Computer Networks

Security

Security Vulnerabilities

- At every layer in the protocol stack!
- Network-layer attacks
 - IP-level vulnerabilities
 - Routing attacks
- Transport-layer attacks
 TCP vulnerabilities
- Application-layer attacks

Security Flaws in IP

- The IP addresses are filled in by the originating host
 - Address spoofing
- Using source address for authentication
 - r-utilities (rlogin, rsh, rhosts etc..)

•Can A claim it is B to the server S?

•ARP Spoofing

•Can C claim it is B to the server S?

•Source Routing

ARP Spoofing

- Attacker uses ARP protocol to associate MAC address of attacker with another host's IP address
- E.g. become the default gateway:
 - Forward packets to real gateway (interception)
 - Alter packets and forward (man-in-the-middle attack)
 - Use non-existent MAC address or just drop packets (denial of service attack)

Source Routing

- ARP spoofing cannot redirect packets to another network
 - if you spoof an IP source address, replies go to the spoofed host
- An *option* in IP is to provide a route in the packet: *source routing.*
 - Equivalent to tunneling.
- Attack: spoof the host IP address and specify a source route back to the attacker.

Smurf Attack

ICMP Attacks

- No authentication
- ICMP redirect message
- Oversized ICMP messages can crash hosts
- Destination unreachable
 - Can cause the host to drop connection
- Many more...
 - http://www.sans.org/rr/whitepapers/threats/477.php

ICMP Redirect

 ICMP Redirect message: tell a host to use a different gateway on the same network (saves a hop for future packets)

TCP-level attacks

- SYN-Floods
 - Implementations create state at servers before connection is fully established
- Session hijack
 - Pretend to be a trusted host
 - Sequence number guessing
- Session resets
 - Close a legitimate connection

TCP Layer Attacks

- TCP SYN Flooding
 - Exploit state allocated at server after initial SYN packet
 - Send a SYN and don't reply with ACK
 - Server will wait for 511 seconds for ACK
 - Finite queue size for incomplete connections (1024)
 - Once the queue is full it doesn't accept requests

TCP Layer Attacks

- TCP Session Poisoning
 - Send RST packet
 - Will tear down connection
 - Do you have to guess the exact sequence number?
 - Anywhere in window is fine
 - For 64k window it takes 64k packets to reset
 - About 15 seconds for a T1

Where do the problems come from?

- Protocol-level vulnerabilities
 - Implicit trust assumptions in design
- Implementation vulnerabilities
 - Both on routers and end-hosts
- Incomplete specifications
 - Often left to the imagination of programmers

Denial of Service Attacks

Questions

 What are the DoS attacks at different levels of the network architecture?

• How can we mitigate them?

DoS can happen at any layer

- Sample Dos at different layers (by order):
 - Link
 - TCP/UDP
 - Application
- There are some generic DoS solutions
- However, current Internet not designed to handle DDoS attacks

Internet Reality

- Distributed Denial-of-Service is a huge problem today!
 - Akamai reports DDOS against US banks peaking at 65 Gbps ...
- There are no great solutions
 - CDNs, network traffic filtering, and best practices all help

Examples

- Already discussed:
 - Smurf ICMP amplification attack
 - TCP SYN resource exhaustion attack

DNS Attack (May '06)

DNS Amplification attack: (×50 amplification)

Millions of open resolvers on Internet

A classic SYN flood example

- <u>MS Blaster worm</u> (2003)
 - Infected machines at noon on Aug 16th:
 - SYN flood on port 80 to **windowsupdate.com**
 - 50 SYN packets every second.
 - each packet is 40 bytes.
 - Spoofed source IP: a.b.X.Y where X,Y random.
- <u>MS solution</u>:
 - new name: windowsupdate.microsoft.com
 - Win update file delivered by Akamai

Low rate SYN flood defenses

- Non-solution:
 - Increase backlog queue size or decrease timeout
- Correct solution (when under attack):
 - Syncookies: remove state from server
 - Small performance overhead

