next day's exact
Open/Close/High/Low values prediction.
 

8.2.1.2 Trend prediction:
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This technique tries to predict the future prices at a short-medium interval of time (from 2
to 10-15 days) using as input the past history of the prices. Using this technique, we don’t
need to know the value of the next day close, but simply the future direction (up or down)
of the observed market,  so to take a decision about  our trading position (long/short  –
buy/sell). 

The question is: how do we teach a neural network fed with the past history of a stock?
The  response  is  very  simple.  Remember  that  this  paragraph  deals  with  the  trend
prediction technique, hence we don’t  need to predict the exact close value of the next
trading day, as we found our trading strategy on the predicted trend (up or down).
What we need to predict, in other words, are the turning points of the market we’re
dealing with.

Look at the following chart:

We should trade in correspondence of  the red arrows to make money,  buying on the
lowest values and selling at the highest ones.
A good trading system should raise a signal only when a true turning point is reached,
avoiding to generate false signals, as, for instance, that one indicated by the blue arrow,
where the market goes down only for a little percentage before to continue to raise.
As you can see, we don’t need to predict the exact values of the daily market closes, as
we’re interested to predict only the right turning points.

To do this, Joone owns the TurningPointExtractor plugin that calculates exactly the ideal
trading signals, as explained in the above figure.
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It has a ‘min change percentage’ property that serves to indicate what is the minimum %
change between two turning points to generate the corresponding signals. It must be set
to a value not too small, to avoid to generate too many signals (many of which could be
false). 

The algorithm is the following:
• When the market rises more than the desired % change, the previous lower value

is flagged as a ‘buy’ signal, and the corresponding output value is set to 0. 
• When the market declines more than the desired % change, the previous higher

value is flagged as a ‘sell’ signal, and the corresponding output value is set to +1.
• The  desired  values  for  days  between  the  above  two  points  are  normalized  by

interpolating to values within the interval 0 and +1.

The following two figures show the output of the turning point extractor plugin for a given
time series.
Their min. percent change parameter is set to 5% and 8% respectively.

As you can see, setting the generation of buy/sell signals only when the output value is
lower than 0.1 and higher than 0.9 respectively, the number of signals generated for the
5% setting is greater than those generated for the 8% case.
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It  doesn't  exist  a  fixed  rule  to  calculate  the  optimal  percentage,  and  you need  to  try
several configurations until you get good results in terms of good generalization capacity
of the resulting neural network.

As we want to predict the turning points of the time series, we need to teach the network
to  recognize  them,  hence the  TurningPointExtractor  plugin  must  be  connected  to  the
desired input signal of our neural network, as depicted in the following figure:

In this manner the signals generated by the plugins will be used as the 'desired' data on
which the neural network will be trained. 

To summarize,  we need to train a neural  network teaching it  to recognize the turning
points  of  the observed market.  To  do this,  we must feed the neural  network  with,  for
example,  a temporal  window of the normalized past  input data,  and we must  use the
turning point extractor to generate the desired values for the supervised learning phase.
After that, we interrogate the net giving as input the last closes normalized with the same
techniques seen above and, only when the output of the net is:

• lesser than 0.1, the signal is BUY
• greater than 0.9, the signal is SELL
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Of course, as already said, we must do several experiments to set both the above limits
and the other parameters' right values, in order to obtain acceptable results.

Good luck! ...and if you obtain some good result, remember to make a donation to joone  :
o)

8.2.1.3 Dynamic control of the training parameters

The learning rate used to train a neural network is a crucial parameter, and the choose of
the  right  value  is  determining  to  have  good  results,  especially  for  noisily  time-series
prediction.

As said in the paragraph 6.3, the learning rate represents the 'speed' on the error surface
with which we search the optimal minimum. A value too big would cause an oscillation
around the minimum, while a value too low would cause a very long training time.

To resolve this dilemma, we can use the DynamicAnnealing plugin.
Look at the following neural network:
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It's a neural network to make financial predictions (it's just an example, of course), and in
the Control Panel you can see all the settings we have used (note the learning rate and
the momentum both set to 0.6, a relatively high value).
When we train the above neural network we obtain a RMSE like the following:
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That's horrible! Due to the wrong settings, the neural network was not able to learn the
time series we have used as input, and the final RMSE is really too bad.
Now we'll insert a DynamicAnnealing plugin, as shown by the following figure:

the DynamicAnnealing's rate is set to 5 and the change to 15%. These values mean that
the plugin will check the training RMSE value each 5 epochs, and when the last value is
greater than the previous one, it will decrease the learning rate of 15%.
Here is illustrated the resulting RMSE:
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Good! We have eliminated all that horrible oscillations, and the final RMSE after  3000
epochs is very small. 
Of course this is just an example, and maybe you'll obtain different results with your own
neural network, but remember that by trying different values for the DynamicAnnealing's
properties, you'll be always able to regularize the learning of your network.
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8.3 Unsupervised Neural Networks

8.3.1 Kohonen Self Organized Maps
This tutorial is intended to give a basic example of how to perform image / character
recognition using SOM / Kohonen neural network architectures.

8.3.1.1 Example: a character recognition system

This tutorial uses a basic application called org.joone.samples.editor.SOMImageTester,
and  you  can  launch  it  from  within  the  GUI  Editor  simply  by  clicking  on  the  'Help-
>Examples->SOM Image Tester' menu item.
 
You can use the sample application to draw basic black and white colour images and
save the output into a file format that Joone recognises.
 
The example  presented in this  tutorial  teaches  the  user  how to setup  a network  that
recognises  the  characters  'A'  and  'B'.  The  reader  can  use  this  technique  to  setup  a
network that will recognise an arbitrary number of characters.
 

Sample Application Quick Guide

 The sample application is fairly self explanatory but you can use the guide below in order
to use the application.
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Features

Drawing Area - The high resolution 'A' image shown above is where the user can draw
custom images. 

Image ID  -  This  is  the identify  of  the image,  you can use this  number  to  mark  what
character the image is. Only numbers can be entered here. I.e a 1 could mean character
'A' and 2 could be 'B'.

Down Sample  - This allows you to preview the down sampled image after drawing. To
obtain the down sample the application first crops the image in the draw area. The image
is cropped by obtaining the left  most black pixel ,  top most black pixel etc to find the
bounds of the cropped image. See the image below.

Secondly the cropped image is scaled down to a 9x9 image. The image is scaled by
splitting the cropped image into a series of grids relating to each pixel in the 9x9 down
sampled  image,  then  if  a  grid  in  the  cropped  image  contains  a  black  pixel  then  the
relevant pixel in the 9x9 down sampled image will contain a black pixel. The application
automatically down samples each image when the user saves the the images to a file.

Help

This presents some basic help on the application.

New Image

Creates a new image for drawing a character/image into.

Clear Image

Removes all the black pixels from the current image.

Save Images

Allows all images to be saved to a Joone format file for use in a File Input Synapse. The
format is 81 pixel inputs followed by the image id. 

Quit

Allows you to quit the application.
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Data Setup

 Start the example application SOMImageTester. See the basic guide above on how to
use the application.
 
First we need to create several 'A' character images and several 'B' character images that
will be used in training and testing.
 
