
Lecture 2 – Combinational Circuits
and Verilog

CSE P567

Example: r1 = r2 + r3

  We need:
  Registers
  Adder function (combinational logic)
  Wires

Example: r1 = r2 + r3

  We need:
  Registers
  adder function (combinational logic)
  Wires
  Selection function

  We won’t always want r2 and r3

Combinational Logic
  Functions with no state
  Output is a function of the inputs only – no history

  add
  subtract
  multiply
  count-ones
  FSM next state function

  All computation is done in binary
  Primitive circuit values are on/off, Vdd/GND, current/no

current

Review: Binary Encoding of Numbers
  Unsigned numbers

  bn-12n-1 + bn-22n-2 + . . . + b020

  2s complement encoding of signed numbers
  -bn-12n-1 + bn-22n-2 + . . . + b020

  Same adder works for both unsigned and signed numbers

  To negate a number, invert all bits and add 1
  As slow as add in worst case

Binary Addition
  Simple addition algorithm works:

 0 1 1 0 +6
 1 1 0 1 -3

Binary Addition
  Simple addition algorithm works:

  Note: we drop the carry out of the high-order bit
  Each bit computes the same simple functions

  Sum = f(a, b, Cin)
  Cout = f(a, b, Cin)
  Ripple carry adder

1 1 0 0

 0 1 1 0 +6
 1 1 0 1 -3

 0 0 1 1 3

Ripple-Carry Adder

  Each bit computes the same simple functions
  Sum = f(a, b, Cin)
  Cout = f(a, b, Cin)

  If we can write the function as a Boolean equation, we can
generate the circuit

Combinational Logic Design
  We can translate a Boolean function into logic gates

  AND, OR, INVERT

  e.g. Homework problem
  g0 = r0
  g1 = g1 * r0’
  g2 = g2 * r0’ * r1’

Homework Problem
  Homework problem

  Gates grow linearly
  Keep to <= 4 inputs

Homework Problem
  Homework problem

  “carry” chain of ORs
  “multi-level logic”
  linear delay
  can we do better?
  Yes we can!
  Any ideas?

Combinational Logic Design
  Finding the Boolean function? (e.g. Sum, Carry)

  Most functions are not obvious

  “Case analysis” always works
  Enumerate all possible input cases
  Determine value for each case
  Convert to Boolean equation
  (Not reasonable for large functions – more later)

Case Analysis for Sum and Cout
  There are 3 inputs and thus 8 different possibilities

a b Cin| Cout Sum
0 0 0 | 0 0
0 0 1 |
0 1 0 |
0 1 1 |
1 0 0 |
1 0 1 |
1 1 0 |
1 1 1 |

Case Analysis for Sum and Cout
  There are 3 inputs and thus 8 different possibilities

  Also known as a 3-2 counter

a b Cin| Cout Sum
0 0 0 | 0 0
0 0 1 | 0 1
0 1 0 | 0 1
0 1 1 | 1 0
1 0 0 | 0 1
1 0 1 | 1 0
1 1 0 | 1 0
1 1 1 | 1 1

Truth Table to Boolean Function
  Straightforward process

  Cout = abc + abc + abc + abc

  Sum = abc + abc + abc + abc

a b c | Cout Sum
0 0 0 | 0 0
0 0 1 | 0 1
0 1 0 | 0 1
0 1 1 | 1 0
1 0 0 | 0 1
1 0 1 | 1 0
1 1 0 | 1 0
1 1 1 | 1 1

abc
abc
abc
abc
abc
abc
abc
abc

16

A B C F F'
0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

 011 100 101 110 111
F = A'BC + AB'C' + AB'C + ABC' + ABC

F' = A'B'C' + A'B'C + A'BC'

