Introduction to MicroBlaze™ architecture

32-bit RISC soft processor core for Xilinx FPGAs

What is MicroBlaze?

- It’s a soft processor, around 900 LUTs
- RISC Architecture
- 32-bit, 32 x 32 general purpose registers
- Supported in Virtex/E/II/IIPro, Spartan-III/II/E
MicroBlaze features

- Thirty-two 32-bit general purpose registers
- 32-bit instruction word with three operands and two addressing modes
- Separate 32-bit instruction and data buses that conform to IBM’s OPB (On-chip Peripheral Bus) specification
- Separate 32-bit instruction and data buses with direct connection to on-chip block RAM through a LMB (Local Memory Bus)
- 32-bit address bus
- Single issue pipeline
- Instruction and data cache
- Hardware debug logic
- FSL (Fast Simplex Link) support

Instruction pipeline

<table>
<thead>
<tr>
<th></th>
<th>cycle 1</th>
<th>cycle 2</th>
<th>cycle 3</th>
<th>cycle 4</th>
<th>cycle 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>instruction 1</td>
<td>Fetch</td>
<td>Decode</td>
<td>Execute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>instruction 2</td>
<td>Fetch</td>
<td>Decode</td>
<td>Execute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>instruction 3</td>
<td>Fetch</td>
<td>Decode</td>
<td>Execute</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Big-Endian Data Type

<table>
<thead>
<tr>
<th>Byte address</th>
<th>n</th>
<th>n+1</th>
<th>n+2</th>
<th>n+3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte label</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Byte significance</td>
<td>MSByte</td>
<td>LSByte</td>
<td>MSByte</td>
<td>LSByte</td>
</tr>
<tr>
<td>Bit label</td>
<td>0</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit significance</td>
<td>MSBit</td>
<td>LSBit</td>
<td>MSBit</td>
<td>LSBit</td>
</tr>
</tbody>
</table>

```c
struct {
    int a; /* 0x1112_1314 word */
    long b; /* 0x2122_2324_2526_2728 double word */
    char *c; /* 0x3132_3334 word */
    char d[7]; /* 'A','B','C','D','E','F','G' array of bytes */
    short e; /* 0x3515 byte */
    int f; /* 0x6416_6364 word */
} s;
```

Embedded Development Kit (EDK)

- All encompassing design environment for Virtex-II Pro PowerPC™ and MicroBlaze based embedded systems in Xilinx FPGAs
- Integration of mature FPGA and embedded tools with innovative IP generation and customization tools
- Delivery vehicle for Processor IP
More on MicroBlaze ...

- Harvard Architecture
- Configurable instruction cache, data cache soon
- Non-intrusive JTAG debug
- Support for 2 buses:
 - LMB (Local Memory Bus) - 1 clock cycle latency, connects to BRAM
 - OPB (On-chip Peripheral Bus) - part of the IBM CoreConnect™ standard, connects to other peripheral “Portable” IP between PPC and MB
- Big endian, same as PowerPC PPC405
MicroBlaze Interrupts and Exceptions

- Interrupt handling
 - 1 Interrupt port
 - 32+ interrupts and masking supported through interrupt controller(s)
- Exception handling
 - No exceptions generated in Virtex-II versions
 - One in Virtex/E and Spartan-II versions for MUL instruction

Software Tools

- GNU tool chain
- GCC - GNU Compiler Collection
- GDB - The GNU debugger
 - Source code debugging
 - Debug either C or assembly code
- XMD - Xilinx Microprocessor Debug utility
 - Separate Process
 - Provides cycle accurate program execution data
 - Supported targets: simulator, hardware board
Software - XMD

- Interfaces GDB to a “target”
- Allows hardware debug without a ROM monitor or reduces debug logic by using xmd-stub (ROM monitor)
- Offers a variety of simulation targets
 - Cycle accurate simulator
 - Real hardware board interface via UART or MDM
- Includes remote debugging capability

Example MicroBlaze System
Processor IP (HW/SW)