Draw the 4 'A' characters in the drawing panel clicking on New Image when you have
finished each one. The down sample button can be used to see what each character
looks like down sampled. When you have finished drawing the 4 'A' characters then draw
four  'B'  characters.  Then  use  the  Save  Images  button  to  save  them  out  to  a  file,
remember the file name and location we will call this 4As4Bs.txt in this example.
 
Note the more samples of a specific character you draw will mean the network is better
able to recognise that character.   You'll have noticed that the image gets cropped and
down sampled, this is to stop the network from just recognising the character's size.
 
We now need a couple of test character's. Close and re-open the application , draw one
'A' character and save it we will call this testA.txt. Close the application again and re-start,
this time draw a 'B' character and save the file we will call this testB.txt.

Neural Network Setup

 For  the  neural  network  we  will  be  using  SOM components  thus  the  network  will  be
unsupervised. We will need to input the previously produced file into a linear layer of 81
inputs. This will by be fed to a Winner Takes All layer via a Kohonen Synapse. We can
use a File Input Synapse to load the file in. See the image below ...
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Note the Winner Takes All layer has two neurons, this is to ensure it classifies out two
characters.

Input Layer Properties

 
Note  our  input  images  have  81  inputs  i.e  the  9x9  down  sampled  image  that  the
application made earlier.

Linear Layer Properties
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 Note the rows here must match the inputs from the file input synapse.

Winner Takes All Layer Properties

Note the height or width should be 2 and 1, either can be 2 but not both. This ensure the
layer contains 2 neurons for our two character classification.

Control Properties

Training The Network
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 Ensure the network has been set up as in the previous section. The run the network.
When it has finished 10000 epochs it should have learned how to recognise the character
'A' and 'B'.
 
We need to find out which neuron fires on an 'A' character and which one fires on a 'B'.
 
We need to attach a file output synapse to the Winner Takes All Layer. Do this now and in
the file output synapse set the file name to something like test.txt, in the control panel set
the number of epochs to 1 and the learning property to false.
 
Run the network  again and examine the  text.txt  file,  you should  see 8 rows  and two
columns. The column represents the neuron and the row the character they are trying to
recognise i.e 1-8. We now that the first four characters were the character 'A' and the lest
four were 'B' characters. Check that the test.txt contains 1.0 in the same column for four
rows then 1.0 in the other column for the last four rows. On hour network it came out like
this ...
 
0.0;1.0
0.0;1.0
0.0;1.0
0.0;1.0
1.0;0.0
1.0;0.0
1.0;0.0
1.0;0.0

 
So we now know that by looking at the first four rows neuron 2 fires for character 'A' and
neuron 1 fires for character 'B'. It could be the other way round for you.
If at this point the it is not clear i.e neuron 2 fires for both an 'A' and 'B' then you might not
have setup the network correctly or it may need more training.
 

Testing The Network

To test the network, modify the file name in the file input synapse, select the testA.txt in
order to test a character 'A'.
We have only one character in this file so in the control panel set the validation patterns to
1 and the learning mode to false. Run the network again. Examine the test.txt file, check if
the correct neuron fired. In our case it was correct ..
 
0.0;1.0
 
Neuron 2 fired indicating that the network thought it was a character 'A', it is correct.
 
You can do the same for the testB.txt file.
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Using The Network
 
It is possible to use this network in your own application but your custom application must
present  81  inputs  which  are  written  as  row1  x,x+1,x+2,x+3,...,x+9  ,  row2
x,x+1,x+2,x+3,....x+9 , row3 ..... , row9 x, x+1,x+2,...,x+9. Direct input from memory will
require the Memory Input Synapse.
An on pixel is represented as 1.0 and off 0.0.
The network can obviously not handle colour just black (on) and white (off).
Your application will also have to crop the image and down sample it to the correct size.
 
Further Work
 
Image  recognition  is  a  fascinating  field  and  you'll  probably  want  to  experiment  in
recognising different images / objects. At the time of writing the Joone project is looking
the producing an Image Input Synapse that will enable users to present images from files
or Java images. If this is available then you could use this to easily load images into the
network for training and running.
If  this  is  not  available then you will  have to write  some image pre-processing  in your
custom application.
 
Something worth thinking about when looking at image recognition is things like colour ,
size , shape, texture etc. An extension to the this example might be to enable the net to
recognise coloured characters but independent of the actual colour. If you always present
'A'  in green and 'B' in blue and train it then when you come to test it might have just
learned how to recognise the colours green and blue, then when you try and present a
green 'B' it doesn't recognise it according to what you were thinking of. In this case you
should present 'A' and 'B' in different colours.
 
In the classic tank hiding in jungle example a research team wanted to train a network to
spot tanks hidden in a jungle. They went out an took pictures of tanks hiding in a jungle
and pictures with no tanks. They trained the network and when they tested it the network
worked very well. However to verify the network they went out a took more pictures and
tested it again. This time it failed miserably. Why? For the training images the researchers
took pictures of the tanks hiding in the jungle on sunny day and the ones where the tanks
were not hiding on an overcast rainy day. The network had simply recognised that it was
sunny or cloudy.
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9 Applying Joone

9.1 Build your own first neural network

Even if the GUI Editor can be easily used to build,  train and test neural  networks,  it's
impractical to use it within a real application to resolve our needs.

To really capture and use all the power of the core engine we need to write java code.
Indeed, as we'll see in the following paragraphs, the Editor can be used as a starting point
to build a neural network - due to its user friendly interface - and then we can write java
code to embed the resulting neural network into our own application.

We will start by writing a simple toy neural network, and then will continue by building
more complex architectures, until we'll be able to use almost all the features of the core
engine.   

9.1.1 A simple (but useless) neural network

Consider a feed-forward neural net composed of three layers like this: 

  

To build this net with Joone, three Layer objects and two Synapse objects are required: 
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        SigmoidLayer layer1 = new SigmoidLayer(); 
        SigmoidLayer layer2 = new SigmoidLayer(); 
        SigmoidLayer layer3 = new SygmoidLayer(); 
        FullSynapse synapse1 = new FullSynapse(); 
        FullSynapse synapse2 = new FullSynapse(); 

The SigmoidLayer objects  and  the  FullSynapse objects  are  real  implementations  of  the
abstract Layer and Synapse objects.

Set the dimensions of the layers: 
        layer1.setRows(3); 
        layer2.setRows(3); 
        layer3.setRows(3); 

Then complete the net, connecting the three layers with the synapses: 
        layer1.addOutputSynapse(synapse1); 
        layer2.addInputSynapse(synapse1); 
        layer2.addOutputSynapse(synapse2); 
        layer3.addInputSynapse(synapse2); 

As you can see, each synapse is both the output synapse of one layer and the input
synapse of the next layer in the net. 
This simple net is ready, but it can't do any useful work because there are no components
to read or write the data. 
The next example shows how to build a real net that can be trained and used for a real
problem. 