Syncookies

[Bernstein, Schenk]

- Idea: use secret key and data in packet to gen. server SN
- Server responds to Client with SYN-ACK cookie:
 - T = 5-bit counter incremented every 64 secs.
 - $L = MAC_{key}$ (SAddr, SPort, DAddr, DPort, SN_c, T) [24 bits]
 - key: picked at random during boot
 - $SN_{S} = (T . mss . L)$ (|L| = 24 bits)
 - Server does not save state (other TCP options are lost)
- Honest client responds with ACK (AN=SN_s, SN=SN_c+1)
 - Server allocates space for socket only if valid SN_s.

DoS Mitigation

Possible defenses I: Filtering

- Filtering at the victim's firewall
 - Likely to be useless, firewall itself can be targeted
- Filtering at the attacker's firewall
 - Routers drop packets with an "invalid" source IP address field
 - Would need near universal deployment to be effective
 - Besides, does not prevent subnet-level spoofing
 - Economic incentives?

- RFC 2827: Routers install filters to drop packets from networks that are not downstream
- Feasible at edges; harder at "core"

Possible defenses II: Pushback

- Pushback: rate limit flows that compose large traffic aggregates to mitigate impact of DDoS
- Assumption: can identify anomalous traffic
- Distributed solution: the whole network benefits
- Requires router modifications
 - Deployment may take very long
 - Need authentication of filters

Possible Defenses III: Traceback [Sava

[Savage et al. '00]

- Goal:
 - Given set of attack packets
 - Determine path to source
- How: change routers to record info in packets
- Assumptions:
 - Most routers remain uncompromised
 - Attacker sends many packets
 - Route from attacker to victim remains relatively stable

Simple method

- Write path into network packet
 - Each router adds its own IP address to packet
 - Victim reads path from packet
- Problem:
 - Requires space in packet
 - Path can be long
 - No extra fields in current IP format
 - Changes to packet format too much to expect

Better idea

- DDoS involves many packets on same path
- Store one link in each packet
 - Each router probabilistically stores own address
 - Fixed space regardless of path length

Edge Sampling

- Data fields written to packet:
 - Edge: *start* and *end* IP addresses
 - Distance: number of hops since edge stored
- Marking procedure for router R

if coin turns up heads (with probability p) then write R into start address

write 0 into distance field

else

if distance == 0 write R into end field increment distance field

Edge Sampling: picture

- Packet received
 - R₁ receives packet from source or another router
 - Packet contains space for start, end, distance

Edge Sampling: picture

- Begin writing edge
 - R₁ chooses to write start of edge
 - Sets distance to 0

Edge Sampling

- Finish writing edge
 - R₂ chooses not to overwrite edge
 - Distance is 0
 - Write end of edge, increment distance to 1

Edge Sampling

- Increment distance
 - R₃ chooses not to overwrite edge
 - Distance >0
 - Increment distance to 2

Path reconstruction

- Extract information from attack packets
- Build graph rooted at victim
 - Each (start,end,distance) tuple provides an edge
- # packets needed to reconstruct path
 In(d)
 - $E(X) < \frac{m(d)}{p(1-p)^{d-1}}$

where p is marking probability, d is length of path

Capability based defense

- Basic idea:
 - Receivers can specify what packets they want
- How:
 - Sender requests capability in SYN packet
 - Path identifier used to limit # reqs from one source
 - Receiver responds with capability
 - Sender includes capability in all future packets
 - Main point: Routers only forward:
 - Request packets, and
 - Packets with valid capability

Interdomain Routing Security

Interdomain Routing

- AS-level topology
 - Nodes are Autonomous Systems (ASes)
 - Edges are links and business relationships

TCP Connection Underlying BGP Session

- BGP session runs over TCP
 - TCP connection between neighboring routers
 - BGP messages sent over TCP connection
 - Makes BGP vulnerable to attacks on TCP

