Lecture 2 – Combinational Circuits and Verilog

CSE P567
Example: $r_1 = r_2 + r_3$

- We need:
 - Registers
 - Adder function (combinational logic)
 - Wires
Example: \(r_1 = r_2 + r_3 \)

We need:
- Registers
- adder function (combinational logic)
- Wires
- Selection function
 - We won’t always want \(r_2 \) and \(r_3 \)
Combinational Logic

- Functions with no state
- Output is a function of the inputs only – no history
 - add
 - subtract
 - multiply
 - count-ones
 - FSM next state function
- All computation is done in binary
 - Primitive circuit values are on/off, Vdd/GND, current/no current
Review: Binary Encoding of Numbers

- Unsigned numbers
 - $b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + \ldots + b_02^0$

- 2s complement encoding of signed numbers
 - $-b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + \ldots + b_02^0$

- Same adder works for both unsigned and signed numbers

- To negate a number, invert all bits and add 1
 - As slow as add in worst case
Binary Addition

- Simple addition algorithm works:

```
  0 1 1 0  +6
  1 1 0 1  -3
  ---------
```
Binary Addition

- Simple addition algorithm works:
 \[
 \begin{array}{cccc}
 1 & 1 & 0 & 0 \\
 0 & 1 & 1 & 0 & +6 \\
 1 & 1 & 0 & 1 & -3 \\
 \hline
 0 & 0 & 1 & 1 & 3
 \end{array}
 \]

- Note: we drop the carry out of the high-order bit
- Each bit computes the same simple functions
 - Sum = f(a, b, Cin)
 - Cout = f(a, b, Cin)
 - Ripple carry adder
Ripple-Carry Adder

- Each bit computes the same simple functions
 - Sum = f(a, b, Cin)
 - Cout = f(a, b, Cin)
- If we can write the function as a Boolean equation, we can generate the circuit
Combinational Logic Design

- We can translate a Boolean function into logic gates
 - AND, OR, INVERT
- e.g. Homework problem
 - \(g_0 = r_0 \)
 - \(g_1 = g_1 \cdot r_0' \)
 - \(g_2 = g_2 \cdot r_0' \cdot r_1' \)
Homework Problem

- Homework problem
 - Gates grow linearly
 - Keep to <= 4 inputs
Homework Problem

- Homework problem
 - “carry” chain of ORs
 - “multi-level logic”
 - linear delay
 - can we do better?
 - Yes we can!
 - Any ideas?
Combinational Logic Design

- Finding the Boolean function? (e.g. Sum, Carry)
 - Most functions are not obvious
- “Case analysis” always works
 - Enumerate all possible input cases
 - Determine value for each case
 - Convert to Boolean equation
 - (Not reasonable for large functions – more later)
Case Analysis for Sum and Cout

- There are 3 inputs and thus 8 different possibilities

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Cin</th>
<th>Cout</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Case Analysis for Sum and Cout

- There are 3 inputs and thus 8 different possibilities

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Cin</th>
<th>Cout</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Also known as a 3-2 counter
Truth Table to Boolean Function

- Straightforward process

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>Cout</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>a•b•c</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a•b•c</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a•b•c</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a•b•c</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>a•b•c</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a•b•c</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>a•b•c</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>a•b•c</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Cout = a•b•c + a•b•c + a•b•c + a•b•c

- Sum = a•b•c + a•b•c + a•b•c + a•b•c
Canonical forms: Sum Of Products

- Truth table is the unique signature of a Boolean function
- Many alternative expressions may have the same truth table
- Canonical form
 - standard form for a Boolean expression
 - Sum-of-products form –
 a.k.a. disjunctive normal form or minterm expansion

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>F</th>
<th>F'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>F = A'BC + AB'C' + AB'C + ABC' + ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F' = A'B'C' + A'B'C + A'BC'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Truth table is the unique signature of a Boolean function.
Incompletely specified functions