9.1.2 A real implementation: the XOR problem. 

Suppose a net to teach on the classical XOR problem is required. 
In this example, the net has to learn the following XOR ‘truth table’: 
  
Input 1 Input 2 Output

0 0 0
0 1 1
1 0 1
1 1 0

Firstly, a file containing these values is created: 

0.0;0.0;0.0 
0.0;1.0;1.0 
1.0;0.0;1.0 
1.0;1.0;0.0 
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Each column must be separated by a semicolon. The decimal point is not mandatory if
the numbers are integer.
Write this file with a text editor and save it on the file system (for instance c:\joone\xor.txt in a
Windows environment).
Now build a neural net that has the following three layers:
• An input layer with 2 neurons, to map the two inputs of the XOR function 
• A hidden layer with 3 neurons, a good value to assure a fast convergence 
• An output layer with 1 neuron, to represent the XOR function's output 
as shown by the following figure: 
  

  
First, create the three layers (using the sigmoid transfer function for the hidden and the
output layers):
 
        LinearLayer input = new LinearLayer(); 
        SigmoidLayer hidden = new SigmoidLayer(); 
        SigmoidLayer output = new SigmoidLayer();

set their dimensions: 

        input.setRows(2); 
        hidden.setRows(3); 
        output.setRows(1);

Now build the neural net connecting the layers by creating the two synapses using the
FullSynapse class that connects all the neurons on its input with all the neurons on its output
(see the above figure): 

        FullSynapse synapse_IH = new FullSynapse(); /* Input -> Hidden conn. */ 
        FullSynapse synapse_HO = new FullSynapse(); /* Hidden -> Output conn. */

Next connect the input layer with the hidden layer: 

        input.addOutputSynapse(synapse_IH); 
        hidden.addInputSynapse(synapse_IH);

and then, the hidden layer with the output layer: 

        hidden.addOutputSynapse(synapse_HO); 
        output.addInputSynapse(synapse_HO);
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Now create a Monitor object to provide the net with all the parameters needed for it to
work: 

        Monitor monitor = new Monitor(); 
        monitor.setLearningRate(0.8); 
        monitor.setMomentum(0.3);

Give the layers a reference to that Monitor: 

        input.setMonitor(monitor); 
        hidden.setMonitor(monitor); 
        output.setMonitor(monitor);

The application registers itself as a monitor's listener, so it can receive the notifications of
termination  from  the  net.  To  do  this,  the  application  must  implement  the
org.joone.engine.NeuralNetListener interface. 
        monitor.addNeuralNetListener(this);

Now define an input for the net, then create an org.joone.io.FileInputStream and give it all the
parameters: 

        FileInputSynapse inputStream = new FileInputSynapse(); 
        /* The first two columns contain the input values */ 
        inputStream.setAdvancedColumnSelector(“1,2”); 
        /* This is the file that contains the input data */ 
        inputStream.setFileName("c:\\joone\\XOR.txt");

Next add the input synapse to the first layer. The input synapse extends the Synapse
object, so it can be attached to a layer like a synapse.
        input.addInputSynapse(inputStream);

A  neural  net  can  learn  from  examples,  so  it  needs  to  be  provided  it  with  the  right
responses. 
For each input the net must be provided with the difference between the desired response
and the actual response gave from the net. The org.joone.engine.learning.TeachingSynapse is the
object that has this task: 

        TeachingSynapse trainer = new TeachingSynapse(); 
        /* Setting of the file containing the desired responses, provided by a

FileInputSynapse */ 
        FileInputSynapse samples = new FileInputSynapse(); 
        samples.setFileName("c:\\joone\\XOR.txt"); 
        trainer.setDesired(samples); 
        /* The output values are on the third column of the file */ 
        samples.setAdvancedColumnSelector(“3”); 
        /* We give it the monitor's reference */ 
        trainer.setMonitor(monitor);
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The TeacherSynapse object extends the Synapse object.
This can be added as the output of the last layer of the net. 

        output.addOutputSynapse(trainer); 

Now all the layers must be activated by invoking their method start. The layers implement
the java.lang.Runnable interface, in that way they run on separated threads. 

        input.start(); 
        hidden.start(); 
        output.start(); 

Set all the training parameters of the net: 

        monitor.setTrainingPatterns(4); /* # of rows in the input file */ 
        monitor.setTotCicles(10000); /* How many times the net must be trained*/

        monitor.setLearning(true); /* The net must be trained */ 
        monitor.Go(); /* The net starts the training phase */ 

Here  is  an  example  describing  how  to  handle  the  netStopped  and cicleTerminated

events. 

Remember  :  
To  be  notified,  the  main  application  must  implement  the
org.joone.NeuralNetListener interface  and  must  be  registered  to  the  Monitor
object by calling the Monitor.addNeuralNetListener(this) method.
    
    public void netStopped(NeuralNetEvent e) {
        System.out.println("Training finished");
        System.exit(0);
    }
    
    public void cicleTerminated(NeuralNetEvent e) {
        Monitor mon = (Monitor)e.getSource();
        long c = mon.getCurrentCicle();
        long cl = c / 1000;
        /* We want print the results every 1000 cycles */
        if ((cl * 1000) == c)
            System.out.println(c + " cycles remaining - Error = " +
mon.getGlobalError());
    }

    

(The  source  code  can  be found  in  the  CVS repository  in the  org.joone.samples.engine.xor

package) 
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9.2 Saving and restoring a neural network

To have the possibility of reusing a neural network built with Joone, we need to save it in
a  serialized  format.  To  accomplish  this  goal,  all  the  core  elements  of  the  engine
implement the  Serializable interface,  permitting a neural network to be saved in a byte
stream, to store it on the file system or data base, or transport  it on remote machines
using any wired or wireless protocol.

9.2.1 The simplest way
A  simple  way  to  save  a  neural  network  is  to  serialize  each  layer  using  an
ObjectOutputStream object, like illustrated in the following example that extends the XOR
java class:

public void saveNeuralNet(String fileName) {
try {

FileOutputStream stream = new FileOutputStream(fileName);
ObjectOutputStream out = new ObjectOutputStream(stream);
out.writeObject(input);
out.writeObject(hidden);
out.writeObject(output);
out.close();

    }
catch (Exception excp) {
      excp.printStackTrace();
      }
}

 
We don’t need to explicitly save the synapses constituting the neural network, because
they are linked by the layers. The writeObject method recursively saves all the objects
contained in the non-transient variables of the serialized class, also avoiding having to
store the same object’s instance twice in case it is referenced by two separated objects –
for instance a synapse connecting two layers.

We can later restore the above neural network using the following code:

public void restoreNeuralNet(String filename) {
try {

FileInputStream stream = new FileInputStream(fileName);
ObjectInputStream inp = new ObjectInputStream(stream);
Layer input = (Layer)inp.readObject();
Layer hidden = (Layer)inp.readObject();
Layer output = (Layer)inp.readObject();

    }
catch (Exception excp) {
      excp.printStackTrace();
      }

/* 
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 * After that, we can restore all the internal variables to manage
 * the neural network and, finally, we can run it.
 */

/* We restore the monitor of the NN. 
 * It’s indifferent which layer we use to do this */
Monitor monitor = input.getMonitor();
/* The main application registers itself as a NN’s listener */
monitor.addNeuralNetListener(this);
/* Now we can run the restored net */
input.start();
hidden.start();
output.start();
monitor.Go();

}

The method illustrated in this chapter is very simple and works well, but it’s not flexible
enough,  because  we  have  to  write  a  different  piece  of  code  for  each  saved  neural
network, as the number and the order of the saved layers of the network is hard-coded in
the program.
We now  consider  a  quicker  and  more  flexible  method  to  save  and  restore  a  neural
network.

