
Lecture 6 – Introduction to the
ATmega328 and Ardunio

CSE P567

Outline
  Lecture 6

  ATmega architecture and instruction set
  I/O pins
  Arduino C++ language

  Lecture 7
  Controlling Time

  Interrupts and Timers

  Lecture 8
  Guest lecture – Radio communication

  Lecture 9
  Designing PID Controllers

AVR Architecture

AVR Architecture
  Clocks and Power
  Beyond scope of this

course

AVR Architecture
  CPU

  Details coming

AVR Architecture
  Harvard architecture
  Flash – program memory

  32K

  SRAM – data memory
  2K

  EEPROM
  For long-term data
  On I/O data bus

Memory
  Flash (32K) (15-bit addresses)

  Program memory – read only
  Non-volatile
  Allocate data to Flash using PROGMEM keyword

  see documentation

  SRAM (2K)
  Temporary values, stack, etc.
  Volatile
  Limited space!

  EEPROM (1K)
  Long-term data
  see documentation on EEPROM library

AVR CPU
  Instruction Fetch

and Decode

AVR CPU
  ALU Instructions

AVR CPU
  I/O and special

functions

AVR Register File
  32 8-bit GP registers
  Part of SRAM memory space

Special Addressing Registers
  X, Y and Z registers

  16-bit registers made using registers 26 – 31

  Support indirect addressing

AVR Memory
  Program memory – Flash

  Data memory - SRAM

Addressing Modes
  Direct register

addressing

Addressing Modes
  Direct I/O addressing

Addressing Modes
  Direct data memory addressing

Addressing Modes
  Direct data memory with displacement addressing

Addressing Modes
  Indirect data memory addressing

Addressing Modes
  Indirect data memory addressing with pre-decrement

Addressing Modes
  Indirect data memory addressing with post-increment

Addressing Modes
  Program memory addressing (constant data)

SRAM Read/Write Timing

Stack Pointer Register
  Special register in I/O space [3E, 3D]

  Enough bits to address data space
  Initialized to RAMEND (address of highest memory address)

  Instructions that use the stack pointer

Program Status Register (PSR)

  \
  Status bits set by instructions/Checked by Branch/Skip

instructions
  I – Global interrupt enable
  T – Flag bit
  H – Half carry (BCD arithmetic)
  S – Sign
  V – Overflow
  N – Negative
  Z – Zero
  C – Carry

Simple 2-Stage Pipeline
  Branch/Skip??

Single-Cycle ALU Instructions
  Most instructions execute in one cycle
  Makes program timing calculations (relatively) easy

  No cache misses
  1 clock/instruction

Addressing Modes
  JMP, CALL – Direct Program Memory Addressing

Addressing Modes
  IJMP, ICALL – Indirect program memory addressing

Addressing Modes
  RJMP, RCALL – Relative program memory addressing

Arithmetic Instructions

Logical Instructions

Jump and Call Instructions

Skip and Branch Instructions

Skip and Branch (cont)

Move, Load

Store

Load/Store Program Memory

Move, I/O, Push/Pop

Shift and Bit Instructions

Bit Instructions (cont)

AVR Architecture
  Three timers
  Very flexible

  Choose clock rate
  Choose “roll-over” value
  Generate interrupts
  Generate PWM signals

  (represent 8-bit value with
using a clock signal)

  More in next lecture…

Arduino Timing Functions
  delay(ms)

  wait for ms milliseconds before continuing

  delayMicroseconds(us)
  wait for us microseconds before continuing

  unsigned long millis()
  return number of milliseconds since program started

  unsigned long micros()
  return number of microseconds since program started
  resolution of 4 microseconds

AVR Architecture
  Interface to pins
  Each pin directly

programmable
  Program direction
  Program value
  Program pull-ups

  Some pins are special
  Analog vs. Digital
  Clocks
  Reset

I/O Ports
  3 8-bit Ports (B, C, D)
  Each port controlled by 3 8-bit registers

  Each bit controls one I/O pin
  DDRx – Direction register

  Defines whether a pin is an input (0) or and output (1)

  PINx – Pin input value
  Reading this “register” returns value of pin

  PORTx – Pin output value
  Writing this register sets value of pin

Pin Circuitry

Pin Input

off

DDRx = 0

PORTx

PINx

Synchronization Timing
  Note: Takes a clock cycle for data output to be reflected

on the input

Pin Output

on

DDRx = 1

PORTx

PINx

Pin Input – PORT controls pullup

off

DDRx = 0

PORTx

PINx

I/O Ports
  Pullups

  If a pin is an input (DDRxi = 0):
  PORTxi = 0 – pin is floating
  PORTxi = 1 – connects a pullup to the pin

  Keeps pin from floating if noone driving
  Allows wired-OR bus

  Individual bits can be set cleared using bit-ops
  A bit can be toggled by writing 1 to PINxi

  SBI instruction e.g.

