Lecture 2 — Combinational Circuits
and Verilog

CSE P567

Example: r1 = r2 + r3

v

> 1 > 2

7
» We need:

Registers

Adder function (combinational logic)
Wires

Example: r1 = r2 + r3

v v v

> 0 > 1 > 2

=
N
”
N

\V4
» We need: %/

Registers
adder function (combinational logic)

Wires
Selection function

We won’t always want r2 and r3

Combinational Logic

» Functions with no state

» Output is a function of the inputs only — no history
add
subtract
multiply
count-ones

FSM next state function

» All computation is done in binary

Primitive circuit values are on/off, Vdd/GND, current/no
current

Review: Binary Encoding of Numbers

» Unsigned numbers
) bn_lzn-l + bn-22n-2 +...F b020

» 2s complement encoding of signed numbers
_bn_lzn-l + bn_zzn-z o b020

» Same adder works for both unsigned and signed numbers

» To negate a number, invert all bits and add 1

As slow as add in worst case

Binary Addition

» Simple addition algorithm works:

Binary Addition

» Simple addition algorithm works:

1 0
0110 +6
1101 -3

» Note: we drop the carry out of the high-order bit
» Each bit computes the same simple functions

Sum = f(a, b, Cin)

Cout = f(a, b, Cin)

=>Ripple carry adder

Ripple-Carry Adder

c3 | c2 c1 c0 |

» Each bit computes the same simple functions
Sum = {(a, b, Cin)
Cout = f(a, b, Cin)
» If we can write the function as a Boolean equation, we can
generate the circuit

Combinational Logic Design

» We can translate a Boolean function into logic gates
AND, OR, INVERT

» e.g. Homework problem
g0=r0
gl =gl *r0’
g2=g2*r0 *rl’

1 ;
-rO #DOD—F > 1

Homework Problem

» Homework problem
Gates grow linearly

Keep to <= 4 inputs

-rlv—[>c>

I

r1l>;

12

-QD—DC}

13

Homework Problem

» Homework problem

“carry” chain of ORs ¥

“multi-level logic” S

linear delay

can we do better?

Yes we can!

Any ideas? 12
I3

i
IS¢

Combinational Logic Design

» Finding the Boolean function? (e.g. Sum, Carry)

Most functions are not obvious

» “Case analysis” always works
Enumerate all possible input cases
Determine value for each case
Convert to Boolean equation

(Not reasonable for large functions — more later)

Case Analysis for Sum and Cout

» There are 3 inputs and thus 8 different possibilities

in| Cout Sum
| 0 0

H R R ROOO O
R R, OOk KR OOI|ID

C
0
1 |
0 |
1 |
0 |
1 |
0 |
1 |

Case Analysis for Sum and Cout

» There are 3 inputs and thus 8 different possibilities

in| Cout Sum
| 0 0

R R RROOOO|M
R R, OOk KR OOI|ID

C
0
1
0
1
0
1
0
1

PFRrROKR OO
HROOROHRHR

» Also known as a 3-2 counter

Truth Table to Boolean Function

» Straightforward process

U

Cout

0O
o
n
o

m

a*bec
a*bec
a*bec
a*bec
a*bec
a*bec
a*bec
a*bec

» Cout +++ a°bec
» Sum =+++ a*bec

P PRPPRPROOOO|@D
PFRPOORKRRKE OO
RO R ORKFKORK OIN

Canonical forms: Sum Of Products

» Truth table is the unique signature of a Boolean function
» Many alternative expressions may have the same truth table

» Canonical form
standard form for a Boolean expression

Sum-of-products form —
a.k.a. disjunctive normal form or minterm expansion

011 100 101 110 111
F = A'BC + AB'C' + AB'C + ABC' + ABC

R R, OOOO|I>

R, OOKFLEFL, OO
P OFL,OKF,ORF OO
=0 OOm

POPPPPD T

F' = AB'C' + AB'C + ABC

Incompletely specified functions

» Example: binary coded decimal increment by |

BCD digits encode the decimal digits 0 — 9 in the bit patterns
0000 — 1001

<

off-set of W

Z
1
0
1
0

on-set of W

OO RO

R~ R OoOlooX

don't care (DC) set of W

these inputs patterns should

never be encountered in practice

— we "don't care" about associated
output values, and this can be
exploited in minimization

