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Example: r1 = r2 + r3 

  We need: 
  Registers 
  Adder function (combinational logic) 
  Wires 



Example: r1 = r2 + r3 

  We need: 
  Registers 
  adder function (combinational logic) 
  Wires 
  Selection function 

  We won’t always want r2 and r3 



Combinational Logic 
  Functions with no state 
  Output is a function of the inputs only – no history 

  add 
  subtract 
  multiply 
  count-ones 
  FSM next state function 

  All computation is done in binary 
  Primitive circuit values are on/off,  Vdd/GND, current/no 

current 



Review: Binary Encoding of Numbers 
  Unsigned numbers 

   bn-12n-1 + bn-22n-2 + . . . + b020 

  2s complement encoding of signed numbers 
  -bn-12n-1 + bn-22n-2 + . . . + b020 

  Same adder works for both unsigned and signed numbers 

  To negate a number, invert all bits and add 1 
  As slow as add in worst case 



Binary Addition 
  Simple addition algorithm works: 

  0 1 1 0  +6 
  1 1 0 1  -3 
  --------- 



Binary Addition 
  Simple addition algorithm works: 

  Note: we drop the carry out of the high-order bit 
  Each bit computes the same simple functions 

  Sum = f(a, b, Cin) 
  Cout = f(a, b, Cin) 
  Ripple carry adder 

1  1  0  0 

  0 1 1 0  +6 
  1 1 0 1  -3 
  --------- 
  0 0 1 1   3 



Ripple-Carry Adder 

  Each bit computes the same simple functions 
  Sum = f(a, b, Cin) 
  Cout = f(a, b, Cin) 

  If we can write the function as a Boolean equation, we can 
generate the circuit 



Combinational Logic Design 
  We can translate a Boolean function into logic gates 

  AND, OR, INVERT 

  e.g. Homework problem 
  g0 = r0 
  g1 = g1 * r0’ 
  g2 = g2 * r0’ * r1’ 



Homework Problem 
  Homework problem 

  Gates grow linearly 
  Keep to <= 4 inputs 



Homework Problem 
  Homework problem 

  “carry” chain of ORs 
  “multi-level logic” 
  linear delay 
  can we do better? 
  Yes we can! 
  Any ideas? 



Combinational Logic Design 
  Finding the Boolean function? (e.g.  Sum, Carry) 

  Most functions are not obvious 

  “Case analysis” always works 
  Enumerate all possible input cases 
  Determine value for each case 
  Convert to Boolean equation 
  (Not reasonable for large functions – more later) 



Case Analysis for Sum and Cout 
  There are 3 inputs and thus 8 different possibilities 

a  b  Cin| Cout Sum 
0  0  0  |   0   0 
0  0  1  | 
0  1  0  | 
0  1  1  | 
1  0  0  | 
1  0  1  | 
1  1  0  | 
1  1  1  | 



Case Analysis for Sum and Cout 
  There are 3 inputs and thus 8 different possibilities 

  Also known as a 3-2 counter 

a  b  Cin| Cout Sum 
0  0  0  |   0   0 
0  0  1  |   0   1 
0  1  0  |   0   1 
0  1  1  |   1   0 
1  0  0  |   0   1 
1  0  1  |   1   0 
1  1  0  |   1   0 
1  1  1  |   1   1 



Truth Table to Boolean Function 
  Straightforward process 

  Cout = abc + abc + abc + abc 

  Sum  = abc + abc + abc + abc 

a  b  c  | Cout Sum 
0  0  0  |   0   0 
0  0  1  |   0   1 
0  1  0  |   0   1 
0  1  1  |   1   0 
1  0  0  |   0   1 
1  0  1  |   1   0 
1  1  0  |   1   0 
1  1  1  |   1   1 

abc 
abc 
abc 
abc 
abc 
abc 
abc 
abc 
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A  B  C  F  F' 
0  0  0  0  1 
0  0  1  0  1 
0  1  0  0  1 
0  1  1  1  0 
1  0  0  1  0 
1  0  1  1  0 
1  1  0  1  0 
1  1  1  1  0 