Canonical forms: Sum Of Products
  Truth table is the unique signature of a Boolean function
  Many alternative expressions may have the same truth table
  Canonical form

  standard form for a Boolean expression
  Sum-of-products form –

a.k.a. disjunctive normal form or minterm expansion

17

A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

off-set of W

these inputs patterns should
never be encountered in practice
– we "don't care" about associated
output values, and this can be
exploited in minimization

don't care (DC) set of W

on-set of W

Incompletely specified functions
  Example: binary coded decimal increment by 1

  BCD digits encode the decimal digits 0 – 9 in the bit patterns
0000 – 1001

18

minterms

AND plane OR plane

Regular Two-Level Logic

  Basis is canonical form
  Note notation for high-fanin gates

This is a “Canonical” Description
  Exactly one truth table for a function

  Canonical “Sum of Products” equation

  This equation is in general not minimal
  e.g. Cout = abc + abc + abc + abc

  Minimal equation:
  Cout = ab + bc + ac

  Much cheaper:
  4 3-input ANDs + 1 4-input OR
  vs. 3 2-input ANDs + 1 3-input OR

  What about Sum?

Sum
  Sum = abc + abc + abc + abc
  Can we reduce this?
  Karnaugh map allows us to visualize the function

  Adjacencies allow minimization

  Sum cannot be minimized (with 2-level logic)

0 1 0 1

1 0 1 0

0

1

AB
A

00 01 11 10 C

B

0 0 1 0

0 1 1 1

0

1

AB
A

00 01 11 10 C

B

Sum Carry

Cheaper Sum – Multi-level Circuit
  12 gate inputs vs. 16

  (ignore inverters)

  Slower (but smaller gates)

22

two alternative forms
for a 2:1 Mux truth table

functional form

logical form

S Z
0 I0
1 I1

Z = S' I0 + S I1

Multiplexers/selectors

  Multiplexers/selectors: general concept
  2n data inputs, n control inputs (called "selects"), 1 output
  used to connect one of 2n inputs to the single output
  control signal pattern forms binary index of input connected to output
  e.g. 2-1 mux

I0
I1

S

2:1
mux Z

I0
I1

S

Z 0
1

23

two alternative forms
for a 2:1 Mux truth table

functional form

logical form

S Z
0 I0
1 I1

I1 I0 S Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Z = S' I0 + S I1

Multiplexers/selectors

  Multiplexers/selectors: general concept
  2n data inputs, n control inputs (called "selects"), 1 output
  used to connect one of 2n inputs to the single output
  control signal pattern forms binary index of input connected to output
  e.g. 2-1 mux

I0
I1

S

2:1
mux Z

I0
I1

S

Z 0
1

24

Gate level implementation of muxes
  2:1 mux

  4:1 mux

25

I0
I1
I2
I3
I4
I5
I6
I7

S2 S1 S0

8:1
mux

Z
I0
I1
I2
I3

S1 S0

4:1
mux

Z
I0
I1

S

2:1
mux Z

Multiplexers/selectors (cont'd)

26

alternative
implementation

S2

Z

S1 S0

4:1
mux

2:1
mux

2:1
mux

2:1
mux

2:1
mux

I4
I5

I2
I3

I0
I1

I6
I7

8:1
mux

Z

I0
I1
I2
I3

S0

I4
I5
I6
I7

S2 S1

4:1
mux

4:1
mux

2:1
mux

8:1
mux

Cascading multiplexers
  Large multiplexers can be implemented by cascading

smaller ones using a tree structure

27

C A B

0 A'B'C'
1 A'B'C
2 A'BC'
3 A'BC
4 AB'C'
5 AB'C
6 ABC'
7 ABC

S2

3:8 DEC

S1 S0

G

Enable

Decoders
  General idea:

  Convert a binary number into a “1-hot” number
  n inputs (address)
  2n outputs
  enable input (optional)

  0 -> all outputs 0

Gate level implementation of decoders

28

  1:2 decoder

  2:4 decoder

O0 G

S

O1

S1

O2

O3

O0 G

O1

S0

29

0 A'B'C'D'E'
1
2
3
4
5
6
7 S2

3:8 DEC

S1 S0

A B

0
1
2
3 S1

2:4 DEC

S0

F

0
1
2 A'BC'DE'
3
4
5
6
7 S2

3:8 DEC

S1 S0

E C D

0 AB'C'D'E'
1
2
3
4
5
6
7 AB'CDE

3:8 DEC

0
1
2
3
4
5
6
7 ABCDE

E C D

S2 S1 S0 S2

3:8 DEC

S1 S0

Cascading decoders

  Use a tree structure
  cheaper than 2-level implementation

  5:32 decoder
  1x2:4 decoder
  4x3:8 decoders

2-Level Logic Minimization
  Important because of 2-level implementations

  PLAs – 1950s
  PALs – 1970s

  By-hand methods – Karnaugh maps
  Only for small functions
  Good for visualization