9.2.2 Using a NeuralNet object
The org.joone.net.Neuralnet  object  comes in our aid by offering a simple but powerful
mechanism to manage a neural network built with Joone.
We now will try to rewrite the XOR sample using this new component.

In  any  case  we  must  create  all  the  necessary  components  of  the  neural  network,
repeating all the instructions already written for the previous example:

        /* The Layers */

  LinearLayer input = new LinearLayer(); 
        SigmoidLayer hidden = new SigmoidLayer(); 
        SigmoidLayer output = new SygmoidLayer();

        input.setRows(2); 
        hidden.setRows(3); 
        output.setRows(1);

  /* The Synapses */
        FullSynapse synapse_IH = new FullSynapse(); /* Input -> Hidden conn. */ 

        FullSynapse synapse_HO = new FullSynapse(); /* Hidden -> Output conn. */

        input.addOutputSynapse(synapse_IH); 
        hidden.addInputSynapse(synapse_IH);

        hidden.addOutputSynapse(synapse_HO); 
        output.addInputSynapse(synapse_HO);

  /* The I/O components */
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        FileInputSynapse inputStream = new FileInputSynapse(); 
        inputStream.setAdvancedColumnSelector(“1,2”); 
        inputStream.setFileName("c:\\joone\\XOR.txt");
        input.addInputSynapse(inputStream);

        /* The Trainer and its desired file */

  TeachingSynapse trainer = new TeachingSynapse(); 
        FileInputSynapse samples = new FileInputSynapse(); 
        samples.setFileName("c:\\joone\\XOR.txt"); 
        trainer.setDesired(samples); 
        samples.setAdvancedColumnSelector(“3”); 
        output.addOutputSynapse(trainer); 

Now we add this structure to a NeuralNet object:
        NeuralNet nnet = new NeuralNet();

  nnet.addLayer(input, NeuralNet.INPUT_LAYER);
  nnet.addLayer(hidden, NeuralNet.HIDDEN_LAYER);
  nnet.addLayer(output, NeuralNet.OUTPUT_LAYER);
  nnet.setTeacher(trainer);

and we use the contained Monitor object, instead of creating a new one:
        Monitor monitor = nnet.getMonitor(); 
        monitor.setLearningRate(0.8); 
        monitor.setMomentum(0.3);

        monitor.setTrainingPatterns(4); /* # of rows in the input file */ 
        monitor.setTotCicles(10000); /* How many times the net must be trained*/
        monitor.setLearning(true); /* The net must be trained */

  monitor.addNeuralNetListener(this);

and now we can run the neural network:
  nnet.start();
  nnet.GetMonitor().Go(); 

Where are the differences?
1. We don’t need any more to set the Monitor object for each component, as the

NeuralNet does this task for us;
2. We don’t need to invoke the start method for all the layers, but only on the

NeuralNet object.

But the main support provided by the NeuralNet object is the ability to easily store and
read a neural network with few and generalized rows of code:

public void saveNeuralNet(String fileName) {
try {

FileOutputStream stream = new FileOutputStream(fileName);
ObjectOutputStream out = new ObjectOutputStream(stream);
out.writeObject(nnet);
out.close();

    }
catch (Exception excp) {
      excp.printStackTrace();
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      }
}

public void restoreNeuralNet(String filename) {
try {

FileInputStream stream = new FileInputStream(fileName);
ObjectInputStream inp = new ObjectInputStream(stream);
nnet = (NeuralNet)inp.readObject();

    }
catch (Exception excp) {
      excp.printStackTrace();

return;
      }

/* 
 * After that, we can restore all the internal variables to manage
 * the neural network and, finally, we can run it.
 */

/* The main application registers itself as a NN’s listener */
nnet.getMonitor().addNeuralNetListener(this);
/* Now we can run the restored net */
nnet.start();
nnet.getMonitor().Go();

}

As you can see,  the above code is  generic, as  it doesn't depend on the internal structure  of the
saved/restored neural network.

Due to this motive, we have written a utility class, org.joone.net.NeuralNetLoader, that serves to
reload a  saved NeuralNet object, avoiding to write the above code whenever  we need to load a
serialized neural network.
It's very easy to use it:

/* We need just to provide the serialized NN file name */
NeuralNetLoader loader = new NeuralNetLoader(“/somepath/myNet.snet”);
NeuralNet myNet = loader.getNeuralNet();
...

so, by using only the above two simple  lines of code,  we're  able to load in memory whatever
serialized NeuralNet object, independently from its internal architecture.
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9.3 Using the outcome of a neural network

After having learned how to train and save/restore a neural network, we will see how we
can use the resulting patterns from a trained neural network.
To do this, we must use an object inherited from the OutputStreamSynapse class, so that
we will be able to manage all the output patterns of a neural network for both the following
two cases:

1. User’s needs  : to permit a user to read the results of a neural network, we must be
able to write them onto a file, in some useful format, for instance, in ASCII format.

2. Application’s  needs  : to permit  an embedding application to read the results of a
neural network, we must be able to write them onto a memory buffer – a 2D array
of type double, for  instance – and to read them automatically at the end of the
elaboration. 

Note: The examples shown in the following two chapters use the serialized form of the
XOR neural network. To obtain that file, you must first create the XOR neural network with
the editor, as illustrated in the GUI Editor User Guide, and export it using the File->Export
menu item.

9.3.1 Writing the results to an output file
The first example we will see is about how to write the results of a neural network into an
ASCII file, so a user can read and use it in practice.
To do this, we will use a FileOutputSynapse object, attaching it as the output of the last
layer of the neural network. Assume that we have saved the XOR neural net from the
previous example in a serialized form named ‘xor.snet’ so we can use it by simply loading
it from the file system and attaching to its last layer the output synapse.
First of all, we write the code necessary to read a serialized NeuralNet object from an
external application:

NeuralNet restoreNeuralNet(String fileName) {  
NeuralNet nnet = null;
try {

FileInputStream stream = new FileInputStream(fileName);
ObjectInputStream inp = new ObjectInputStream(stream);
nnet = (NeuralNet)inp.readObject();

    }
catch (Exception excp) {

      excp.printStackTrace();
      }

return nnet;
}

then we write the code to use the restored neural network:
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NeuralNet xorNNet = this.restoreNeuralNet("/somepath/xor.snet");
if (xorNNet != null) {

// we get the output layer
Layer output = xorNNet.getOutputLayer(); 
// we create an output synapse
FileOutputSynapse fileOutput = new FileOutputSynapse();
FileOutput.setFileName("/somepath/xor_out.txt");
// we attach the output synapse to the last layer of the NN
output.addOutputSynapse(fileOutput);
// we run the neural network for only one cycle in recall mode
xorNNet.getMonitor().setTotCicles = 1;
xorNNet.getMonitor().setLearning(false);
xorNNet.start();
xorNNet.getMonitor().Go();

}

After the above execution, we can print out the obtained file, and, if the net is correctly
trained, we will see a content like this:

0.016968769233825207
0.9798790621933134
0.9797402885436198
0.024205151360285334

This demonstrates the correctness of the previous training cycles.

