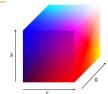

CSEP567-- tonight Color Accelerometers and PWM CSEP567 Color-Accelerometers

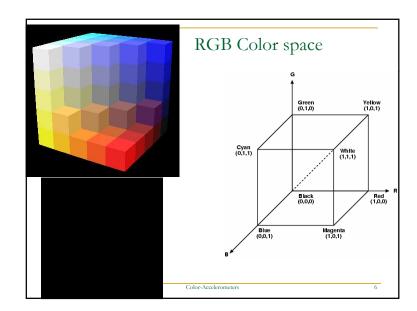


I. Color Spaces CSEP567 Color-Accelerometers

Color Spaces

- Definition: A mapping of color components onto a Cartesian coordinate system in three or more dimensions.
- •RGB, CMY, XYZ, HSV, HLS, Lab, UVW, YUV, YCrCb, Luv, L* u* v*, ..
- Different Purposes: display, editing, computation, compression, ..
- Equally distant colors may not be equally perceivable

CSEP567

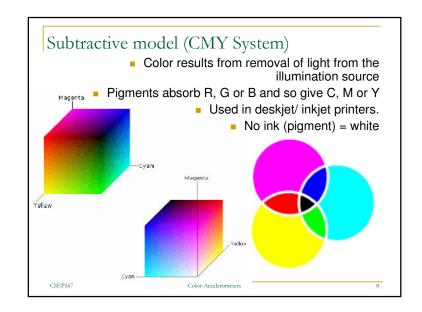


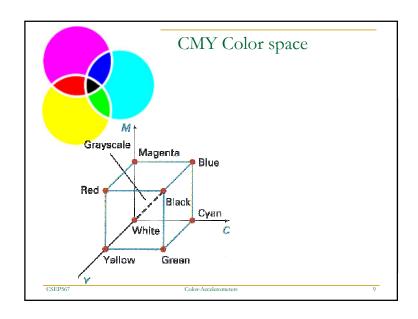
Additive Model: (RGB System)

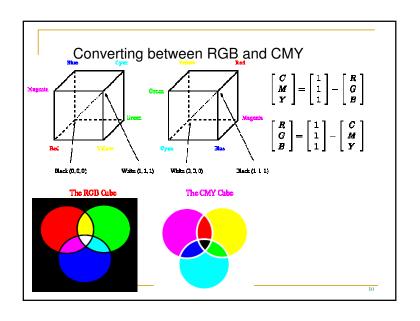
- R, G, B normalized on orthogonal axes
- All representable colors inside the unit cube
- Color Monitors mix R, G and B
- Video cameras pick up R, G and B
- CIE (Commission Internationale de l'Eclairage) standardized in 1931: B: 435.8 nm, G: 546.1 nm, R: 700 nm.
- 3 fixed components acting alone can't generate all spectrum colors.