Validity of the routing information: Origin authentication

IP Address Ownership and Hijacking

- IP address block assignment
 - Regional Internet Registries
 - Internet Service Providers
- Proper origination of a prefix into BGP
 - By the AS who owns the prefix or by its upstream provider(s) in its behalf
- However, what's to stop someone else?
 - Prefix hijacking: another AS originates the prefix
 - BGP does not verify that the AS is authorized
 - Registries of prefix ownership are inaccurate

- Consequences for the affected ASes
 - Blackhole: data traffic is discarded
 - Snooping: data traffic is inspected, and then redirected
 - Impersonation: data traffic is sent to bogus destinations

Hijacking is Hard to Debug

- The victim AS doesn't see the problem
 - Picks its own route
 - Might not even learn the bogus route
- May not cause loss of connectivity
 - E.g., if the bogus AS snoops and redirects
 - may only cause performance degradation
- Or, loss of connectivity is isolated
 - E.g., only for sources in parts of the Internet
- Diagnosing prefix hijacking
 - Analyzing updates from many vantage points
 - Launching traceroute from many vantage points

Sub-Prefix Hijacking

- Originating a more-specific prefix
 - Every AS picks the bogus route for that prefix
 - Traffic follows the longest matching prefix

How to Hijack a Prefix

- The hijacking AS has
 - Router with BGP session(s)
 - Configured to originate the prefix
- Getting access to the router
 - Network operator makes configuration mistake
 - Disgruntled operator launches an attack
 - Outsider breaks in to the router and reconfigures
- Getting other ASes to believe bogus route
 - Neighbor ASes do not discard the bogus route
 - E.g., not doing protective filtering

YouTube Outage on Feb 24, 2008

- YouTube (AS 36561)
 - Web site www.youtube.com
 - Address block 208.65.152.0/22
- Pakistan Telecom (AS 17557)
 - Receives government order to block access to YouTube
 - Starts announcing 208.65.153.0/24 to PCCW (AS 3491)
 - All packets directed to YouTube get dropped on the floor
- Mistakes were made
 - AS 17557: announcing to everyone, not just customers
 - AS 3491: not filtering routes announced by AS 17557
- Lasted 100 minutes for some, 2 hours for others

Timeline (UTC Time)

- 18:47:45
 - First evidence of hijacked /24 route propagating in Asia
- 18:48:00
 - Several big trans-Pacific providers carrying the route
- 18:49:30
 - Bogus route fully propagated
- 20:07:25
 - YouTube starts advertising the /24 to attract traffic back
- 20:08:30
 - Many (but not all) providers are using the valid route

http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml ⁴⁸

Timeline (UTC Time)

- 20:18:43
 - YouTube starts announcing two more-specific /25 routes
- 20:19:37
 - Some more providers start using the /25 routes
- 20:50:59
 - AS 17557 starts prepending ("3491 17557 17557")
- 20:59:39
 - AS 3491 disconnects AS 17557
- 21:00:00
 - All is well, videos of cats flushing toilets are available

http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml 49

Another Example: Spammers

- Spammers sending spam
 - Form a (bidrectional) TCP connection to a mail server
 - Send a bunch of spam e-mail
- But, best not to use your real IP address
 - Relatively easy to trace back to you
- Could hijack someone's address space
 - But you might not receive all the (TCP) return traffic
 - And the legitimate owner of the address might notice
- How to evade detection
 - Hijack unused (i.e., unallocated) address block in BGP
 - Temporarily use the IP addresses to send your spam

Question

• What other attacks are possible with BGP?

Bogus AS Paths

- Remove ASes from the AS path
 - E.g., turn "701 3715 88" into "701 88"
- Motivations
 - Make the AS path look shorter than it is
 - Attract sources that normally try to avoid AS 3715
 - Help AS 88 look like it is closer to the Internet's core
- Who can tell that this AS path is a lie?
 - Maybe AS 88 *does* connect to AS 701 directly

Bogus AS Paths

- Add ASes to the path
 - E.g., turn "701 88" into "701 3715 88"
- Motivations
 - Trigger loop detection in AS 3715
 - Denial-of-service attack on AS 3715
 - Or, blocking unwanted traffic coming from AS 3715!
 - Make your AS look like is has richer connectivity
- Who can tell the AS path is a lie?
 - AS 3715 could, if it could see the route
 - AS 88 could, but would it really care as long as it received data traffic meant for it?