I/O Protection

Arduino Digital and Analog I/O Pins
  Digital pins:

  Pins 0 – 7: PORT D [0:7]
  Pins 8 – 13: PORT B [0:5]
  Pins 14 – 19: PORT C [0:5] (Arduino analog pins 0 – 5)
  digital pins 0 and 1 are RX and TX for serial communication
  digital pin 13 connected to the base board LED

  Digital Pin I/O Functions
  pinMode(pin, mode)

  Sets pin to INPUT or OUTPUT mode
  Writes 1 bit in the DDRx register

  digitalWrite(pin, value)
  Sets pin value to LOW or HIGH (0 or 1)
  Writes 1 bit in the PORTx register

  int value = digitalRead(pin)
  Reads back pin value (0 or 1)
  Read 1 bit in the PINx register

Arduino Analog I/O
  Analog input pins: 0 – 5
  Analog output pins: 3, 5, 6, 9, 10, 11 (digital pins)
  Analog input functions

  int val = analogRead(pin)
  Converts 0 – 5v. voltage to a 10-bit number (0 – 1023)
  Don’t use pinMode
  analogReference(type)

  Used to change how voltage is converted (advanced)

  Analog output
  analogWrite(pin, value)

  value is 0 – 255
  Generates a PWM output on digital pin (3, 5, 6, 9, 10, 11)
  @490Hz frequency

AVR Architecture
  Analog inputs
  Convert voltage to a

10-bit digital value
  Can provide reference

voltages

PWM – Pulse Width Modulation
  Use one wire to represent a multi-bit value

  A clock with a variable duty cycle
  Duty cycle used to represent value
  We can turn it into a analog voltage using an integrating filter

Port Special Functions
  Lots of special uses for pins

  Clock connections
  Timer connections

  e.g. comparator output for PWM

  Interrupts
  Analog references
  Serial bus I/Os

  USART
  PCI

Reading and Writing Pins Directly
  Only one pin can be changed using the Arduino I/O

functions
  Setting multiple pins takes time and instructions

  To change multiple pins simultaneously, directly read/write
the pin registers
  DDR{A/B/C}
  PORT{A/B/C}
  PIN{A/B/C}

  e.g. to set all digital pins 0 – 7 to a value:
  PORTD = B01100101;

AVR Architecture
  Special I/O support

  Serial protocols

  Uses special pins
  Uses timers
  Beyond scope of this

course

Arduino C Programs
  Arduino calls these “sketches”

  Basically C with libraries

  Program structure
  Header: declarations, includes, etc.
  setup()
  loop()

  Setup is like Verilog initial
  executes once when program starts

  loop() is like Verilog always
  continuously re-executed when the end is reached

Blink Program

int ledPin = 13; // LED connected to digital pin 13

// The setup() method runs once, when the sketch starts

void setup() {
 // initialize the digital pin as an output:
 pinMode(ledPin, OUTPUT);
}

// the loop() method runs over and over again,
// as long as the Arduino has power

void loop()
{
 digitalWrite(ledPin, HIGH); // set the LED on
 delay(1000); // wait for a second
 digitalWrite(ledPin, LOW); // set the LED off
 delay(1000); // wait for a second
}

The Arduino C++ Main Program

int main(void)
{

 init();

 setup();

 for (;;)
 loop();

 return 0;
}

Arduino Serial I/O
  Communication with PC via USB serial line

  Use the Serial Monitor in the IDE
  Or set up a C or Java (or you-name-it) interface

  Example Serial library calls
  Serial.begin(baud-rate)

  9600 default

  Serial.println(string)
  int foo = Serial.read()

  Read one byte (input data is buffered)

  See documentation for more

Example Program