        011       100         101         110        111 
F = A'BC + AB'C' + AB'C + ABC' + ABC 

F' = A'B'C' + A'B'C + A'BC' 

Canonical forms: Sum Of Products 
  Truth table is the unique signature of a Boolean function 
  Many alternative expressions may have the same truth table 
  Canonical form 

  standard form for a Boolean expression  
  Sum-of-products form –  

a.k.a. disjunctive normal form or minterm expansion 
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A  B  C  D  W  X  Y  Z 
0  0  0  0  0  0  0  1 
0  0  0  1  0  0  1  0 
0  0  1  0  0  0  1  1 
0  0  1  1  0  1  0  0 
0  1  0  0  0  1  0  1 
0  1  0  1  0  1  1  0 
0  1  1  0  0  1  1  1 
0  1  1  1  1  0  0  0 
1  0  0  0  1  0  0  1 
1  0  0  1  0  0  0  0 
1  0  1  0  X  X  X  X 
1  0  1  1  X  X  X  X 
1  1  0  0  X  X  X  X 
1  1  0  1  X  X  X  X 
1  1  1  0  X  X  X  X 
1  1  1  1  X  X  X  X 

off-set of W 

these inputs patterns should  
never be encountered in practice  
– we "don't care" about associated  
output values, and this can be  
exploited in minimization 

don't care (DC) set of W 

on-set of W 

Incompletely specified functions 
  Example: binary coded decimal increment by 1 

  BCD digits encode the decimal digits 0 – 9 in the bit patterns 
0000 – 1001 
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minterms 

AND plane OR plane 

Regular Two-Level Logic 

  Basis is canonical form 
  Note notation for high-fanin gates 



This is a “Canonical” Description 
  Exactly one truth table for a function 

  Canonical “Sum of Products” equation 

  This equation is in general not minimal 
  e.g. Cout = abc + abc + abc + abc 

   Minimal equation: 
  Cout = ab + bc + ac 

  Much cheaper: 
       4 3-input ANDs + 1 4-input OR 
  vs.  3 2-input ANDs + 1 3-input OR 

  What about Sum? 



Sum 
  Sum  = abc + abc + abc + abc 
  Can we reduce this? 
  Karnaugh map allows us to visualize the function 

  Adjacencies allow minimization 

  Sum cannot be minimized (with 2-level logic) 

0  1  0  1 

1  0  1  0 

0 

1 

AB 
A 

00 01 11 10 C 

B 

0  0  1  0 

0  1  1  1 

0 

1 

AB 
A 

00 01 11 10 C 

B 

Sum Carry 



Cheaper Sum – Multi-level Circuit 
  12 gate inputs vs. 16 

  (ignore inverters) 

  Slower (but smaller gates) 
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two alternative forms 
for a 2:1 Mux truth table 

functional form 

logical form 

S  Z 
0  I0 
1  I1 

Z = S' I0  + S I1 

Multiplexers/selectors 

  Multiplexers/selectors: general concept 
  2n data inputs, n control inputs (called "selects"), 1 output 
  used to connect one of 2n inputs to the single output 
  control signal pattern forms binary index of input connected to output 
  e.g. 2-1 mux 

I0 
I1 

S 

2:1 
mux Z 

I0 
I1 

S 

Z 0 
1 
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two alternative forms 
for a 2:1 Mux truth table 

functional form 

logical form 

S  Z 
0  I0 
1  I1 

I1  I0  S  Z 
0  0  0  0 
0  0  1  0 
0  1  0  1 
0  1  1  0 
1  0  0  0 
1  0  1  1 
1  1  0  1 
1  1  1  1 

Z = S' I0  + S I1 

Multiplexers/selectors 

  Multiplexers/selectors: general concept 
  2n data inputs, n control inputs (called "selects"), 1 output 
  used to connect one of 2n inputs to the single output 
  control signal pattern forms binary index of input connected to output 
  e.g. 2-1 mux 

I0 
I1 

S 

2:1 
mux Z 

I0 
I1 

S 

Z 0 
1 
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Gate level implementation of muxes 
  2:1 mux 