- Example: binary coded decimal increment by 1
 - BCD digits encode the decimal digits 0 – 9 in the bit patterns 0000 – 1001

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

- Off-set of W
- On-set of W
- Don't care (DC) set of W

These inputs patterns should never be encountered in practice – we "don't care" about associated output values, and this can be exploited in minimization.
Regular Two-Level Logic

- Basis is canonical form
- Note notation for high-fanin gates
This is a “Canonical” Description

- Exactly one truth table for a function
 - Canonical “Sum of Products” equation

- This equation is in general not minimal
 - e.g. \(\text{Cout} = \overline{a} \cdot b \cdot c + a \cdot \overline{b} \cdot c + a \cdot b \cdot \overline{c} + a \cdot b \cdot c \)

- Minimal equation:
 - \(\text{Cout} = a \cdot b + b \cdot c + a \cdot c \)

- Much cheaper:
 - 4 3-input ANDs + 1 4-input OR
 - vs. 3 2-input ANDs + 1 3-input OR

- What about Sum?
Sum

- $\text{Sum} = \overline{a} \cdot \overline{b} \cdot c + \overline{a} \cdot b \cdot \overline{c} + a \cdot \overline{b} \cdot c + a \cdot b \cdot c$

- Can we reduce this?

- Karnaugh map allows us to visualize the function
 - Adjacencies allow minimization

- Sum cannot be minimized (with 2-level logic)
Cheaper Sum – Multi-level Circuit

- 12 gate inputs vs. 16
 - (ignore inverters)
- Slower (but smaller gates)
Multiplexers/selectors

- **Multiplexers/selectors: general concept**
 - 2^n data inputs, n control inputs (called "selects"), 1 output
 - used to connect one of 2^n inputs to the single output
 - control signal pattern forms binary index of input connected to output
 - e.g. 2-1 mux

\[Z = S' I_0 + S I_1 \]

- [Functional form](#)
- [Logical form](#)

<table>
<thead>
<tr>
<th>S</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>I_0</td>
</tr>
<tr>
<td>1</td>
<td>I_1</td>
</tr>
</tbody>
</table>

Two alternative forms for a 2:1 Mux truth table
Multiplexers/selectors

- **Multiplexers/selectors: general concept**
 - 2^n data inputs, n control inputs (called "selects"), 1 output
 - used to connect one of 2^n inputs to the single output
 - control signal pattern forms binary index of input connected to output
 - e.g. 2-1 mux

\[Z = S' I_0 + S I_1 \]

<table>
<thead>
<tr>
<th>S</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>I_0</td>
</tr>
<tr>
<td>1</td>
<td>I_1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I_1</th>
<th>I_0</th>
<th>S</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Functional form

Logical form

Two alternative forms for a 2:1 Mux truth table
Gate level implementation of muxes

- 2:1 mux

- 4:1 mux
Multiplexers/selectors (cont'd)
Cascading multiplexers

- Large multiplexers can be implemented by cascading smaller ones using a tree structure.
Decoders

- General idea:
 - Convert a binary number into a “1-hot” number
 - n inputs (address)
 - 2n outputs
 - enable input (optional)
 - 0 -> all outputs 0
Gate level implementation of decoders

- 1:2 decoder

- 2:4 decoder
Cascading decoders

- Use a tree structure
 - cheaper than 2-level implementation

- **5:32 decoder**
 - 1x2:4 decoder
 - 4x3:8 decoders
2-Level Logic Minimization

- Important because of 2-level implementations
 - PLAs – 1950s
 - PALs – 1970s

- By-hand methods – Karnaugh maps
 - Only for small functions
 - Good for visualization

- Exact methods good up to 15 or so inputs
 - 1950’s – Quine-McCluskey algorithm

- Heuristic methods for more than that
 - 1970’s – Espresso
Multi-Level Logic Minimization