  Exact methods good up to 15 or so inputs
  1950’s – Quine-McCluskey algorithm

  Heuristic methods for more than that
  1970’s – Espresso

Multi-Level Logic Minimization
  Factor function into smaller functions

  Smaller gates
  Fewer gates
  Deeper circuit – cost/performance tradeoff

  Needed for FPGAs and semi-custom ASICs
  Circuit libraries with “small” gates

  Developed in the 1980s and 90s
  Much more difficult problem than 2-level minimization

  Many different factoring methods

Simple Factoring - Decomposition
  Shannon/Ashenhurst Decomposition

  F(a, b, c, d, …) = a’ Fa=0(b, c, d,…) + a Fa=1(b, c, d,…)
  2-1 Mux

 

Example
  f(a,b,c,d,e) = ad' + bde + a'de' + bd'c'

Logic Synthesis
  Compiles HDL into gates
  1. Elaboration – parse HDL program into standard form
  2. Logic optimization – minimize cost/maximize

performance
  3. Tech mapping – map optimized circuit to available

library components
  May require “re-synthesis”

  4. Physical Re-Synthesis – transform circuit when placing
and routing
  Process is unpredictable

Logic Synthesis
  Insulates us from the details

  Like a C or Java compiler

  But we need to understand the implications of what we
write in HDL
  Just like in C or Java

  Each FPGA company has its own synthesis tool
  And Cadence, Synopsis, Mentor, …

Verilog Introduction
  Two ways to describe:

  Behavioral Verilog
  describe what a component does, not how it does it
  synthesized into a circuit that has this behavior

  Structural Verilog
  list of components and how they are connected
  just like schematics, but using text
  hard to write, hard to decode
  used to compose systems hierarchically from components

Verilog by Example
  Ripple-Carry Adder

  We will describe the full-adder as a behavioral module
  We will connect these together in a higher-level

component

full_adder module

module full_adder
 (input a,
 input b,
 input c,
 output sum,
 output carry);
 assign sum = a & ~b & ~c | ~a & b & ~c |
 ~a & ~b & c | a & b & c;
 assign carry = a & b | a & c | b & c;
endmodule

assign statement
  A single assignment equation

  One logical function (possibly multiple-bit value)

  Each assignment is a process
  Runs in parallel with all other processes

  Order of assignments does not matter!

  Executes whenever an input changes
  Just like logic gates

Verilog Operators

Alternative full_adder module

  We add the 3 input bits together (count)
  The 2-bit result is assigned to the 2-bit bus

  { carry, sum }

module full_adder
 (input a,
 input b,
 input c,
 output sum,
 output carry);
 assign { carry, sum } = a + b + c;
endmodule

adder4 module

  This module just wires together the full-adders
  Connects the processes together

module adder4
 (input [3:0] a,
 input [3:0] b,
 output [3:0] sum);
 wire carry0, carry1, carry2;
 full_adder fa0(.a(a[0]), .b(b[0]), .c(0)
 .sum(sum[0], .carry(carry0));
 full_adder fa1(.a(a[1]), .b(b[1]), .c(carry0)
 .sum(sum[1], .carry(carry1));
 full_adder fa2(.a(a[2]), .b(b[2]), .c(carry1)
 .sum(sum[2], .carry(carry2));
 full_adder fa3(.a(a[3]), .b(b[3]), .c(carry2)
 .sum(sum[3], .carry());
endmodule

Verilog Data Types and Values
  Bits - value on a single wire

  0, 1
  X - don’t care
  Z - undriven, tri-state

  Vectors of bits – busses
  A[3:0] - vector of 4 bits: A[3], A[2], A[1], A[0]
  Treated as an unsigned integer value by default

  e.g. A < 0 ??
  Can declare variables ad signed

  Concatenating bits/vectors into a vector
  e.g. sign extend
  B[7:0] = {A[3], A[3], A[3], A[3], A[3:0]};
  B[7:0] = {4{A[3]}, A[3:0]};