  4:1 mux 
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I0 
I1 
I2 
I3 
I4 
I5 
I6 
I7 

S2 S1 S0 

8:1 
mux 

Z 
I0 
I1 
I2 
I3 

S1 S0 

4:1 
mux 

Z 
I0 
I1 

S 

2:1 
mux Z 

Multiplexers/selectors (cont'd) 
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alternative 
implementation 

S2 

Z 

S1 S0 

4:1 
mux 

2:1 
mux 

2:1 
mux 

2:1 
mux 

2:1 
mux 

I4 
I5 

I2 
I3 

I0 
I1 

I6 
I7 

8:1 
mux 

Z 

I0 
I1 
I2 
I3 

S0 

I4 
I5 
I6 
I7 

S2 S1 

4:1 
mux 

4:1 
mux 

2:1 
mux 

8:1 
mux 

Cascading multiplexers 
  Large multiplexers can be implemented by cascading 

smaller ones using a tree structure 
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C A B 

0  A'B'C' 
1  A'B'C 
2  A'BC' 
3  A'BC 
4  AB'C' 
5  AB'C 
6  ABC' 
7  ABC 

S2 

3:8 DEC 

S1 S0 

G 

Enable 

Decoders 
  General idea: 

  Convert a binary number into a “1-hot” number 
  n inputs (address) 
  2n  outputs 
  enable input (optional) 

  0 -> all outputs 0 



Gate level implementation of decoders 

28 

  1:2 decoder 

  2:4 decoder 

O0 G 

S 

O1 

S1 

O2 

O3 

O0 G 

O1 

S0 
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0  A'B'C'D'E' 
1 
2 
3 
4 
5 
6 
7 S2 

3:8 DEC 

S1 S0 

A B 

0 
1 
2 
3 S1 

2:4 DEC 

S0 

F 

0 
1 
2  A'BC'DE' 
3 
4 
5 
6 
7 S2 

3:8 DEC 

S1 S0 

E C D 

0  AB'C'D'E' 
1 
2 
3 
4 
5 
6 
7  AB'CDE 

3:8 DEC 

0 
1 
2 
3 
4 
5 
6 
7  ABCDE 

E C D 

S2 S1 S0 S2 

3:8 DEC 

S1 S0 

Cascading decoders 

  Use a tree structure 
  cheaper than 2-level implementation 

  5:32 decoder 
  1x2:4 decoder 
  4x3:8 decoders 



2-Level Logic Minimization 
  Important because of 2-level implementations 

  PLAs – 1950s 
  PALs – 1970s 

  By-hand methods – Karnaugh maps 
  Only for small functions 
  Good for visualization 

  Exact methods good up to 15 or so inputs 
  1950’s – Quine-McCluskey algorithm 

  Heuristic methods for more than that 
  1970’s – Espresso 



Multi-Level Logic Minimization 
  Factor function into smaller functions 

  Smaller gates 
  Fewer gates 
  Deeper circuit – cost/performance tradeoff 

  Needed for FPGAs and semi-custom ASICs 
  Circuit libraries with “small” gates 

  Developed in the 1980s and 90s 
  Much more difficult problem than 2-level minimization 

  Many different factoring methods 



Simple Factoring - Decomposition 
  Shannon/Ashenhurst Decomposition 

  F(a, b, c, d, …) = a’ Fa=0(b, c, d,…) + a Fa=1(b, c, d,…) 
  2-1 Mux 

   



Example 
  f(a,b,c,d,e) = ad' + bde + a'de' + bd'c'  



Logic Synthesis 
  Compiles HDL into gates 
  1. Elaboration – parse HDL program into standard form 
  2. Logic optimization – minimize cost/maximize 

performance 
  3. Tech mapping – map optimized circuit to available 

library components 
  May require “re-synthesis” 

  4. Physical Re-Synthesis – transform circuit when placing 
and routing 
  Process is unpredictable 



Logic Synthesis 
  Insulates us from the details 

  Like a C or Java compiler 

  But we need to understand the implications of what we 
write in HDL 
  Just like in C or Java 