HERERERHERRERRERRRPOO0OO0O0O0OOO>

HFRPRPFRPPFRPOOOOHRFRP,EFRP,R L OOOOm
HF R, OO PP OO, OO, EFFOONn
POFROFHOFROFR,OF,ORFLORFO|IO

(XXX XXX[OolmrrloOo o OO ool

XXX XK X o
XXXXXXOOoOo
XXXXXXO—ror

Regular Two-Level Logic

» Basis is canonical form

» Note notation for high-fanin gates

N_ «——minterms

=

A B C
vavev QN
/~ N LT
R
_
R
J
R
),
R
),
R
),
R
==\
A

AND plane

18

j;\

OR plane

This is a “Canonical” Description

» Exactly one truth table for a function
Canonical “Sum of Products” equation
» This equation is in general not minimal
e.g.Cout = a*bec + a*bec + a*bec + a*bec
» Minimal equation:
Cout = a*b + bec + a°c
» Much cheaper:
4 3-input ANDs + 1 4-input OR
vs. 3 2-input ANDs + 1 3-input OR
» What about Sum!?

Sum

Sum = §°B°c 4 Eobog -+ a‘B’E + a°bec
Can we reduce this?

Karnaugh map allows us to visualize the function

Adjacencies allow minimization

Sum Carry
A A
AB AB
C \)0 01 11 10 C \)0 01 11 10
Ol o |1 |01 ol o lol 1l o
Ylafof1]o Ylol1|1]1
B B

Sum cannot be minimized (with 2-level logic)

Cheaper Sum — Multi-level Circuit

» 12 gate inputs vs. 16

(ignore inverters)

» Slower (but smaller gates)

A

B

DSESN

Do
Do

ik

v v
v Y Y A 4

Sum

Multiplexers /selectors

» Multiplexers/selectors: general concept
2" data inputs, n control inputs (called "selects"), | output
used to connect one of 2" inputs to the single output

control signal pattern forms binary index of input connected to output

e.g. 2-1 mux
S | Z
Z=S'I, +SI, 0 1L
1 | L
I0— 2:1 .
I1—| mux
L functional form
logical form
I0— o 5 two alternative forms
I1— for a 2:1 Mux truth table

22

Multiplexers /selectors

» Multiplexers/selectors: general concept
2" data inputs, n control inputs (called "selects"), | output
used to connect one of 2" inputs to the single output
control signal pattern forms binary index of input connected to output

e.g. 2-1 mux

I, I, S |Z

7 1 0
g I 0O 0 00O
Z=S51, +SI . IO 0o 0 110
' 0 1 0|1
I0— 2:1 . 0 1 110
I1— mux 1 0 010
L functional form 1 0 1 |1
logical form 1 1 0 |1
: 1 1 1|1

I0— o two alternative forms

11— 1 z for a 2:1 Mux truth table

23

Gate level implementation of muxes

» 2:1 mux

» 4:]1 mux

24

Multiplexers/selectors (cont'd)

10—
I1—

25

2:1
mux

10—
11—
12—
I3—

4:1
mux

L

8:1
mux

L5 5,

Cascading multiplexers

» Large multiplexers can be implemented by cascading

smaller ones using a tree structure

I0
I1
12
I3

14
I5
16
17

26

; 8:1
» 4:1 mux
> mux R
R o 2:1
- madx
» 41
> MuUX
S, 54 Sy

v

N

I0
I1

12
I3

14
I5

16
17

alternative

implementation

o 2:1 8:1
» MUX mux
» 21 -
» MuXx | g 4:1
> mux

» 2:1 R
» Mux g
» 2:1
» MuX

S, ST

Decoders

» General idea:

Convert a binary number into a“1-hot” number

n inputs (address)

2n outputs

enable input (optional)
0 -> all outputs 0

27

— A'B'C'
— A'B'C
— ABC'
— A'BC
—— AB'C'
—— AB'C
—» ABC
—» ABC

Gate level implementation of decoders

» |:2 decoder

G —)00
S _._|>°'J_

4)o1
» 2:4 decoder G)00

o1
)02
)03

S1 SO
28

Cascading decoders

» Use a tree structure

cheaper than 2-level implementation

» 5:32 decoder 0= A'B'CD'E' 01—
| x2:4 decoder 2 — 2— ABCDE'
’ »R- 3 — > 3 —
. 3:8 DEC |, 3:8 DEC 3|
4x3:8 decoders 5 |—» 5 |—»
6 —> 6_>
— 25150 2 s1sd[
F —%:4 DEC 1
s1s0 3
0[— 0— ABCDFE
A B 1[— 1|l—
»3:8 DEC 3 [*3:8 DEC |
C D E C D E