Verilog Numbers
  14 - ordinary decimal number
  -14 - 2’s complement representation
  12’b0000_0100_0110 - binary number with 12 bits

(_ is ignored)
  3’h046 - hexadecimal number with 12 bits
  Verilog values are unsigned by default

  e.g. C[4:0] = A[3:0] + B[3:0];
  if A = 0110 (6) and B = 1010(-6)

 C = 10000 not 00000
i.e. B is zero-padded, not sign-extended

  For maximum safety, declare length of all intermediates

always block
  Contains a small program that is executed whenever an

input changes
  A parallel process, just like an assign statement
  The block can make multiple assignments
  The program is executed sequentially
  The program describes the function computed by the block
  Program is interpreted at compile time to generate a circuit
  Combinational – takes no time

  Even though the program semantics are sequential

Combinational always block
  always @(list_of_variables)

  block executes when any of the variables change
  easy to forget a variable
  we will not use this style

  always @(*)
  This means to execute the program if any input changes
  Just like an assign

Alternative full_adder module

  Order in the always block does matter
  Variables assigned in an always block must be declared as reg

module full_adder
 (input a,
 input b,
 input c,
 output reg sum,
 output reg carry);
 always @(*) begin
 sum = a & ~b & ~c | ~a & b & ~c |
 ~a & ~b & c | a & b & c;
 carry = a & b | a & c | b & c;
 end
 endmodule

Verilog Variables
  wire

  variable used to connect components together
  inputs and outputs are wires by default

  outputs be declared as regs

  reg
  Any variable that is assigned in an always block

  cannot be assigned by an assign statement

  usually corresponds to a wire in the circuit
  is NOT a register in the circuit

  Important:
  The names wire and reg do not mean anything!

Verilog if
  Same as C if statement

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
 (input [1:0] sel, // 2-bit control signal
 input A, input B, input C, input D,
 output reg Y);

 always @(*) begin
 if (sel == 2’b00) Y = A;
 else if (sel == 2’b01) Y = B;
 else if (sel == 2’b10) Y = C;
 else if (sel == 2’b11) Y = D;
 end
endmodule

Verilog if
  Another way

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
 (input [1:0] sel, // 2-bit control signal
 input A, input B, input C, input D,
 output reg Y);

 always @(*) begin
 if (sel[0] == 0)
 if (sel[1] == 0) Y = A;
 else Y = B;
 else
 if (sel[1] == 0) Y = C;
 else Y = D;
 end
endmodule

Verilog case
  Sequential execution of cases

  only first case that matches is executed (no break)
  default case can be used
// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
 (input [1:0] sel, // 2-bit control signal
 input A, input B, input C, input D,
 output reg Y);

 always @(*) begin
 case (sel)
 2’b00: Y = A;
 2’b01: Y = B;
 2’b10: Y = C;
 2’b11: Y = D;
 endcase
 end
endmodule

Verilog case
  Without the default case, this would *not* be combinational!
  Assigning X to a variable means synthesis is free to assign any value

// Simple binary encoder (input is 1-hot)
module encode
 (input [7:0] A, // 8-bit input vector
 output reg [2:0] Y); // 3-bit encoded output
 always @(*)
 case (A)
 8’b00000001: Y = 0;
 8’b00000010: Y = 1;
 8’b00000100: Y = 2;
 8’b00001000: Y = 3;
 8’b00010000: Y = 4;
 8’b00100000: Y = 5;
 8’b01000000: Y = 6;
 8’b10000000: Y = 7;
 default: Y = 3’bX; // Don’t care when input is not 1-hot
 endcase
endmodule

Verilog for
  for is similar to C
  for statement is executed at compile time

  result is all that matters, not how result is calculated

// simple encoder
module encode
 (input [7:0] A, // 8-bit input vector
 output reg [2:0] Y); // 3-bit encoded output
 integer i; // Temporary variables for program only
 reg [7:0] test;

 always @(*) begin
 test = 8b’00000001;
 Y = 3’bX;
 for (i = 0; i < 8; i = i + 1) begin
 if (A == test) Y = i;
 test = test << 1;
 end
 end
endmodule