- Factor function into smaller functions
 - Smaller gates
 - Fewer gates
 - Deeper circuit – cost/performance tradeoff
- Needed for FPGAs and semi-custom ASICs
 - Circuit libraries with “small” gates
- Developed in the 1980s and 90s
- Much more difficult problem than 2-level minimization
 - Many different factoring methods
Simple Factoring - Decomposition

- Shannon/Ashenhurst Decomposition
 - $F(a, b, c, d, \ldots) = a' F_{a=0}(b, c, d, \ldots) + a F_{a=1}(b, c, d, \ldots)$
 - 2-1 Mux
Example

- $f(a,b,c,d,e) = ad' + bde + a'de' + bd'c'$
Logic Synthesis

- Compiles HDL into gates
- 1. Elaboration – parse HDL program into standard form
- 2. Logic optimization – minimize cost/maximize performance
- 3. Tech mapping – map optimized circuit to available library components
 - May require “re-synthesis”
- 4. Physical Re-Synthesis – transform circuit when placing and routing
 - Process is unpredictable
Logic Synthesis

- Insulates us from the details
 - Like a C or Java compiler
- But we need to understand the implications of what we write in HDL
 - Just like in C or Java
- Each FPGA company has its own synthesis tool
- And Cadence, Synopsis, Mentor, …
Verilog Introduction

- **Two ways to describe:**
 - **Behavioral Verilog**
 - describe *what* a component does, not *how* it does it
 - synthesized into a circuit that has this behavior
 - **Structural Verilog**
 - list of components and how they are connected
 - just like schematics, but using text
 - hard to write, hard to decode
 - used to compose systems hierarchically from components
Verilog by Example

- Ripple-Carry Adder

- We will describe the full-adder as a behavioral module.
- We will connect these together in a higher-level component.
full_adder module

module full_adder
 (input a,
 input b,
 input c,
 output sum,
 output carry);
 assign sum = a & ~b & ~c | ~a & b & ~c |
 ~a & ~b & c | a & b & c;
 assign carry = a & b | a & c | b & c;
endmodule
assign statement

- A single assignment equation
 - One logical function (possibly multiple-bit value)
- Each assignment is a process
 - Runs in parallel with all other processes
 - Order of assignments does not matter!
 - Executes whenever an input changes
 - Just like logic gates
Verilog Operators

<table>
<thead>
<tr>
<th>Verilog Operator</th>
<th>Name</th>
<th>Functional Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>()</td>
<td>bit-select or part-select</td>
<td></td>
</tr>
<tr>
<td>()</td>
<td>parenthesis</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td>logical negation</td>
<td>Logical</td>
</tr>
<tr>
<td>~</td>
<td>negation</td>
<td>Logical</td>
</tr>
<tr>
<td>&</td>
<td>reduction AND</td>
<td>Reduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reduction OR</td>
</tr>
<tr>
<td>~&</td>
<td>reduction NAND</td>
<td>Reduction</td>
</tr>
<tr>
<td>~</td>
<td></td>
<td>reduction NOR</td>
</tr>
<tr>
<td>^</td>
<td>reduction XOR</td>
<td>Reduction</td>
</tr>
<tr>
<td>^</td>
<td>or ^~</td>
<td>reduction XNOR</td>
</tr>
<tr>
<td>+</td>
<td>unary (sign) plus</td>
<td>Arithmetic</td>
</tr>
<tr>
<td>-</td>
<td>unary (sign) minus</td>
<td>Arithmetic</td>
</tr>
<tr>
<td>{}</td>
<td>concatenation</td>
<td>Concatenation</td>
</tr>
<tr>
<td>{}()</td>
<td>replication</td>
<td>Replication</td>
</tr>
<tr>
<td>*</td>
<td>multiply</td>
<td>Arithmetic</td>
</tr>
<tr>
<td>/</td>
<td>divide</td>
<td>Arithmetic</td>
</tr>
<tr>
<td>%</td>
<td>modulus</td>
<td>Arithmetic</td>
</tr>
<tr>
<td>+</td>
<td>binary plus</td>
<td>Arithmetic</td>
</tr>
<tr>
<td>-</td>
<td>binary minus</td>
<td>Arithmetic</td>
</tr>
<tr>
<td><<</td>
<td>shift left</td>
<td>Shift</td>
</tr>
<tr>
<td>>></td>
<td>shift right</td>
<td>Shift</td>
</tr>
<tr>
<td>></td>
<td>greater than</td>
<td>Relational</td>
</tr>
<tr>
<td>>=</td>
<td>greater than or equal to</td>
<td>Relational</td>
</tr>
<tr>
<td><</td>
<td>less than</td>
<td>Relational</td>
</tr>
<tr>
<td><=</td>
<td>less than or equal to</td>
<td>Relational</td>
</tr>
<tr>
<td>==</td>
<td>logical equality</td>
<td>Equality</td>
</tr>
<tr>
<td>!=</td>
<td>logical inequality</td>
<td>Equality</td>
</tr>
<tr>
<td>===</td>
<td>case equality</td>
<td>Equality</td>
</tr>
<tr>
<td>!==</td>
<td>case inequality</td>
<td>Equality</td>
</tr>
<tr>
<td>&</td>
<td>bit-wise AND</td>
<td>Bit-wise</td>
</tr>
<tr>
<td>^</td>
<td>bit-wise XOR</td>
<td>Bit-wise</td>
</tr>
<tr>
<td>^~ or ^~</td>
<td>bit-wise XNOR</td>
<td>Bit-wise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bit-wise OR</td>
</tr>
<tr>
<td>&&</td>
<td>logical AND</td>
<td>Logical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?:</td>
<td>conditional</td>
<td>Conditional</td>
</tr>
</tbody>
</table>
Alternative full_adder module