Bogus AS Paths

- Adds AS hop(s) at the end of the path
 - E.g., turns "701 88" into "701 88 3"
- Motivations
 - Evade detection for a bogus route
 - E.g., by adding the legitimate AS to the end
- Hard to tell that the AS path is bogus...
 - Even if other ASes filter based on prefix ownership

Invalid Paths

- AS exports a route it shouldn't
 - AS path is a valid sequence, but violated policy
- Example: customer misconfiguration
 - Exports routes from one provider to another
- Interacts with provider policy
 - Provider prefers customer routes
 - Directing all Internet traffic through customer
- Main defense
 - Filtering routes based on prefixes and AS path

Missing/Inconsistent Routes

- Peers require consistent export
 - Prefix advertised at all peering points
 - Prefix advertised with same AS path length
- Reasons for violating the policy
 - Trick neighbor into "cold potato"
 - Configuration mistake
- Main defense
 - Analyzing BGP updates or data traffic

BGP Security Today

- Applying best common practices
 - Securing the session (authentication, encryption)
 - Filtering routes by prefix and AS path
 - Packet filters to block unexpected control traffic
- This is not good enough
 - Doesn't address fundamental problems
 - Can't tell who owns the IP address block
 - Can't tell if the AS path is bogus or invalid
 - Can't be sure the data packets follow the chosen route

Proposed Enhancements to BGP

S-BGP Secure Version of BGP

- Address attestations
 - Claim the right to originate a prefix
 - Signed and distributed out-of-band
 - Checked through delegation chain from ICANN
- Route attestations
 - Distributed as an attribute in BGP update message
 - Signed by each AS as route traverses the network
 - Signature signs previously attached signatures
- S-BGP can validate
 - AS path indicates the order ASes were traversed
 - No intermediate ASes were added or removed

S-BGP Deployment Challenges

- Complete, accurate registries
 - E.g., of prefix ownership
- Public Key Infrastructure
 - To know the public key for any given AS
- Cryptographic operations
 - E.g., digital signatures on BGP messages
- Need to perform operations quickly
 - To avoid delaying response to routing changes
- Difficulty of incremental deployment
 - Hard to have a "flag day" to deploy S-BGP

Incrementally Deployable Solutions?

- Backwards compatible
 - No changes to router hardware or software
 - No cooperation from other ASes
- Incentives for early adopters
 - Security benefits for ASes that deploy the solution
 - ... and further incentives for others to deploy
- What kind of solutions are possible?
 - Detecting suspicious routes and then filtering or depreferencing them

Detecting Suspicious Routes

- Monitoring BGP update messages
 - Use past history as an implicit registry
- E.g., AS that announces each address block
 Prefix 18.0.0.0/8 usually originated by AS 3
- E.g., AS-level edges and paths
 - Never seen the subpath "7018 88 1785"
- Out-of-band detection mechanism
 - Generate reports and alerts
 - Prefix Hijack Alert System: http://phas.netsec.colostate.edu/

Avoiding Suspicious Routes

- Soft response to suspicious routes
 - Prefer routes that agree with the past
 - Delay adoption of unfamiliar routes when possible
- Why is this good enough?
 - Some attacks will go away on their own
 - Give network operators time to investigate
- How well would it work?
 - If top ~40 largest ASes applied the technique
 - ... most other ASes are protected, too
 - ... since they mostly learn routes from the big ASes

Conclusions

- Border Gateway Protocol is very vulnerable
 - Glue that holds the Internet together
 - Hard for an AS to locally identify bogus routes
 - Attacks can have very serious global consequences
- Proposed solutions/approaches
 - Secure variants of the Border Gateway Protocol
 - Anomaly detection schemes, with automated response