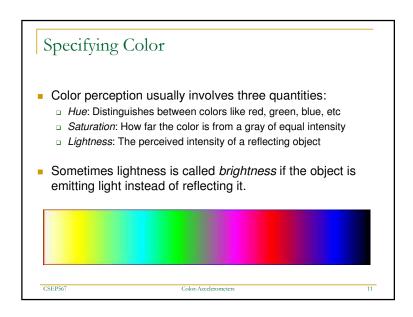
CSEP567

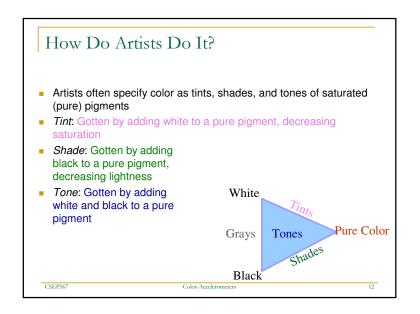
Color-Accelerometers

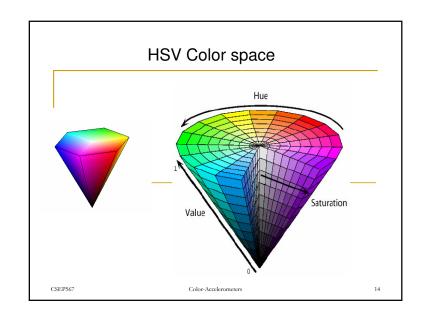


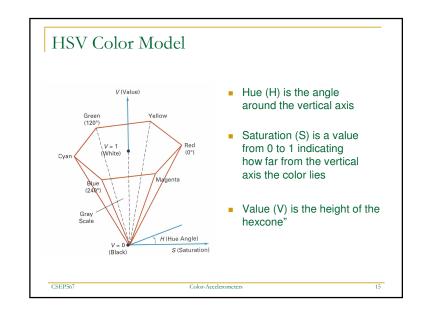

Problems with RGB

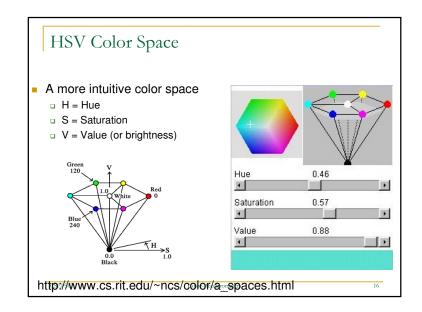

- Only a small range of potential perceivable colors (particularly for monitor RGB)
- It isn't easy for humans to say how much of RGB to use to get a given color
 - How much R, G and B is there in "brown"?
- Perceptually non-linear
 - Two points, a certain distance apart, may be perceptually different in one part of the space, but could be same in another part of the space.


CSEP567


Color-Accelerometers





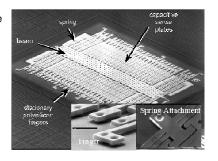


Computer scientists frequently use an intuitive color space that corresponds to tint, shade, and tone: Hue - The color we see (red, green, purple) Saturation - How far is the color from gray (pink is less saturated than red, sky blue is less saturated than royal blue) Brightness (Luminance) - How bright is the color (how bright are the lights illuminating the object?)

HSV System

- Normally represented as a cone or hexcone
- Hue is the angle around the circle or the regular hexagon; $0 \le H \le 360$
- Saturation is the distance from the center; $0 \le S \le 1$
- Value is the position along the axis of the cone or hexcone; 0 ≤ V ≤ 1
- Value is not perceptually-based, so colors of the same value may have slightly different brightness
- Main axis is grey scale

CSEP567


olor-Accelerometer

II. Accelerometer CSEP567 Color-Accelerometers 19

```
//HSV values = From 0 to 1
HSV to RGB
Conversion
                        R = V * 255
                                                 //RGB results = From 0 to 255
                        G = V * 255
                        B = V * 255
                      else
                        var h = H * 6
                        var i = int( var h )
                                                  //Or ... var i = floor( var h )
                        var 1 = V^* (1 - S)
                        var 2 = V * (1 - S * (var h - var i))
                        var 3 = V * (1 - S * (1 - (var h - var i)))
                        if (var_i == 0) \{ var_r = V ; var_g = var_3 ; var_b = var_1 \}
                        else if (var_i == 1) { var_r = var_2 ; var_g = V ; var_b = var_1 }
                        else if (var i == 2) \{ var r = var 1 ; var g = V \}
                        else if ( var_i == 3 ) { var_r = var_1 ; var_g = var_2 ; var_b = V
                        else if ( var_i == 4 ) { var_r = var_3 ; var_g = var_1 ; var_b = V
                                             \{ var r = V \quad ; var g = var 1 ; var b = var 2 \}
                        R = var r * 255
                                                  //RGB results = From 0 to 255
                        G = var g * 255
                        B = var b * 255
                                     Color-Accelerometers
```