module full_adder
 (input a,
 input b,
 input c,
 output sum,
 output carry);
 assign { carry, sum } = a + b + c;
endmodule

- We add the 3 input bits together (count)
- The 2-bit result is assigned to the 2-bit bus
 - \{ carry, sum \}
adder4 module

module adder4
 (input [3:0] a,
 input [3:0] b,
 output [3:0] sum);
 wire carry0, carry1, carry2;
 full_adder fa0(.a(a[0]), .b(b[0]), .c(0)
 .sum(sum[0], .carry(carry0)));
 full_adder fa1(.a(a[1]), .b(b[1]), .c(carry0)
 .sum(sum[1], .carry(carry1)));
 full_adder fa2(.a(a[2]), .b(b[2]), .c(carry1)
 .sum(sum[2], .carry(carry2)));
 full_adder fa3(.a(a[3]), .b(b[3]), .c(carry2)
 .sum(sum[3], .carry()));
endmodule

- This module just wires together the full-adders
- Connects the processes together
Verilog Data Types and Values

- **Bits** - value on a single wire
 - 0, 1
 - X - don’t care
 - Z - undriven, tri-state

- **Vectors of bits – busses**
 - Treated as an *unsigned* integer value by default
 - e.g. $A < 0$??
 - Can declare variables as signed

- **Concatenating bits/vectors into a vector**
 - e.g. sign extend
Verilog Numbers

- 14 - ordinary decimal number
- -14 - 2’s complement representation
- 12’b0000_0100_0110 - binary number with 12 bits (_ is ignored)
- 3’h046 - hexadecimal number with 12 bits

Verilog values are *unsigned by default*

- if A = 0110 (6) and B = 1010(-6)
 C = 10000 not 00000
 i.e. B is zero-padded, not sign-extended

For maximum safety, declare length of all intermediates
always block

- Contains a small program that is executed whenever an input changes
 - A parallel process, just like an assign statement
 - The block can make multiple assignments
 - The program is executed sequentially
 - The program describes the function computed by the block
 - Program is interpreted at compile time to generate a circuit
 - Combinational – takes no time
 - Even though the program semantics are sequential
Combinational always block