9.3.2 Getting the results into an array
We now will see the use of a neural network from an embedding application that needs to
use its results.  The obvious approach in this  case is to obtain the result  of  the recall
phase into an array of doubles, so the external application can use it as needed.

We will see two usages of a trained neural network:

1. The test of a net using a set of predefined patterns; in this case we want to
interrogate the net with several patterns, all collected before to query the net

2. The  test  of  a  net  using  only  one  input  pattern;  in  this  case  we  need  to
interrogate the net with a pattern provided by an external asynchronous source of
data

We will see an example of both the above methods.

9.3.2.1 Using multiple input patterns

To accomplish this goal we will  use the org.joone.io.MemoryOutputSynapse object,  as
illustrated in the following example.
Look at the following code:
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    // The input array used for this example
    private double[][] inputArray = { {0, 0}, {0, 1}, {1, 0}, {1, 1} };

    private void Go(String fileName) {
        // We load the serialized XOR neural net
        NeuralNet xor = restoreNeuralNet(fileName);
        if (xor != null) {
            /* We get the first layer of the net (the input layer),
               then remove all the input synapses attached to it
               and attach a MemoryInputSynapse */
            Layer input = xor.getInputLayer();
            input.removeAllInputs();
            MemoryInputSynapse memInp = new MemoryInputSynapse();
            memInp.setFirstRow(1);
            memInp.setAdvancedColumnSelector(“1,2”);
            input.addInputSynapse(memInp);
            memInp.setInputArray(inputArray);
            
            /* We get the last layer of the net (the output layer),
               then remove all the output synapses attached to it
               and attach a MemoryOutputSynapse */
             Layer output = xor.getOutputLayer();
            // Remove all the output synapses attached to it...
            output.removeAllOutputs();
            //...and attach a MemoryOutputSynapse
            MemoryOutputSynapse memOut = new MemoryOutputSynapse();
            output.addOutputSynapse(memOut);
            // Now we interrogate the net
            xor.getMonitor().setTotCicles(1);
            xor.getMonitor().setTrainingPatterns(4);
            xor.getMonitor().setLearning(false);
            xor.start();
            xor.getMonitor().Go();
            for (int i=0; i < 4; ++i) {
                // Read the next pattern and print out it
                double[] pattern = memOut.getNextPattern();
                System.out.println("Output Pattern #"+(i+1)+" = "+pattern[0]);
            }
            xor.stop();
            System.out.println("Finished");        }
    }

As  illustrated  in  the  above  code,  we  load  the  serialized  neural  net  (using  the  same
restoreNeuralNet  method  used  in  the  previous  chapter),  and  then  we  attach  a
MemoryInputSynapse to its input layer and a MemoryOutputSynapse to its output layer.
Before that, we have removed all the I/O components of the neural network, to be not
aware of the I/O components used in the editor to train the net.
This is a valid example about how to dynamically modify a serialized neural network to be
used in a different environment respect to that used for its design and training.

To  provide  the  neural  network  with  the  input  patterns,  we  must  call  the
MemoryInputSynapse.setInputArray method, passing a predefined 2D array of double.
To  get  the  resulting  patterns  from  the  recall  phase  we  call  the
MemoryOutputSynapse.getNextPattern method; this  synchronized method waits for  the
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next output pattern from the net, returning an array of doubles containing the response of
the neural network.
This call is made for each input pattern provided to the net.

The  above  code  must  be  written  in  the  embedding  application,  and  to  simulate  this
situation, we can call it from a main() method:

    public static void main(String[] args) {
        if (args.length < 1) {
            System.out.println("Usage: EmbeddedXOR XOR.snet");
        }
        else {
            EmbeddedXOR xor = new EmbeddedXOR();
            xor.Go(args[0]);
        }
    }

The complete source code of this example is contained in the EmbeddedXOR.java file in
the org.joone.samples.xor package.

9.3.2.2 Using only one input pattern

We now will see how to interrogate the net using only an input pattern.
We will show only the differences respect to the previous example:

    private void Go(String fileName) {
        // We load the serialized XOR neural net
        NeuralNet xor = restoreNeuralNet(fileName);
        if (xor != null) {
            /* We get the first layer of the net (the input layer),
               then remove all the input synapses attached to it
               and attach a DirectSynapse */
            Layer input = xor.getInputLayer();
            input.removeAllInputs();
            DirectSynapse memInp = new DirectSynapse();
            input.addInputSynapse(memInp);
            ...
            /* We get the last layer of the net (the output layer),
               then remove all the output synapses attached to it
               and attach a DirectSynapse */
            Layer output = xor.getOutputLayer();
            output.removeAllOutputs();
            DirectSynapse memOut = new DirectSynapse();
            ...

As you can read, we now use both as input and output a DirectSynapse instead of the
MemoryInputSynapse object.

What are the differences?
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1. The  DirectSynapse  object  is  not  a  I/O  component,  as  it  doesn’t  inherit  the
StreamInputSynapse class

2. Consequently, it doesn’t call the Monitor.nextStep method, so the neural network is
not  more  controlled  by  the  Monitor’s  parameters  (see  the  Chapter  3  to  better
understand these concepts). Now the embedding application is responsible of the
control  of the neural  network (it  must  know when to start  and stop it),  whereas
during  the  training  phase  the  start  and  stop  actions  were  determined  by  the
parameters  of the Monitor  object,  being that process not  supervised (remember
that a neural network can be trained on remote machines without a central control).

3. For the same reasons, we don’t need to call the Monitor.Go method, nor to set its
‘TotCycles’ and ‘Patterns’ parameters.

Thus, to interrogate the net we can just write, after having invoked the  NeuralNet.start
method:

            for (int i=0; i < 4; ++i) {
                // Prepare the next input pattern
                Pattern iPattern = new Pattern(inputArray[i]);
                iPattern.setCount(1);
                // Interrogate the net
                memInp.fwdPut(iPattern);
                // Read the output pattern and print out it
                Pattern pattern = memOut.fwdGet();
                System.out.println("Output#"+(i+1)+" = "+pattern.getArray()[0]);
            }

In  the  above  code  we  give  the  net  only  one  pattern  for  each  query,  using  the
DirectSynapse.fwdPut method (note that this method accepts a Pattern object). As in the
previous  example,  to  retrieve  the  output  pattern  we  call  the
MemoryOutputSynapse.getNextPattern method.

The  complete  source  code  of  this  example  is  contained  in  the
ImmediateEmbeddedXOR.java file in the org.joone.samples.xor package.

9.4 Controlling the training of a neural network

9.4.1 Controlling the RMSE

In most cases it's very useful to control the behavior of a neural network at run time.
One of these cases could be represented by the necessity to stop the training of a neural
network when its global error (RMSE) goes below a given value.
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As probably you have noticed, in Joone there isn't any internal predefined mechanism to
stop  a neural  network  before  the  last  training  cycle  is  reached,  hence  it  would  be  a
wasting of time to continue to train the neural network after the RMSE became acceptable
for our purposes.