Infrastructure (includes Device Drivers)
- MicroBlaze CPU
- LMB2OPB Bridge
- PLB Arbiter & Bus Structure (PLB_V34)
- OPB Arbiter & Bus Structure (OPB_V20)
- DCR Bus Structure (DCR_V29)
- PLB2OPB Bridge
- OPB2PLB Bridge
- OPB2OPB Bridge - Lite
- OPB2DCR Bridge
- System Reset Module
- BSP Generator (SW only)
- ML3 VxWorks BSP (SW only)
- Memory Test Utility (SW only)

OPB IPIF Modules (includes Device Drivers)
- PLB IPIF
 - OPB IPIF-Slave Attachment
 - OPB IPIF-Master Attachment
 - IPIF-Address Decode
 - IPIF-Interrupt Control
 - IPIF-Read Packet FIFOs
 - IPIF-Write Packet FIFOs
 - IPIF-DMA
 - IPIF-Scatter Gather
 - IPIF-FIFOUnlink
- PLB IPIF
 - PLB IPIF-Slave Attachment
 - PLB IPIF-Master Attachment
 - IPIF-Address Decode
 - IPIF-Interrupt Control
 - IPIF-Read Packet FIFOs
 - IPIF-Write Packet FIFOs
 - IPIF-DMA
 - IPIF-Scatter Gather
 - IPIF-FIFOUnlink

Memory Interfaces (includes Device Drivers & Memory Tests)
- PLB EMC (Flash, SRAM, and ZBT)
- PLB BRAM Controller
- PLB DDR Controller
- PLB SDRAM Controller
- OPB EMC (Flash, SRAM, and ZBT)
- OPB BRAM Controller
- OPB DDR Controller
- OPB SDRAM Controller
- OPB SystemACE
- LMB BRAM Controller

Peripherals (includes Device Drivers & RTOS Adapt. Layers)
- OPB Single Channel HDLC Controller
- OPB <-> PCI Full Bridge
- OPB 10/100M Ethernet
- OPB 10/100M Ethernet - Lite
- OPB ATM Utopia Level 2 Slave
- OPB ATM Utopia Level 2 Master

Peripherals (continued)
- OPB IIC Master & Slave
- OPB SPI Master & Slave
- OPB UART-16550
- OPB UART-16450
- OPB UART - Lite
- OPB JTAG UART
- OPB Interrupt Controller
- OPB TimeBase/Watch Dog Timer
- OPB Timer/Counter
- OPB GPIO
- PLB 1G Ethernet
- PLB RapidIO
- PLB UART-16550
- PLB UART-16450
- PLB ATM Utopia Level 2 Slave
- PLB ATM Utopia Level 2 Master
- PLB ATM Utopia Level 3 Slave
- PLB ATM Utopia Level 3 Master
- DCR Interrupt Controller
System Infrastructure

- **Hardware IP**
 - Common PowerPC and MicroBlaze peripherals
 - Peripherals are common across bus types
 - Parameterize for optimal functionality, optimal FPGA usage
 - IP Interface (IPIF) provides common hardware blocks
- **Software IP (Device Drivers)**
 - Common across processors and operating systems

The Benefits of Parameterization

Example: OPB Arbiter

<table>
<thead>
<tr>
<th>Parameter Values</th>
<th>Resources</th>
<th>(f_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUM</td>
<td>MASTERS</td>
<td>PROC INTERFACE</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>8</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

- Significantly increases performance or saves area
- Only include what you need
- This can only be accomplished in a programmable system

Difference:
- \(>4x \) in size
- \(>30\% \) in speed
Full IP Interface (IPIF)

- Consists of 8 modules
 - Each module is selectable and parameterizable
 - Automatically configures a core to the processor bus
 - Xilinx IP Cores
 - 3rd Party IP Cores
 - Customer proprietary cores and external devices
- OPB & PLB supported
 - Bus independent IP Cores and associated Device Drivers
- IPIF will be added to other LogiCOREs