- **always @(list_of_variables)**
 - block executes when any of the variables change
 - easy to forget a variable
 - we will not use this style

- **always @(*)**
 - This means to execute the program if any input changes
 - Just like an assign
Alternative full_adder module

```verilog
module full_adder
    (input a,
     input b,
     input c,
     output reg sum,
     output reg carry);
    always @(*) begin
        sum = a & ~b & ~c | ~a & b & ~c |
               ~a & ~b & c | a & b & c;
        carry = a & b | a & c | b & c;
    end
endmodule
```

- Order in the always block does matter
- Variables assigned in an always block must be declared as reg
Verilog Variables

- **wire**
 - variable used to connect components together
 - inputs and outputs are wires by default
 - outputs be declared as regs

- **reg**
 - Any variable that is assigned in an `always` block
 - cannot be assigned by an assign statement
 - usually corresponds to a wire in the circuit
 - is *NOT* a register in the circuit

- **Important:**
 - The names wire and reg do not mean anything!
Verilog if

- Same as C if statement

```verilog
// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
    (input [1:0] sel, // 2-bit control signal
     input A, input B, input C, input D,
     output reg Y);

    always @(*) begin
        if      (sel == 2'b00) Y = A;
        else if (sel == 2'b01) Y = B;
        else if (sel == 2'b10) Y = C;
        else if (sel == 2'b11) Y = D;
    end
endmodule
```
Verilog if

Another way

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
 (input [1:0] sel, // 2-bit control signal
 input A, input B, input C, input D,
 output reg Y);

 always @(*) begin
 if (sel[0] == 0)
 if (sel[1] == 0) Y = A;
 else Y = B;
 else
 if (sel[1] == 0) Y = C;
 else Y = D;
 end
endmodule
Verilog case

- Sequential execution of cases
 - only first case that matches is executed (no break)
 - default case can be used

```verilog
// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
    // 2-bit control signal
    input [1:0] sel,
    input A, input B, input C, input D,
    output reg Y);

    always @(*) begin
        case (sel)
            2'b00: Y = A;
            2'b01: Y = B;
            2'b10: Y = C;
            2'b11: Y = D;
        endcase
    end
endmodule
```
Verilog case

- Without the default case, this would *not* be combinational!
- Assigning X to a variable means synthesis is free to assign any value

```verilog
// Simple binary encoder (input is 1-hot)
module encode
    (input [7:0] A, // 8-bit input vector
     output reg [2:0] Y); // 3-bit encoded output
    always @(*)
        case (A)
            8'b00000001: Y = 0;
            8'b00000010: Y = 1;
            8'b00000100: Y = 2;
            8'b00001000: Y = 3;
            8'b00010000: Y = 4;
            8'b00100000: Y = 5;
            8'b01000000: Y = 6;
            8'b10000000: Y = 7;
            default: Y = 3'bX; // Don’t care when input is not 1-hot
        endcase
    endmodule
```
Verilog for

- for is similar to C
- for statement is executed at compile time
 - result is all that matters, not how result is calculated

// simple encoder
module encode
 (input [7:0] A, // 8-bit input vector
 output reg [2:0] Y); // 3-bit encoded output
 integer i; // Temporary variables for program only
 reg [7:0] test;

 always @(*) begin
 test = 8b'00000001;
 Y = 3'bX;
 for (i = 0; i < 8; i = i + 1) begin
 if (A == test) Y = i;
 test = test << 1;
 end
 end
endmodule
Another Behavioral Example

- Combinational block that computes Conway's Game of Life rule

```verilog
module life
    (input self,
     input [7:0] neighbors,
     output reg out);
    integer count;
    integer i;

    always @(*) begin
        count = 0;
        for (i = 0; i<8; i = i+1) count = count + neighbors[i];
        out = 0;
        out = out | (count == 3);
        out = out | ((self == 1) & (count == 2));
    end
endmodule
```
Summary: Verilog for Combinational Logic