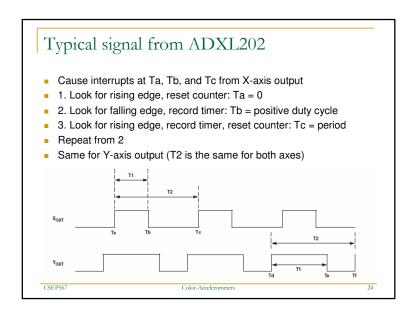
Accelerometer

- Micro-electro-mechanical system that measures force
 - □ F = ma (I. Newton)
 - Measured as change in capacitance between moving plates
 - Designed for a maximum g-force (e.g., 2-10g)
 - 2-axis and 3-axis versions
 - Used in airbags, laptop disk drives, etc.

CSEP567

olor-Accelerometers

Accelerometer output

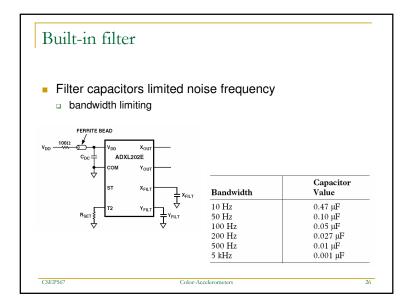

- Analog output too susceptible to noise
- Digital output requires many pins for precision
- Use pulse-width modulation
- What about gravity?

CSEP56

olor-Accelerometers

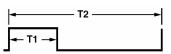
Analog Devices ADXL202 2-axis accelerometer Set 0g at 50% duty-cycle Positive acceleration 3V TO 5.25V increases duty cycle SELF-TEST Negative acceleration decreases duty cycle □ 12.5% per g → DEMOD TO DUTY in either direction OSCILLATOR ADXL202E Y SENSOR Color-Accelerometer

Typical measurement for ADXL202 Noisy data – all forces are aggregated by accelerometer Sample trace at 250Hz Walking down six flights of stairs Elevator ride



What to do about noise/jitter?

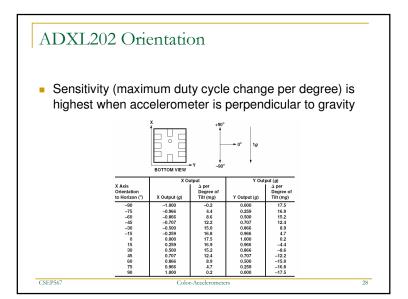
- Average over time smoothing
 - □ Software filter like switch debouncing
- Take several readings
 - use average for Tb and Tc or their ratio
- Running average so that a reading is available at all times
 - e.g., update running average of 4 readings
 current average = ³/₄ * current average + ¹/₄ * new reading
- Take readings of both Tb and Tc to be extra careful
 - Tc changes with temperature
 - Usually can do Tc just once


CSEP567

lor-Accelerometer

ADXL202 Output

- Accelerometer duty cycle varies with force
- 12.5% for each g
- R_{SET} determines duration of period
- At 1g duty-cycle will be 62.5% (37.5%)



A(g) = (T1/T2 - 0.5)/12.5% 0g = 50% DUTY CYCLE $T2(s) = R_{SET}(\Omega)/125M\Omega$

T2	$\mathbf{R}_{ ext{SET}}$
1 ms	125 k Ω
2 ms	250 kΩ
5 ms	$625 \text{ k}\Omega$
10 ms	$1.25~\mathrm{M}\Omega$

CSEP567

Color-Accelerometers

PWM Calculations

- How big a counter do you need?
- Assume 7.37MHz clock
- 1ms period yields a count of 7370
 - □ This fits in a 16-bit timer/counter
- Should you use a prescaler for the counter?
- Bit precision issues

```
unsigned int positive;
unsigned int period;
unsigned int pos_duty_cycle;
BAD:
   pos_duty_cycle = positive/period;
BAD:
   pos_duty_cycle = ( positive * 1000 ) / period;
OKAY:
   pos_duty_cycle = ( (long) positive * 1000 ) / period;
```

CSEP567

Color-Accelerometers