The core engine comes in our aid by providing a notification mechanism based on events
raised at the happening of certain facts.
The behavior of a neural network can be controlled by writing code in response of those
neural network events; the code must be written into the corresponding event handler.
As already described in a previous chapter, there are four neural networks events that are
raised in correspondence of the following actions:

• netStarted
• netStopped
• cycleTerminated
• errorChanged

The last two are denominated 'cyclic events', and they are what we need to control the
behavior of a neural network during its training (or querying) cycles.

If we need to stop the neural network when the RMSE reaches a given value, we can
write the following code into the errorChanged event handler:

    public void errorChanged(NeuralNetEvent e) {
        Monitor mon = (Monitor)e.getSource();

  if (mon.getGlobalError() <= givenValue)
mon.Stop();

    }

We could also use this technique to write to the output console the current rmse every
predetermined number of cycles, as described in the following sample code:

    public void cicleTerminated(NeuralNetEvent e) {
        Monitor mon = (Monitor)e.getSource();
        long c = mon.getTotCicles() - mon.getCurrentCicle();

        /* We want to print the result only every 1000 cycles */
        if ((c % 1000) == 0)
            System.out.println("Cycle:"+c+" RMSE = " + mon.getGlobalError());
    }

As you can see, by calling the NeuralNetEvent.getSource() method, we can obtain
a pointer to the Monitor  object of the current neural network,  thanks to which we can
control (almost) any aspect of the running neural network.

Important note: because all the above events are called synchronously by the threads
running the neural network, avoid to make CPU intensive tasks within the event handler
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code. If you need to make some long elaboration, it would be better to instantiate a new
thread,  where  the  task  could  be  executed  without  affecting  the  running  of  the  neural
network.

9.4.2 Cross Validation

Of course, thanks to the possibility to execute java code in response of any events of the
neural  network,  we  can  perform  any  kind  of  task,  even  if  very  complicated,  as,  for
instance, the validation of a neural network 'on the fly' during the training phase, without
the necessity to stop that phase.

To  do  it,  we  need  to  use  two  LearningSwitch components,  along  with  some  code
executed in response of the cicleTerminated event.

In the example shown here we'll explain also some good programming techniques used to
write a more readable and robust code, enhancing the code reuse.

First of all, as we need to repeat the same configuration (i.e. the chain input-->switch<--
desired, as described in the chapter 4) both for the training and the desired input data,
we'll write a generalized piece of code where we'll initialize all the  components needed to
perform our task:

    /** Creates a FileInputSynapse */
   private FileInputSynapse createInput(String name, int firstRow, int firstCol,
int lastCol) {
        FileInputSynapse input = new FileInputSynapse();
        input.setFileName(name);
        input.setFirstRow(firstRow);
        if (firstCol != lastCol)
            input.setAdvancedColumnSelector(firstCol+"-"+lastCol);
        else
            input.setAdvancedColumnSelector(Integer.toString(firstCol));
        
        // We normalize the input data in the range 0 - 1
        NormalizerPlugIn norm = new NormalizerPlugIn();
        if (firstCol != lastCol) {

String ass = "1-"+Integer.toString(lastCol-firstCol+1);
       norm.setAdvancedSerieSelector(ass);

}
        else
            norm.setAdvancedSerieSelector("1");
        input.setPlugIn(norm);
        return input;
    }

The  above  method  creates  and  returns  a  FileInputSynapse  with  attached  a
NormalizerPlugin, simply by receiving as parameters the input file name, the first row, the
first and last columns from which we must start to read the input data.
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After that, we need to write a routine able to build the chain
inputSynapse --> LearningSwitch <-- DesiredSynapse:

    /* Creates a LearningSwitch and attach to it both the training and
       the desired input synapses */
    private LearningSwitch createSwitch(StreamInputSynapse IT,
StreamInputSynapse IV) {
        LearningSwitch lsw = new LearningSwitch();
        lsw.addTrainingSet(IT);
        lsw.addValidationSet(IV);
        return lsw;
    }

At this point we can simply call the above two methods to build the input and desired data
components:

        /* Creates all the required input data sets:
   * ITdata = input training data set 
   * IVdata = input validation data set
   * DTdata = desired training data set
   * DVdata = desired validation data set
   */

        FileInputSynapse ITdata = this.createInput(path+"/data.txt",1,2,14); 
        FileInputSynapse IVdata = this.createInput(path+"/data.txt",131,2,14); 
        FileInputSynapse DTdata = this.createInput(path+"/data.txt",1,1,1); 
        FileInputSynapse DVdata = this.createInput(path+"/data.txt",131,1,1); 
        
        /* Creates and attach the input learning switch */
        LearningSwitch Ilsw = this.createSwitch(ITdata, IVdata);
        InputLayer.addInputSynapse(Ilsw);
        
        /* Creates and attach the desired learning switch */
        LearningSwitch Dlsw = this.createSwitch(DTdata, DVdata);
        TeachingSynapse ts = new TeachingSynapse(); // The teacher of the net
        ts.setDesired(Dlsw);
        OutputLayer.addOutputSynapse(ts);

In the above example we have used the first 130 rows as training patterns, and the remaining
rows as validation data. Moreover, we use the columns from 2 to 14 as input data, and the
first one as target value.

As you can see in the above code, at the end we have attached the input and desired
switches to the input layer and the teacher respectively (we have omitted the code to build
the layers of the neural network, but you should be able to do it yourself without problems).

Now we must add the code needed to perform the validation of the neural network at end of
every training epoch.

Of course, that code must be written into the cicleTerminated event handler:

    public void cicleTerminated(NeuralNetEvent e) {
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  Monitor mon = (Monitor)e.getSource();

        // Prints out the current epoch and the training error
    int cycle = mon.getCurrentCicle()+1;
        if (cycle % 200 == 0) { // We validate the net every 200 cycles
          System.out.println("Epoch #"+(mon.getTotCicles() - cycle));
          System.out.println("   Training Error:"+mon.getGlobalError());
            
          // Creates a copy of the neural network
          net.getMonitor().setExporting(true);
          NeuralNet newNet = net.cloneNet();
          net.getMonitor().setExporting(false);
            
          // Cleans the old listeners
          // This is a fundamental action to avoid that the validating net
          // calls the cicleTerminated method of this class
          newNet.removeAllListeners();
          
          // Set all the parameters for the validation
          NeuralNetValidator nnv = new NeuralNetValidator(newNet);
          nnv.addValidationListener(this);
          nnv.start();  // Validates the net
        }
    }

Even if the code is rather self-explaining, we want to emphasize the following aspects:

You can notice that the main neural network is not stopped during the validation phase, and
this is possible thanks to the cloning capacity of the NeuralNet object; as you can see, in fact,
we validate a cloned copy of the neural network, while the main neural network continues to
be trained.
This offers some advantages, because we perform in parallel the validation phase, being so
able to take advantage of  the presence of a multiprocessor architecture.