Buses and Arbiters

- PLB
 - Arbitration for up to 16 masters
 - 64-bit and 32-bit masters and slaves
 - IBM PLB compliant
- OPB
 - Includes arbiter with dynamic or fixed priorities and bus parking
 - Parameterized I/O for any number of masters or slaves
 - IBM OPB compliant
- DCR
 - Supports one master and multiple slaves
 - Daisy chain connections for the DCR data bus
 - Required OR function of the DCR slaves’ acknowledge signal
- LMB
 - MicroBlaze single-master Local Memory Bus
Bridges

- PLB to OPB
 - Decode up to 4 different address ranges
 - 32-bit or 64-bit PLB slave, 32-bit OPB master
 - Burst and non-burst transfers, cache-line transactions
- OPB to PLB
 - 64-bit PLB master, 32-bit OPB slave
 - Burst and non-burst transfers, cache-line transactions
 - BESR and BEAR
- OPB (slave) to DCR (master)
 - Memory mapped DCR control
- OPB to OPB
 - Allows further OPB partitioning

More System Cores

- Processor System Reset
 - Asynchronous external reset input is synchronized with clock
 - Selectable active high or active low reset
 - DCM Locked input
 - Sequencing of reset signals coming out of reset:
 - First - bus structures come out of reset
 - Second - Peripheral(s) come out of reset 16 clocks later
 - Third - the CPU(s) come out of reset 16 clocks after the peripherals
- JTAG Controller
 - Wrapper for the JTAGPPC primitive.
 - Enables the PowerPC’s debug port to be connected to the FPGA JTAG chain
- IPIF User Core Templates
 - Convenient way to add user core to OPB or PLB
Timer / Counter

- Supports 32-bit OPB v2.0 bus interface
- Two programmable interval timers with interrupt, compare, and capture capabilities
- Programmable counter width
- One Pulse Width Modulation (PWM) output

Watchdog Timer / Timebase

- Supports 32-bit bus interfaces
- Watchdog timer (WDT) with selectable timeout period and interrupt
- Two-phase WDT expiration scheme
- Configurable WDT enable: enable-once or enable-disable
- WDT Reset Status (was the last reset caused by the WDT?)
- One 32-bit free-running timebase counter with rollover interrupt
Interrupt Controller

- Number of interrupt inputs is configurable up to the width of the data bus width
- Interrupt controllers can be easily cascaded to provide additional interrupt inputs
- Master Enable Register for disabling the interrupt request output
- Each input is configurable for edge or level sensitivity
 - rising or falling, active high or active low
- Output interrupt request pin is configurable for edge or level generation

UART 16550 / 16450 / Lite

- Register compatible with industry standard 16550/16450
- 5, 6, 7 or 8 bits per character
- Odd, even or no parity detection and generation
- 1, 1.5 or 2 stop bit detection and generation
- Internal baud rate generator and separate RX clock input
- Modem control functions
- Prioritized transmit, receive, line status & modem control interrupts
- Internal loop back diagnostic functionality
- Independent 16 word transmit and receive FIFOs
IIC
- 2-wire (SDA and SCL) serial interface
- Master/Slave protocol
- Multi-master operation with collision detection and arbitration
- Bus busy detection
- Fast Mode 400 KHz or Standard Mode 100 KHz operation
- 7 Bit, 10 Bit, and General Call addressing
- Transmit and Receive FIFOs - 16 bytes deep
- Bus throttling

SPI
- 4-wire serial interface (MOSI, MISO, SCK, and SS)
- Master or slave modes supported
- Multi-master environment supported (requires tri-state drivers and software arbitration for possible conflict)
- Multi-slave environment supported (requires additional decoding and slave select signals)
- Programmable clock phase and polarity
- Optional transmit and receive FIFOs
- Local loopback capability for testing
Ethernet 10/100 MAC

- 32-bit OPB master and slave interfaces
- Media Independent Interface (MII) for connection to external 10/100 Mbps PHY Transceivers
- Full and half duplex modes of operation
- Supports unicast, multicast, broadcast, and promiscuous addressing
- Provides auto or manual source address, pad, and Frame Check Sequence

Ethernet 10/100 MAC (cont)