29

2-Level Logic Minimization

» Important because of 2-level implementations
PLAs — 1950s
PALs — 1970s

» By-hand methods — Karnaugh maps
Only for small functions
Good for visualization

» Exact methods good up to |5 or so inputs
1950’s — Quine-McCluskey algorithm

» Heuristic methods for more than that
1970’s — Espresso

Multi-Level Logic Minimization

» Factor function into smaller functions
Smaller gates
Fewer gates
Deeper circuit — cost/performance tradeoff

» Needed for FPGAs and semi-custom ASICs

Circuit libraries with “small” gates

» Developed in the 1980s and 90s

» Much more difficult problem than 2-level minimization
Many different factoring methods

Simple Factoring - Decomposition

» Shannon/Ashenhurst Decomposition
F(a,b,c,d,...) =2 Fuo(b, ¢, d,...) +a Fi(b, ¢, d,...)
2-1 Mux

fla=0] (bc.d)

10 f(a,b,c,d)

v

fla=1] (b,c,0)

Example
» f(a,b,c,d,e) = ad' + bde + a'de' + bd'c'

Logic Synthesis

» Compiles HDL into gates
» |.Elaboration — parse HDL program into standard form

» 2. Logic optimization — minimize cost/maximize
performance

» 3.Tech mapping — map optimized circuit to available
library components
May require “re-synthesis”
» 4. Physical Re-Synthesis — transform circuit when placing
and routing

Process is unpredictable

Logic Synthesis
» Insulates us from the details

Like a C or Java compiler

» But we need to understand the implications of what we
write in HDL

Just like in C or Java
» Each FPGA company has its own synthesis tool
» And Cadence, Synopsis, Mentor, ...

Verilog Introduction

» Two ways to describe:

Behavioral Verilog
describe what a component does, not how it does it

synthesized into a circuit that has this behavior

Structural Verilog
list of components and how they are connected
just like schematics, but using text
hard to write, hard to decode

used to compose systems hierarchically from components

Verilog by Example
» Ripple-Carry Adder

c3 | c2 c1 cO |

» We will describe the full-adder as a behavioral module

» We will connect these together in a higher-level
component

full adder module

module full adder
(input a,
input b,
input c,
output sum,
output carry) ;
a & ~b &~ | ~a &b & ~c |
~a & ~b &c | a &b & c;
assign carry = a &b | a & c | b & c;
endmodule

assign sum

assign statement

» A single assignment equation

One logical function (possibly multiple-bit value)

» Each assignment is a process
Runs in parallel with all other processes
Order of assignments does not matter!

Executes whenever an input changes
Just like logic gates

Verilog Operators

> greater than Relational
>= greater than or equal to Relational
< less than Relational
<= less than or equal to Relational
== logical equality Equality
I= logical inequality Equality
=== case equality Equality
== case inequality Equality
& bit-wise AND Bit-wise

A bit-wise XOR Bit-wise
A~or~h bit-wise XNOR Bit-wise

| bit-wise OR Bit-wise
&& logical AND Logical
| logical OR Logical
7 conditional Conditional

@] bit-select or part-select
O parenthesis
! logical negation Logical
~ negation Bit-wise
& reduction AND Reduction
| reduction OR Reduction
~& reduction NAND Reduction
~} reduction NOR Reduction
A reduction XOR Reduction
~Nor A~ reduction XNOR Reduction
+ unary (sign) plus Arithmetic
- unary (sign) minus Arithmetic
{} concatenation Concatenation
{n replication Replication
* multiply Arithmetic
/ divide Arithmetic
% modulus Arithmetic
binary plus Arithmetic
- binary minus Arithmetic
<< shift left Shift
>> shift right Shift

Alternative full adder module

module full adder
(input a,
input b,
input c,
output sum,
output carry) ;
assign { carry, sum } = a + b + c¢;
endmodule

» We add the 3 input bits together (count)
» The 2-bit result is assigned to the 2-bit bus

{ carry, sum }

adder4 module

module adder4
(input [3:0] a,
input [3:0] b,
output [3:0] sum);
wire carry0, carryl, carry2;
full adder fa0O(.a(a[0]), .b(b[0]), .c(0)

.sum(sum[0], .carry(carryO))
full adder fal(.a(a[l]), .b(b[1]), .c(carryO)
.sum(sum[1l], .carry(carryl));
full adder fa2(.a(a[2]), .b(b[2]), .c(carryl)
.sum(sum[2], .carry(carry?));
full adder fa3(.a(a[3]), .b(b[3]), .c(carry2)
.sum(sum[3], .carry()):

endmodule

» This module just wires together the full-adders
Connects the processes together

