Introduction to CMOS VLSI Design

Layout, Fabrication, and Elementary Logic Design

Adapted from Weste & Harris CMOS VLSI Design

C	Dverview	
Implementing sv	vitches with CMOS tran	sistors
How to compute logic functions with switches		
Fabricating trans connecting them	sistors on a silicon wafe together	er and
Fabrication and Lavout	CMOS VLSI Design	Slide 2

- **Transistors are built on a silicon substrate**
- □ Silicon is a Group IV material
- □ Forms crystal lattice with bonds to four neighbors

CMOS VLSI Design

Dopants

- □ Silicon is a semiconductor
- Pure silicon has no free carriers and conducts poorly
- Adding dopants increases the conductivity
- Group V: extra electron (n-type)
- Group III: missing electron, called hole (p-type)

 Fabrication and Layout
 CMOS VLSI Design
 Slide 4

nMOS Transistor

- □ Four terminals: gate, source, drain, body
- □ Gate oxide body stack looks like a capacitor
 - Gate and body are conductors
 - SiO₂ (oxide) is a very good insulator

- □ Body is commonly tied to ground (0 V)
- □ When the gate is at a low voltage:
 - Source-body and drain-body diodes are OFF
 - No current flows, transistor is OFF

nMOS Operation

When the gate is at a high voltage:

- Positive charge on gate of MOS capacitor
- Negative charge attracted to body
- Inverts a channel under gate to n-type
- Now current can flow through n-type silicon from source through channel to drain, transistor is ON

pMOS Transistor

- □ Similar, but doping and voltages reversed
 - Body tied to high voltage (V_{DD})
 - Gate low: transistor ON
 - Gate high: transistor OFF
 - Bubble indicates inverted behavior

Fabrication and Layout

CMOS VLSI Design

Slide 9

3-input NAND Gate

□ Y pulls low if ALL inputs are 1

□ Y pulls high if ANY input is 0

Fabrication and Layout

CMOS VLSI Design

Slide 25

Dynamic storage

- Capacitor implemented by gate capacitance of transistor
- □ No capacitor is perfect
 - charge leaks away through imperfect switches
- □ Must be replenished or refreshed
 - 'memory' lasts about 1ms
 - ❑ Solution: periodically read the value and write it back

CMOS Fabrication

- CMOS transistors are fabricated on silicon wafer
- Lithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Fabrication and Layout

CMOS VLSI Design

Slide 39

Crystal and wafer

© Kay Chernush

Wand (a finished 250lb crystal)

A polished wafer

CMOS VLSI Design