Another Behavioral Example
  Combinational block that computes Conway’s Game of Life rule

module life
 (input self,
 input [7:0] neighbors,
 output reg out);
 integer count;
 integer i;

 always @(*) begin
 count = 0;
 for (i = 0; i<8; i = i+1) count = count + neighbors[i];
 out = 0;
 out = out | (count == 3);
 out = out | ((self == 1) & (count == 2));
 end
endmodule

Summary: Verilog for Combinational Logic

  Two alternatives:
  assign statement – simple logic equation
  always block – allows complex program to describe function

  Each assign and always block compiles into a component
  Combinational function with some inputs and outputs

  All components operate in parallel, continuously
  If any input changes, the function is recomputed
  This may change the output
  Which will cause inputs of some components to change

  Just like a circuit made up of gates!

Registers and Sequential Logic
  Registers are used to store values

  for sequencing
  e.g. R1 = R2 + R3

 R0 = R1 – R4

  Registers hold values while functions operate on them
  When result is ready, registers “latch” the new values

  Clock tells registers when to latch
  Clock is slow enough that functions have time to finish
  Only enabled registers latch new values
  All registers latch simultaneously
  e.g. shift register and swap

Verilog Registers
  always @(posedge clk)
  The block program executes only when the clk transitions

from 0 to 1 (positive edge)
  All assignments in the block store values in a register

  These assignments should use <=
  (easy to forget)

  All registered assignments happen at same instant
  Not sequentially determined
  = causes sequential assignments – not like registers!

  Examples
  shift register
  accumulator
  counter
  wavelet example

Verilog by Example
  Simple 8-bit register with synchronous reset

  reset only has effect on rising edge of clock

module reg8
 (input reset,
 input CLK,
 input [7:0] D,
 output reg [7:0] Q);

 always @(posedge CLK)
 if (reset)
 Q <= 0;
 else
 Q <= D;

endmodule // reg8

N-bit Register with Asynchronous Reset
  Example of parameterized module

module
 (input reset,
 input CLK,
 input [N-1:0] D,
 output reg [N-1:0] Q(;
 parameter N = 8; // Allow N to be changed

 always @(posedge CLK or posedge reset)
 if (reset)
 Q <= 0;
 else if (CLK == 1)
 Q <= D;

endmodule // regN

Shift Register Example
// 4 register shift register
module shiftReg
 (input CLK,
 input reset, // initialize registers
 input shift,
 input [7:0] Din, // Data input for load
 output [7:0] Dout);
 reg [7:0] D0, D1, D2, D3;
 assign Dout = D0;
 always @(posedge CLK) begin
 if (reset) begin
 D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0;
 end else if (shift) begin
 D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1;
 end
 end

endmodule // shiftReg

FIR Filter Example
module fir
 (input CLK,
 input reset, // initialize registers
 input [7:0] Din, // Data input for load
 output reg [7:0] Dout);
 reg [7:0] D0, D1, D2, D3;
 localparam C0 = 4, C1 = 3, C2 = 2, C3 = 1;

 always @(posedge CLK) begin
 if (reset) begin
 D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0;
 end else begin
 D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1;

 Dout <= C0 * D0 + C1 * D1 + C2 * D2 + C3 * D3;
 end
 end
endmodule // fir

Case Study – Division by Constant
  e. g. gray = (red + blue + green)/3
  Division is very expensive in general

  Area and Delay
  Much more so than multiplication

  Convert division to multiplication
  Multiply by the reciprocal
  e.g. (red + blue + green) * 0.33
  Floating-point??

  Also expensive!

  Key idea: multiply & divide by 2n is FREE

RGB to Grayscale
  Y = 0.3*R + 0.59*G + 0.11*B
  1024 * 0.3 = 307.2
  1024 * 0.59 = 604.16
  1024 * 0.11 = 112.64

  Y = (307*R + 604*G + 113*B) >> 10;

  This works for multiplying/dividing with any number with
fractions
  Scale then re-scale

Converting Division to Multiplication
  Increase precision until it’s good enough

  FPGA has 18x18 multipliers – almost free

  Division by a variable?
  Table lookup of reciprocal
  Does not scale to large numbers
  Use iterative solutions