  Each FPGA company has its own synthesis tool 
  And Cadence, Synopsis, Mentor, … 



Verilog Introduction 
  Two ways to describe: 

  Behavioral  Verilog 
  describe what a component does, not how it does it 
  synthesized into a circuit that has this behavior 

  Structural  Verilog 
  list of components and how they are connected 
  just like schematics, but using text 
  hard to write, hard to decode 
  used to compose systems hierarchically from components 



Verilog by Example  
  Ripple-Carry Adder 

  We will describe the full-adder as a behavioral module 
  We will connect these together in a higher-level 

component 



full_adder module 

module full_adder 
  (input a, 
   input b, 
   input c, 
   output sum, 
   output carry); 
  assign sum = a & ~b & ~c | ~a & b & ~c |  
              ~a & ~b & c | a & b & c; 
  assign carry = a & b | a & c | b & c; 
endmodule 



assign statement 
  A single assignment equation 

  One logical function (possibly multiple-bit value) 

  Each assignment is a process 
  Runs in parallel with all other processes 

  Order of assignments does not matter! 

  Executes whenever an input changes 
  Just like logic gates 



Verilog Operators 



Alternative full_adder module 

  We add the 3 input bits together (count) 
  The 2-bit result is assigned to the 2-bit bus 

  { carry, sum } 

module full_adder 
  (input a, 
   input b, 
   input c, 
   output sum, 
   output carry); 
  assign { carry, sum } = a + b + c; 
endmodule 



adder4 module 

  This module just wires together the full-adders 
  Connects the processes together 

module adder4 
  (input [3:0] a, 
   input [3:0] b, 
   output [3:0] sum); 
  wire carry0, carry1, carry2; 
  full_adder fa0(.a(a[0]), .b(b[0]), .c(0) 
                 .sum(sum[0], .carry(carry0)); 
  full_adder fa1(.a(a[1]), .b(b[1]), .c(carry0) 
                 .sum(sum[1], .carry(carry1)); 
  full_adder fa2(.a(a[2]), .b(b[2]), .c(carry1) 
                 .sum(sum[2], .carry(carry2)); 
  full_adder fa3(.a(a[3]), .b(b[3]), .c(carry2) 
                 .sum(sum[3], .carry( )); 
endmodule 



Verilog Data Types and Values 
  Bits - value on a single wire 

  0, 1 
  X     - don’t care 
  Z   - undriven, tri-state 

  Vectors of bits – busses 
  A[3:0] - vector of 4 bits:  A[3], A[2], A[1], A[0] 
  Treated as an unsigned integer value by default 

  e.g.  A < 0 ?? 
  Can declare variables ad signed 

  Concatenating bits/vectors into a vector 
  e.g. sign extend 
  B[7:0] = {A[3], A[3], A[3], A[3], A[3:0]}; 
  B[7:0] = {4{A[3]}, A[3:0]}; 



Verilog Numbers 
  14 - ordinary decimal number 
  -14 - 2’s complement representation 
  12’b0000_0100_0110  - binary number with 12 bits 

(_ is ignored) 
  3’h046  - hexadecimal number with 12 bits 
  Verilog values are unsigned by default 

  e.g.  C[4:0] = A[3:0] + B[3:0]; 
  if A = 0110 (6) and B = 1010(-6) 

    C = 10000 not 00000 
i.e. B is zero-padded,  not sign-extended 

  For maximum safety, declare length of all intermediates 



always block 
  Contains a small program that is executed whenever an 

input changes 
  A parallel process, just like an assign statement 
  The block can make multiple assignments 
  The program is executed sequentially 
  The program describes the function computed by the block 
  Program is interpreted at compile time to generate a circuit 
  Combinational – takes no time 

  Even though the program semantics are sequential 



Combinational always block 
  always @(list_of_variables) 

  block executes when any of the variables change 
  easy to forget a variable 
  we will not use this style 

  always @(*) 
  This means to execute the program if any input changes 
  Just like an assign 