- Simple DMA and Scatter/Gather DMA architecture for low processor and bus utilization, as well as a simple memory-mapped direct I/O interface
- Independent 2K to 32K transmit and receive FIFOs
- Supports MII management control writes and reads with MII PHYs
- Supports VLAN and Pause frames
- Internal loopback mode
1 Gigabit MAC

- 64-bit PLB master and slave interfaces
- GMII for connection to external PHY Transceivers
- Optional PCS function with Ten Bit Interface (TBI) to external PHY devices
- Option PCS/PMA functions with SerDes interface to external transceiver devices for reduced signal count
- Full duplex only
- Provides auto or manual source address, pad, and Frame Check Sequence

1 Gigabit MAC (cont)

- Simple DMA and Scatter/Gather DMA architecture for low processor and bus utilization, as well as a simple memory-mapped direct I/O interface
- Independent, depth-configurable TX and RX FIFOs
- Supports MII management control writes and reads with MII PHYs
- Jumbo frame and VLAN frame support
- Internal loopback mode
Single Channel HDLC

- Support for a single full duplex HDLC channel
- Selectable 8/16 bit address receive address detection, receive frame address discard, and broadcast address detection
- Selectable 16 bit (CRC-CCITT) or 32 bit (CRC-32) frame check sequence
- Flag sharing between back to back frames
- Data rates up to OPB_Clk frequency

Single Channel HDLC (cont)

- Simple DMA and Scatter/Gather DMA architecture for low processor and bus utilization, as well as a simple memory-mapped direct I/O interface
- Independent, depth-configurable TX and RX FIFOs
- Selectable broadcast address detection and receive frame address discard
- Independent RX and TX data rates
ATM Utopia Level 2

- UTOPIA Level 2 master or slave interface
- UTOPIA interface data path of 8 or 16 bits
- Single channel VPI/VCI service and checking in received cells
- Header error check (HEC) generation and checking
- Parity generation and checking
- Selectively prepend headers to transmit cells, pass entire received cells or payloads only, and transfer 48 byte ATM payloads only

ATM Utopia Level 2 (cont)

- Simple DMA and Scatter/Gather DMA architecture for low processor and bus utilization, as well as a simple memory-mapped direct I/O interface
- Independent, depth-configurable TX and RX FIFOs
- Interface throughput up to 622 Mbps (OC12)
- Internal loopback mode
OPB-PCI Bridge

- 33/66 MHz, 32-bit PCI buses
- Full bridge functionality
 - OPB Master read/write of a remote PCI target (both single and burst)
 - PCI Initiator read/write of a remote OPB slave (both single and multiple)
- Supports up to 3 PCI devices with unique memory PCI memory space
- Supports up to 6 OPB devices with unique memory OPB memory space
- PCI and OPB clocks can be totally independent

System ACE Controller

- Used in conjunction with System ACE CompactFlash Solution to provide a System ACE memory solution.
- System ACE Microprocessor Interface (MPU)
 - Read/Write from or to a CompactFlash device
 - MPU provides a clock for proper synchronization
- ACE Flash (Xilinx-supplied Flash Cards)
 - Densities of 128 MBits and 256 Mbits
 - CompactFlash Type 1 form factor
 - Supports any standard CompactFlash module, or IBM microdrives up to 8 Gbits, all with the same form factor.
- Handles byte, half-word, and word transfers
GPIO

- OPB V2.0 bus interface with byte-enable support
- Supports 32-bit bus interface
- Each GPIO bit dynamically programmable as input or output
- Number of GPIO bits configurable up to size of data bus interface
- Can be configured as inputs-only to reduce resource utilization

Memory Controllers

- PLB and OPB interfaces
- External Memory Controller
 - Synchronous Memory (ZBT)
 - Asynchronous Memory (SRAM, Flash)
- Internal Block Memory (BRAM) Controllers
- DDR and SDRAM
Creating a Simple MicroBlaze System with EDK

Design Flow

- Design Entry with Xilinx Platform Studio
- Generate system netlist with XPS
- Generate hardware bitstream with XPS
- Download and sanity check design with XPS and XMD
Simple MicroBlaze System Block Diagram

External to FPGA