To perform the validation task we use the NeuralNetValidator object. It runs on a separate
thread and notifies the main application by issuing a netValidated event (to be notified, the
main application must implement the NeuralValidationListener interface).

The following code illustrates what we do in response of a netValidated event:

 /* Validation Event */
 public void netValidated(NeuralValidationEvent event) {
   // Shows the RMSE at the end of the cycle
   NeuralNet NN = (NeuralNet)event.getSource();
   System.out.println("   Validation Error: "+NN.getMonitor().getGlobalError());
 } 

As you can see, the variable passed as parameter of the method contains a pointer to the
validated neural network (that one that we have cloned in the previous code), so we're able to
access to all  the parameters of the validation task from within the caller main application (in
this example we use it to get the validation RMSE).
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If  you want to try yourself the above example, you can find the complete code into the
org.joone.samples.engine.validation.SimpleValidationSample class, and if you run it, you'll
get a result like the following:

Epoch #200
    Training Error:   0.03634410057758484
    Validation Error: 0.08310312916100844
Epoch #400
    Training Error:   0.023295226557687492
    Validation Error: 0.07643178777353665
Epoch #600
    Training Error:   0.017832470096609952
    Validation Error: 0.07457234059641271
...

In this example we have just used the validated neural network to get and print the validation
error, but you could perform whatever task as, for instance, to save in serialized format each
validated neural network, or only those having a RMSE lower than a predefined value, in
order to be able to perform a selection of the best neural networks (i.e. those having the best
generalization capacity) at the end of the training phase.
A good technique could be represented by the implementation of the following algorithm:

1.  When we start the main network, a variable named lastRMSE must be set to a high value,
say 999

2.  In response to the netValidated event, if the returned validation RMSE <  lastRMSE, then
save the returned network and let lastRMSE = RMSE

3.  Otherwise, do not save the network and stop the training phase. The last saved network is
the best one.

When in the step 2 we notice that the validation error begin to increase, then we're sure that
have  in  the  last  saved  network  the  best  one  (e.g.  the  neural  network  with  the  best
generalization error), hence we stop the training phase.

Note: This technique is very powerful when used in conjunction with the distributed training
environment,  where you can run several copies of  the same neural  network (each one
initialized with different random weights) by using different machines connected to a LAN,
augmenting  in  this  manner  the  probability  to  find  a  neural  network  having  very  good
performances in terms of generalization capacity.
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10 The LGPL Licence

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999

 Copyright (C) 1991, 1999 Free Software Foundation, Inc.      59 Temple Place, Suite 330,
Boston, MA  02111-1307  USA  Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL.  It also counts  as the successor
of the GNU Library Public License, version 2, hence  the version number 2.1.]

    Preamble

  The licenses for most software are designed to take away your freedom to share and
change it.  By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software--to make sure the software is free for all its
users.

  This license, the Lesser General Public License, applies to some specially designated
software packages--typically libraries--of the Free Software Foundation and other authors
who decide to use it.  You can use it too, but we suggest you first think carefully about
whether this license or the ordinary General Public License is the better strategy to use
in any particular case, based on the explanations below.

  When we speak of free software, we are referring to freedom of use, not price.  Our
General Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish); that you receive
source code or can get it if you want it; that you can change the software and use pieces
of it in new free programs; and that you are informed that you can do these things.

  To protect your rights, we need to make restrictions that forbid distributors to deny
you these rights or to ask you to surrender these rights.  These restrictions translate
to certain responsibilities for you if you distribute copies of the library or if you
modify it.

  For example, if you distribute copies of the library, whether gratis or for a fee, you
must give the recipients all the rights that we gave you.  You must make sure that they,
too, receive or can get the source code.  If you link other code with the library, you
must provide complete object files to the recipients, so that they can relink them with
the library after making changes to the library and recompiling it.  And you must show
them these terms so they know their rights.

  We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or
modify the library.

  To protect each distributor, we want to make it very clear that there is no warranty
for the free library.  Also, if the library is modified by someone else and passed on,
the recipients should know that what they have is not the original version, so that the
original author's reputation will not be affected by problems that might be introduced by
others.

  Finally, software patents pose a constant threat to the existence of any free program.
We wish to make sure that a company cannot effectively restrict the users of a free
program by obtaining a restrictive license from a patent holder.  Therefore, we insist
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that any patent license obtained for a version of the library must be consistent with the
full freedom of use specified in this license.

  Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License.  This license, the GNU Lesser General Public License, applies to certain
designated libraries, and is quite different from the ordinary General Public License.
We use this license for certain libraries in order to permit linking those libraries into
non-free programs.

  When a program is linked with a library, whether statically or using a shared library,
the combination of the two is legally speaking a combined work, a derivative of the
original library.  The ordinary General Public License therefore permits such linking
only if the entire combination fits its criteria of freedom.  The Lesser General Public
License permits more lax criteria for linking other code with the library.

  We call this license the "Lesser" General Public License because it does Less to
protect the user's freedom than the ordinary General Public License.  It also provides
other free software developers Less of an advantage over competing non-free programs.
These disadvantages are the reason we use the ordinary General Public License for many
libraries.  However, the Lesser license provides advantages in certain special
circumstances.

  For example, on rare occasions, there may be a special need to encourage the widest
possible use of a certain library, so that it becomes a de-facto standard.  To achieve
this, non-free programs must be allowed to use the library.  A more frequent case is that
a free library does the same job as widely used non-free libraries.  In this case, there
is little to gain by limiting the free library to free software only, so we use the
Lesser General Public License.

  In other cases, permission to use a particular library in non-free programs enables a
greater number of people to use a large body of free software.  For example, permission
to use the GNU C Library in non-free programs enables many more people to use the whole
GNU operating system, as well as its variant, the GNU/Linux operating system.

  Although the Lesser General Public License is Less protective of the users' freedom, it
does ensure that the user of a program that is linked with the Library has the freedom
and the wherewithal to run that program using a modified version of the Library.

  The precise terms and conditions for copying, distribution and modification follow.
Pay close attention to the difference between a "work based on the library" and a "work
that uses the library".  The former contains code derived from the library, whereas the
latter must be combined with the library in order to run.

  GNU LESSER GENERAL PUBLIC LICENSE
   TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

  0. This License Agreement applies to any software library or other program which
contains a notice placed by the copyright holder or other authorized party saying it may
be distributed under the terms of this Lesser General Public License (also called "this
License"). Each licensee is addressed as "you".

  A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables. 

  The "Library", below, refers to any such software library or work which has been
distributed under these terms.  A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or
a portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language.  (Hereinafter, translation is included without
limitation in the term "modification".) 

  "Source code" for a work means the preferred form of the work for making modifications
to it.  For a library, complete source code means all the source code for all modules it
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contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the library.

  Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope.  The act of running a program using the Library is
not restricted, and output from such a program is covered only if its contents constitute
a work based on the Library (independent of the use of the Library in a tool for writing
it).  Whether that is true depends on what the Library does and what the program that
uses the Library does.
  
  1. You may copy and distribute verbatim copies of the Library's complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute
a copy of this License along with the Library.