Alternative full_adder module 

  Order in the always block does matter 
  Variables assigned in an always block must be declared as reg 

module full_adder 
  (input a, 
   input b, 
   input c, 
   output reg sum, 
   output reg carry); 
  always @(*) begin 
    sum = a & ~b & ~c | ~a & b & ~c |  
              ~a & ~b & c | a & b & c; 
    carry = a & b | a & c | b & c; 
  end 
 endmodule 



Verilog Variables 
  wire 

  variable used to connect components together 
  inputs and outputs are wires by default 

  outputs be declared as regs 

  reg 
  Any variable that is assigned in an always block 

  cannot be assigned by an assign statement 

  usually corresponds to a wire in the circuit 
  is NOT a register in the circuit 

  Important:   
  The names wire and reg do not mean anything! 



Verilog if 
  Same as C if statement 

// Simple 4-1 mux 
module mux4 (sel, A, B, C, D, Y); 
  (input [1:0] sel, // 2-bit control signal 
   input A, input B, input C, input D, 
   output reg Y); 

  always @(*) begin 
    if      (sel == 2’b00) Y = A; 
    else if (sel == 2’b01) Y = B; 
    else if (sel == 2’b10) Y = C; 
    else if (sel == 2’b11) Y = D; 
  end 
endmodule 



Verilog if 
  Another way 

// Simple 4-1 mux 
module mux4 (sel, A, B, C, D, Y); 
  (input [1:0] sel, // 2-bit control signal 
   input A, input B, input C, input D, 
   output reg Y); 

  always @(*) begin     
    if (sel[0] == 0) 
      if (sel[1] == 0) Y = A; 
      else             Y = B; 
    else 
      if (sel[1] == 0) Y = C; 
      else             Y = D; 
  end 
endmodule 



Verilog case 
  Sequential execution of cases 

  only first case that matches is executed (no break) 
  default case can be used  
// Simple 4-1 mux 
module mux4 (sel, A, B, C, D, Y); 
  (input [1:0] sel,  // 2-bit control signal 
   input A, input B, input C, input D, 
   output reg Y); 

  always @(*) begin 
    case (sel) 
      2’b00: Y = A; 
      2’b01: Y = B; 
      2’b10: Y = C; 
      2’b11: Y = D; 
    endcase 
  end 
endmodule 



Verilog case 
  Without the default case, this would *not* be combinational! 
  Assigning X to a variable means synthesis is free to assign any value 

// Simple binary encoder (input is 1-hot) 
module encode 
 (input  [7:0] A,    // 8-bit input vector 
  output reg [2:0] Y); // 3-bit encoded output 
  always @(*) 
    case (A) 
      8’b00000001: Y = 0; 
      8’b00000010: Y = 1; 
      8’b00000100: Y = 2; 
      8’b00001000: Y = 3; 
      8’b00010000: Y = 4; 
      8’b00100000: Y = 5; 
      8’b01000000: Y = 6; 
      8’b10000000: Y = 7; 
      default:  Y = 3’bX; // Don’t care when input is not 1-hot 
    endcase 
endmodule 



Verilog for 
  for is similar to C 
  for statement is executed at compile time 

  result is all that matters, not how result is calculated 

// simple encoder 
module encode 
 (input  [7:0] A,    // 8-bit input vector 
  output reg [2:0] Y); // 3-bit encoded output 
  integer i;   // Temporary variables for program only 
  reg [7:0] test; 

  always @(*) begin 
    test = 8b’00000001; 
    Y = 3’bX; 
    for (i = 0; i < 8; i = i + 1) begin 
       if (A == test) Y = i; 
       test = test << 1; 
    end 
  end 
endmodule 



Another Behavioral Example 
  Combinational block that computes Conway’s Game of Life rule 

module life 
 (input         self, 
  input [7:0]   neighbors, 
  output reg    out); 
  integer       count; 
  integer       i; 

  always @(*) begin 
    count = 0; 
    for (i = 0; i<8; i = i+1) count = count + neighbors[i]; 
    out = 0; 
    out = out | (count == 3); 
    out = out | ((self == 1) & (count == 2)); 
  end 
endmodule 



Summary: Verilog for Combinational Logic 

  Two alternatives: 
  assign statement – simple logic equation 
  always block – allows complex program to describe function 

  Each assign and always block compiles into a component 
  Combinational function with some inputs and outputs 

  All components operate in parallel, continuously 
  If any input changes, the function is recomputed 
  This may change the output 
  Which will cause inputs of some components to change 

  Just like a circuit made up of gates! 