Verilog Data Types and Values

» Bits - value on a single wire
0, 1
X -don’tcare
Z - undriven, tri-state

» Vectors of bits — busses
A[3:0] -vectorof4bits: A[3], A[2], A[l], A[O]
Treated as an unsigned integer value by default
eg. A< 0
Can declare variables ad signed
Concatenating bits/vectors into a vector
e.g. sign extend
B[7:0] = {A[3], A[3], A[3], A[3], A[3:0]}:
B[7:0] = {4{A[3]}, A[3:0]};

Verilog Numbers

» 14 - ordinary decimal number
» =14 - 2’s complement representation

» 12’b0000 0100 0110 - binary number with |2 bits
(_is ignored)

» 3’h046 - hexadecimal number with |2 bits
» Verilog values are unsigned by default

eg. C[4:0] = A[3:0] + B[3:0];

if A=0110 (6) and B = 1010(-6)

C = 10000 not 00000
i.e. B is zero-padded, not sign-extended

» For maximum safety, declare length of all intermediates

always block

» Contains a small program that is executed whenever an
input changes

A parallel process, just like an assign statement

The block can make multiple assignments

The program is executed sequentially

The program describes the function computed by the block

Program is interpreted at compile time to generate a circuit
Combinational — takes no time

Even though the program semantics are sequential

Combinational always block

» always @ (list of variables)
block executes when any of the variables change
easy to forget a variable
we will not use this style

» always @ (*)
This means to execute the program if any input changes

Just like an assign

Alternative full adder module

module full adder
(input a,
input b,
input c,
output reg sum,
output reg carry):;
always @Q(*) begin
sum = a & ~b & ~¢c | ~a & b & ~c |

~a & ~b &c | a &b & c;
carry = a &b | a &c | b & c;
end
endmodule

» Order in the always block does matter

» Variables assigned in an always block must be declared as reg

Verilog Variables

» wire
variable used to connect components together

inputs and outputs are wires by default
outputs be declared as regs

> reg
Any variable that is assigned in an always block

cannot be assigned by an assign statement
usually corresponds to a wire in the circuit
is NOT a register in the circuit
» Important:

The names wire and reg do not mean anything!

Verilog if

» Same as C if statement

// Simple 4-1 mux

module mux4 (sel, A, B, C, D, Y);
(input [1:0] sel, // 2-bit control signal
input A, input B, input C, input D,
output reqg Y);

always Q(*) begin
if (sel == 2’'b00)
else if (sel == 2’'b01)
else if (sel == 2’'bl0)
else if (sel == 2’'bll)
end
endmodule

K KKK
| I | I |
OQww

Noe

Verilog if
» Another way

// Simple 4-1 mux

module mux4 (sel, A, B, C, D, Y);
(input [1:0] sel, // 2-bit control signal
input A, input B, input C, input D,
output reqg Y);

always @ (*) begin

if (sel[0] == 0)
if (sel[l] == 0) Y = A;
else Y = B;
else
if (sel[l] == 0) ¥ = C;
else Y =D;
end

endmodule

Verilog case

» Sequential execution of cases
only first case that matches is executed (no break)
default case can be used

// Simple 4-1 mux

module mux4 (sel, A, B, C, D, Y);
(input [1:0] sel, // 2-bit control signal
input A, input B, input C, input D,
output reg Y);

always @(*) begin
case (sel)
2'b00: Y
2'b01:
2'blO0:
2'bll:
endcase
end
endmodule

I
OQwy

Ne

. ~e

Ne

KKK
I

Verilog case

» Without the default case, this would *not™ be combinational!

» Assigning X to a variable means synthesis is free to assign any value

// Simple binary encoder (input is 1l-hot)
module encode
(input [7:0] A, // 8-bit input vector
output reg [2:0] Y); // 3-bit encoded output
always @ (*)
case (A)
8/b00000001:
8’b00000010:
8/b00000100:
8/b00001000:
8/b00010000:
8’b00100000:
8/b01000000:
8’b10000000:
default: Y = 3'bX; // Don’t care when input is not 1l-hot
endcase
endmodule

~e ~oe

. ~e

e ~e

I
SNoudd WN KR O

~e

Ne

KKKKKKKRK

Verilog for

» for is similar to C

» for statement is executed at compile time
result is all that matters, not how result is calculated

// simple encoder
module encode

(input [7:0] A, // 8-bit input vector
output reg [2:0] Y); // 3-bit encoded output
integer i; // Temporary variables for program only

reg [7:0] test;

always @(*) begin
test = 8b’00000001;