  You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

  2. You may modify your copy or copies of the Library or any portion of it, thus forming
a work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

    a) The modified work must itself be a software library.

    b) You must cause the files modified to carry prominent notices
    stating that you changed the files and the date of any change.

    c) You must cause the whole of the work to be licensed at no
    charge to all third parties under the terms of this License.

    d) If a facility in the modified Library refers to a function or a
    table of data to be supplied by an application program that uses
    the facility, other than as an argument passed when the facility
    is invoked, then you must make a good faith effort to ensure that,
    in the event an application does not supply such function or
    table, the facility still operates, and performs whatever part of
    its purpose remains meaningful.

    (For example, a function in a library to compute square roots has
    a purpose that is entirely well-defined independent of the
    application.  Therefore, Subsection 2d requires that any
    application-supplied function or table used by this function must
    be optional: if the application does not supply it, the square
    root function must still compute square roots.)

These requirements apply to the modified work as a whole.  If identifiable sections of
that work are not derived from the Library, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works.  But when you distribute the same
sections as part of a whole which is a work based on the Library, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

  3. You may opt to apply the terms of the ordinary GNU General Public License instead of
this License to a given copy of the Library.  To do this, you must alter all the notices
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that refer to this License, so that they refer to the ordinary GNU General Public
License, version 2, instead of to this License.  (If a newer version than version 2 of
the ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.)  Do not make any other change in these notices.

  Once this change is made in a given copy, it is irreversible for that copy, so the
ordinary GNU General Public License applies to all subsequent copies and derivative works
made from that copy.

  This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

  4. You may copy and distribute the Library (or a portion or derivative of it, under
Section 2) in object code or executable form under the terms of Sections 1 and 2 above
provided that you accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

  If distribution of object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place
satisfies the requirement to distribute the source code, even though third parties are
not compelled to copy the source along with the object code.

  5. A program that contains no derivative of any portion of the Library, but is designed
to work with the Library by being compiled or linked with it, is called a "work that uses
the Library".  Such a work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

  However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather
than a "work that uses the library".  The executable is therefore covered by this
License. Section 6 states terms for distribution of such executables.

  When a "work that uses the Library" uses material from a header file that is part of
the Library, the object code for the work may be a derivative work of the Library even
though the source code is not. Whether this is true is especially significant if the work
can be linked without the Library, or if the work is itself a library.  The threshold for
this to be true is not precisely defined by law.

  If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length),
then the use of the object file is unrestricted, regardless of whether it is legally a
derivative work.  (Executables containing this object code plus portions of the Library
will still fall under Section 6.)

  Otherwise, if the work is a derivative of the Library, you may distribute the object
code for the work under the terms of Section 6. Any executables containing that work also
fall under Section 6, whether or not they are linked directly with the Library itself.

  6. As an exception to the Sections above, you may also combine or link a "work that
uses the Library" with the Library to produce a work containing portions of the Library,
and distribute that work under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse engineering for debugging
such modifications.

  You must give prominent notice with each copy of the work that the Library is used in
it and that the Library and its use are covered by this License.  You must supply a copy
of this License.  If the work during execution displays copyright notices, you must
include the copyright notice for the Library among them, as well as a reference directing
the user to the copy of this License.  Also, you must do one of these things:

    a) Accompany the work with the complete corresponding
    machine-readable source code for the Library including whatever
    changes were used in the work (which must be distributed under
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    Sections 1 and 2 above); and, if the work is an executable linked
    with the Library, with the complete machine-readable "work that
    uses the Library", as object code and/or source code, so that the
    user can modify the Library and then relink to produce a modified
    executable containing the modified Library.  (It is understood
    that the user who changes the contents of definitions files in the
    Library will not necessarily be able to recompile the application
    to use the modified definitions.)

    b) Use a suitable shared library mechanism for linking with the
    Library.  A suitable mechanism is one that (1) uses at run time a
    copy of the library already present on the user's computer system,
    rather than copying library functions into the executable, and (2)
    will operate properly with a modified version of the library, if
    the user installs one, as long as the modified version is
    interface-compatible with the version that the work was made with.

    c) Accompany the work with a written offer, valid for at
    least three years, to give the same user the materials
    specified in Subsection 6a, above, for a charge no more
    than the cost of performing this distribution.

    d) If distribution of the work is made by offering access to copy
    from a designated place, offer equivalent access to copy the above
    specified materials from the same place.

    e) Verify that the user has already received a copy of these
    materials or that you have already sent this user a copy.

  For an executable, the required form of the "work that uses the Library" must include
any data and utility programs needed for reproducing the executable from it.  However, as
a special exception, the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

  It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system.  Such a
contradiction means you cannot use both them and the Library together in an executable
that you distribute.

  7. You may place library facilities that are a work based on the Library side-by-side
in a single library together with other library facilities not covered by this License,
and distribute such a combined library, provided that the separate distribution of the
work based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

    a) Accompany the combined library with a copy of the same work
    based on the Library, uncombined with any other library
    facilities.  This must be distributed under the terms of the
    Sections above.

    b) Give prominent notice with the combined library of the fact
    that part of it is a work based on the Library, and explaining
    where to find the accompanying uncombined form of the same work.

  8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License.  Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically
terminate your rights under this License.  However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as
such parties remain in full compliance.
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  9. You are not required to accept this License, since you have not signed it.  However,
nothing else grants you permission to modify or distribute the Library or its derivative
works.  These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Library (or any work based on the Library),
you indicate your acceptance of this License to do so, and all its terms and conditions
for copying, distributing or modifying the Library or works based on it.

  10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy,
distribute, link with or modify the Library subject to these terms and conditions.  You
may not impose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties with this
License.

  11. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this License.  If you cannot
distribute so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not distribute the Library at
all.  For example, if a patent license would not permit royalty-free redistribution of
the Library by all those who receive copies directly or indirectly through you, then the
only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a whole
is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system which
is implemented by public license practices.  Many people have made generous contributions
to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that
choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

  12. If the distribution and/or use of the Library is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder who places
the Library under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded.  In such case, this License incorporates the limitation as if written
in the body of this License.

  13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number.  If the Library specifies a
version number of this License which applies to it and "any later version", you have the
option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation.  If the Library does not specify a
license version number, you may choose any version ever published by the Free Software
Foundation.

  14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission.  For software which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for this.  Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.
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    NO WARRANTY

  15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU.  SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

  16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS
PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER
SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

     END OF TERMS AND CONDITIONS

           How to Apply These Terms to Your New Libraries

  If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and change.
You can do so by permitting redistribution under these terms (or, alternatively, under
the terms of the ordinary General Public License).

  To apply these terms, attach the following notices to the library.  It is safest to
attach them to the start of each source file to most effectively convey the exclusion of
warranty; and each file should have at least the "copyright" line and a pointer to where
the full notice is found.

    <one line to give the library's name and a brief idea of what it does.>
    Copyright (C) <year>  <name of author>

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a "copyright disclaimer" for the library, if necessary.  Here is a sample; alter
the names:
  Yoyodyne, Inc., hereby disclaims all copyright interest in the   library `Frob' (a
library for tweaking knobs) written by James Random Hacker.

  <signature of Ty Coon>, 1 April 1990
  Ty Coon, President of Vice

That's all there is to it!
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