Registers and Sequential Logic 
  Registers are used to store values 

  for sequencing 
  e.g.  R1 = R2 + R3 

       R0 = R1 – R4 

  Registers hold values while functions operate on them 
  When result is ready, registers “latch” the new values 

  Clock tells registers when to latch 
  Clock is slow enough that functions have time to finish 
  Only enabled registers latch new values 
  All registers latch simultaneously 
  e.g. shift register and swap 



Verilog Registers 
  always @(posedge clk) 
  The block program executes only when the clk transitions 

from 0 to 1 (positive edge) 
  All assignments in the block store values in a register 

  These assignments should use <= 
  (easy to forget) 

  All registered assignments happen at same instant 
  Not sequentially determined 
  =  causes sequential assignments – not like registers! 

  Examples 
  shift register 
  accumulator 
  counter 
  wavelet example 



Verilog by Example 
  Simple 8-bit register with synchronous reset 

  reset only has effect on rising edge of clock 

module reg8 
 (input   reset, 
  input   CLK, 
  input  [7:0] D, 
  output reg  [7:0]  Q); 

  always @(posedge CLK) 
   if (reset) 
     Q <= 0; 
   else 
     Q <= D; 

endmodule  // reg8 



N-bit Register with Asynchronous Reset 
  Example of parameterized module 

module 
 (input   reset, 
  input   CLK, 
  input  [N-1:0] D, 
  output reg  [N-1:0] Q(; 
  parameter N = 8;  // Allow N to be changed 

 always @(posedge CLK or posedge reset) 
   if (reset) 
     Q <= 0; 
   else if (CLK == 1) 
     Q <= D; 

endmodule  // regN 



Shift Register Example 
// 4 register shift register 
module shiftReg 
 (input   CLK, 
  input   reset,    // initialize registers  
  input   shift, 
  input  [7:0]  Din,  // Data input for load 
  output  [7:0]  Dout); 
  reg [7:0] D0, D1, D2, D3; 
  assign Dout = D0; 
  always @(posedge CLK) begin 
    if (reset) begin 
      D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0; 
    end else if (shift) begin 
      D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1; 
    end 
  end 

endmodule  // shiftReg 



FIR Filter Example 
module fir 
  (input   CLK, 
   input   reset,    // initialize registers  
   input  [7:0]  Din,  // Data input for load 
   output reg [7:0] Dout); 
   reg [7:0]   D0, D1, D2, D3; 
   localparam C0 = 4, C1 = 3, C2 = 2, C3 = 1; 

   always @(posedge CLK) begin 
     if (reset) begin 
       D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0; 
    end else begin 
       D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1; 

    Dout <= C0 * D0 + C1 * D1 + C2 * D2 + C3 * D3; 
    end 
  end 
endmodule // fir 



Case Study – Division by Constant 
  e. g.  gray = (red + blue + green)/3 
  Division is very expensive in general 

  Area and Delay 
  Much more so than multiplication 

  Convert division to multiplication 
  Multiply by the reciprocal 
  e.g.  (red + blue + green) * 0.33 
  Floating-point?? 

  Also expensive! 

  Key idea: multiply & divide by 2n is FREE 



RGB to Grayscale 
  Y = 0.3*R + 0.59*G + 0.11*B 
  1024 * 0.3 = 307.2 
  1024 * 0.59 = 604.16 
  1024 * 0.11 = 112.64 

  Y = (307*R + 604*G + 113*B) >> 10; 

  This works for multiplying/dividing with any number with 
fractions 
  Scale then re-scale 



Converting Division to Multiplication 
  Increase precision until it’s good enough 

  FPGA has 18x18 multipliers – almost free 

  Division by a variable? 
  Table lookup of reciprocal 
  Does not scale to large numbers 
  Use iterative solutions 