- Two alternatives:
 - assign statement – simple logic equation
 - always block – allows complex program to describe function

- Each assign and always block compiles into a component
 - Combinational function with some inputs and outputs

- All components operate in parallel, continuously
 - If any input changes, the function is recomputed
 - This may change the output
 - Which will cause inputs of some components to change

- Just like a circuit made up of gates!
Registers and Sequential Logic

- Registers are used to store values
 - for sequencing
 - e.g. \(R_1 = R_2 + R_3 \)
 - \(R_0 = R_1 - R_4 \)

- Registers hold values while functions operate on them

- When result is ready, registers “latch” the new values
 - Clock tells registers when to latch
 - Clock is slow enough that functions have time to finish
 - Only enabled registers latch new values
 - All registers latch simultaneously
 - e.g. shift register and swap
Verilog Registers

- `always @(posedge clk)`
- The block program executes only when the clk transitions from 0 to 1 (positive edge)
- All assignments in the block store values in a register
 - These assignments should use `<=`
 - (easy to forget)
 - All registered assignments happen at same instant
 - Not sequentially determined
 - `=` causes sequential assignments – not like registers!

Examples
- shift register
- accumulator
- counter
- wavelet example
Simple 8-bit register with synchronous reset

reset only has effect on rising edge of clock

module reg8
 (input reset,
 input CLK,
 input [7:0] D,
 output reg [7:0] Q);

always @(posedge CLK)
 if (reset)
 Q <= 0;
 else
 Q <= D;
endmodule // reg8
N-bit Register with Asynchronous Reset

Example of parameterized module

```vhdl
module
    (input  reset,
     input  CLK,
     input [N-1:0] D,
     output reg [N-1:0] Q;
    parameter N = 8;  // Allow N to be changed

    always @(posedge CLK or posedge reset)
        if (reset)
            Q <= 0;
        else if (CLK == 1)
            Q <= D;

    endmodule  // regN
```
Shift Register Example

// 4 register shift register
module shiftReg
 (input CLK,
 input reset, // initialize registers
 input shift,
 input [7:0] Din, // Data input for load
 output [7:0] Dout);
reg [7:0] D0, D1, D2, D3;
assign Dout = D0;
always @(posedge CLK) begin
 if (reset) begin
 D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0;
 end else if (shift) begin
 D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1;
 end
end
endmodule // shiftReg
FIR Filter Example

module fir
 (input CLK,
 input reset, // initialize registers
 input [7:0] Din, // Data input for load
 output reg [7:0] Dout);
 reg [7:0] D0, D1, D2, D3;
 localparam C0 = 4, C1 = 3, C2 = 2, C3 = 1;

 always @(posedge CLK) begin
 if (reset) begin
 D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0;
 end else begin
 D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1;
 Dout <= C0 * D0 + C1 * D1 + C2 * D2 + C3 * D3;
 end
 end
endmodule // fir
Case Study – Division by Constant

- e.g. $\text{gray} = (\text{red} + \text{blue} + \text{green})/3$
- Division is very expensive in general
 - Area and Delay
 - Much more so than multiplication
- Convert division to multiplication
 - Multiply by the reciprocal
 - e.g. $(\text{red} + \text{blue} + \text{green}) \times 0.33$
 - Floating-point??
 - Also expensive!
- Key idea: multiply & divide by 2^n is FREE
RGB to Grayscale

- \(Y = 0.3R + 0.59G + 0.11B \)
- \(1024 \times 0.3 = 307.2 \)
- \(1024 \times 0.59 = 604.16 \)
- \(1024 \times 0.11 = 112.64 \)

- \(Y = (307R + 604G + 113B) >> 10; \)

- This works for multiplying/dividing with any number with fractions
 - Scale then re-scale
Converting Division to Multiplication

- Increase precision until it’s good enough
 - FPGA has 18x18 multipliers – almost free

- Division by a variable?
 - Table lookup of reciprocal
 - Does not scale to large numbers
 - Use iterative solutions