Y = 3'bX;
for (1 = 0;, 1 <8, 1i =1+ 1) begin
if (A == test) Y = 1i;
test = test <K 1;
end
end

endmodule

Another Behavioral Example

» Combinational block that computes Conway’s Game of Life rule

module life
(input self,
input [7:0] neighbors,
output reg out) ;
integer count;
integer i;

always @(*) begin
count = 0;

for (1 = 0; i<8; i = i+l) count = count + neighbors[i];
out = 0;
out = out | (count == 3);
out = out | ((self == 1) & (count == 2));
end

endmodule

Summary: Verilog for Combinational Logic

» Two alternatives:
assign statement — simple logic equation
always block — allows complex program to describe function
» Each assign and always block compiles into a component
Combinational function with some inputs and outputs
» All components operate in parallel, continuously
If any input changes, the function is recomputed
This may change the output

Which will cause inputs of some components to change

» Just like a circuit made up of gates!

Registers and Sequential Logic

» Registers are used to store values

for sequencing

e.g. Rl =R2 +R3
RO=RI -R4

» Registers hold values while functions operate on them
» When result is ready, registers “latch” the new values

Clock tells registers when to latch

Clock is slow enough that functions have time to finish
Only enabled registers latch new values

All registers latch simultaneously

e.g. shift register and swap

Verilog Registers

» always (@ (posedge clk)

» The block program executes only when the clk transitions
from O to | (positive edge)
» All assighments in the block store values in a register
These assignments should use <=
(easy to forget)

All registered assignments happen at same instant
Not sequentially determined

= causes sequential assignments — not like registers!
» Examples

shift register

accumulator

counter

wavelet example

Verilog by Example

» Simple 8-bit register with synchronous reset

reset only has effect on rising edge of clock

module reg8
(input reset,
input CLK,
input [7:0] D,
output reg [7:0] Q)

always @ (posedge CLK)
if (reset)

Q <= 0;
else
Q <= Dy

endmodule // reg8

N-bit Register with Asynchronous Reset
» Example of parameterized module

module
(input reset,
input CLK,
input [N-1:0] D,
output reg [N-1:0] Q¢
parameter N = 8; // Allow N to be changed

always (@ (posedge CLK or posedge reset)
if (reset)

Q <= 0;
else if (CLK == 1)
Q <= Dy

endmodule // regN

Shift Register Example

// 4 register shift register
module shiftReg

(input CLK,
input reset, // initialize registers
input shift,

input [7:0] Din, // Data input for load
output [7:0] Dout);
reg [7:0] DO, D1, D2, D3;
assign Dout = DO;
always @ (posedge CLK) begin
if (reset) begin
DO <= 0; D1 <= 0; D2 <= 0; D3 <= 0;
end else if (shift) begin
D3 <= Din; D2 <= D3; D1 <= D2; DO <= D1;
end
end

endmodule // shiftReg

FIR Filter Example

module fir
(input CLK,
input reset, // initialize registers
input [7:0] Din, // Data input for load
output reg [7:0] Dout);
reg [7:0] DO, D1, D2, D3;
localparam CO = 4, C1 = 3, C2

2, C3 =1;

always @ (posedge CLK) begin
if (reset) begin
DO <= 0; D1 <= 0; D2 <= 0; D3 <= 0;
end else begin
D3 <= Din; D2 <= D3; D1 <= D2; DO <= D1;
Dout <= C0O0 * DO + C1 * D1 + C2 * D2 + C3 * D3;
end
end
endmodule // fir

Case Study — Division by Constant

» e.g. gray = (red + blue + green)/3
» Division is very expensive in general
Area and Delay

Much more so than multiplication

» Convert division to multiplication
Multiply by the reciprocal
e.g. (red + blue + green) * 0.33
Floating-point??
Also expensive!

» Key idea: multiply & divide by 2" is FREE

RGB to Grayscale

Y =0.3*R + 0.59*G + 0.1 | *B
» 1024 * 0.3 = 307.2

1024 * 0.59 = 604.16

» 1024 *0.11 = 112.64

v

v

v

Y = (307*R + 604*G + |13*B) >> |0;

» This works for multiplying/dividing with any number with
fractions

Scale then re-scale

Converting Division to Multiplication

» Increase precision until it’s good enough
FPGA has 18x18 multipliers — almost free

» Division by a variable!?
Table lookup of reciprocal
Does not scale to large numbers

Use iterative solutions

