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Topic
• The	DNS	(Domain	Name	System)

– Human-readable	host	names,	and	more
– Part	1:	the	distributed	namespace

www.uw.edu?

Network

128.94.155.135



Names	and	Addresses
• Names are	higher-level	identifiers	for	resources
• Addresses are	lower-level	locators	for	resources

– Multiple	levels,	e.g.	full	name	à email	à IP	address	à Ethernet	address
• Resolution (or	lookup)	is	mapping	a	name	to	an	address
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Directory

Name,	e.g.
“Andy	Tanenbaum,”
or	“flits.cs.vu.nl”	

Address,	e.g.
“Vrijie Universiteit,	Amsterdam”

or	IPv4	“130.30.27.38”
Lookup
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Before	the	DNS	– HOSTS.TXT
• Directory	was	a	file	HOSTS.TXT	
regularly	retrieved	for	all	hosts	from	
a	central	machine	at	the	NIC	
(Network	Information	Center)

• Names	were	initially	flat,	became	
hierarchical	(e.g.,	lcs.mit.edu)	~85	

• Neither	manageable	nor	efficient				
as	the	ARPANET	grew	…
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DNS
• A	naming	service	to	map	between	host	

names	and	their	IP	addresses	(and	more)
– www.uwa.edu.au	à 130.95.128.140

• Goals:
– Easy	to	manage	(esp.	with	multiple	parties)
– Efficient	(good	performance,	few	resources)

• Approach:
– Distributed	directory	based	on	a	hierarchical	

namespace
– Automated	protocol	to	tie	pieces	together



DNS	Namespace
• Hierarchical,	starting	from	“.”	(dot,	typically	omitted)
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TLDs	(Top-Level	Domains)
• Run	by	ICANN	(Internet	Corp.	for	Assigned	Names	and	Numbers)

– Starting	in	‘98;	naming	is	financial,	political,	and	international		J

• 22+	generic	TLDs
– Initially	.com,	.edu ,	.gov.,	.mil,	.org,	.net
– Added	.aero,	.museum,	etc.	from	’01	through	.xxx	in	’11
– Different	TLDs	have	different	usage	policies

• ~250	country	code	TLDs
– Two	letters,	e.g.,	“.au”,	plus	international	characters	since	2010
– Widely	commercialized,	e.g.,	.tv (Tuvalu)
– Many	domain	hacks,	e.g.,	instagr.am	(Armenia),	goo.gl	(Greenland)
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DNS	Zones
• A	zone is	a	contiguous	portion	of	the	namespace
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A	zoneDelegation
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DNS	Zones	(2)
• Zones	are	the	basis	for	distribution

– EDU	Registrar	administers	.edu
– UW	administers	washington.edu
– CS&E	administers	cs.washington.edu

• Each	zone	has	a	nameserver to	
contact	for	information	about	it
– Zone	must	include	contacts	for	
delegations,	e.g.,	.edu knows	
nameserver for	washington.edu



DNS	Resource	Records
• A	zone	is	comprised	of	DNS	resource	records	that	give	
information	for	its	domain	names
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Type Meaning
SOA Start of authority, has key zone parameters
A IPv4 address of a host
AAAA (“quad A”) IPv6 address of a host
CNAME Canonical name for an alias
MX Mail exchanger for the domain
NS Nameserver of domain or delegated subdomain
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DNS	Resource	Records	(2)

IP	addresses	
of	computers

Name	server

Mail	gateways
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DNS	Resolution
• DNS	protocol	lets	a	host	resolve	any	
host	name	(domain)	to	IP	address

• If	unknown,	can	start	with	the	root	
nameserver and	work	down	zones

• Let’s	see	an	example	first	…



DNS	Resolution	(2)
• flits.cs.vu.nl	resolves	robot.cs.washington.edu
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Iterative	vs.	Recursive	Queries
• Recursive	query

– Nameserver completes	resolution		
and	returns	the	final	answer

– E.g.,	flits	à local	nameserver
• Iterative	query

– Nameserver returns	the	answer	or	
who	to	contact	next	for	the	answer

– E.g.,	local	nameserverà all	others



Question

• What	are	the	performance	and	security	
implications	of	the	DNS	scheme?
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Root	Nameservers
• Root	(dot)	is	served	by	13	server	names

– a.root-servers.net	to	m.root-servers.net
– All	nameservers need	root	IP	addresses
– Handled	via	configuration	file	(named.ca)

• There	are	>250	distributed	server	instances
– Highly	reachable,	reliable	service
– Most	servers	are	reached	by	IP	anycast

(Multiple	locations	advertise	same	IP!	Routes	
take	client	to	the	closest	one.)

– Servers	are	IPv4	and	IPv6	reachable



Root	Server	Deployment
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Source:	http://www.root-servers.org.	Snapshot	on	27.02.12.	Does	not	represent	current	deployment.
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Topic
• HTTP,	(HyperText Transfer	Protocol)

– Basis	for	fetching	Web	pages

request
Network



Web	Context	
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HTTP	request

HTTP	response

Page	as	a	set	of	related	
HTTP	transactions
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Web	Protocol	Context
• HTTP	is	a	request/response	protocol	
for	fetching	Web	resources
– Runs	on	TCP,	typically	port	80
– Part	of	browser/server	app

TCP
IP

802.11

browser

HTTP
TCP
IP

802.11

server

HTTP
request

response
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Fetching	a	Web	page	with	HTTP
• Start	with	the	page	URL:

http://en.wikipedia.org/wiki/Vegemite

• Steps:
– Resolve	the	server	to	IP	address	(DNS)
– Set	up	TCP	connection	to	the	server
– Send	HTTP	request	for	the	page
– (Await	HTTP	response	for	the	page)
– Execute	/	fetch	other	Web	resources	/	render
– Clean	up	any	idle	TCP	connections

Protocol Page	on	serverServer

**



Static	vs Dynamic	Web	pages
• Static	web	page	is	a	file	contents,	e.g.,	image
• Dynamic	web	page	is	the	result	of	program	execution

– Javascript on	client,	PHP	on	server,	or	both	
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HTTP	Protocol
• Originally	a	simple	protocol,	with	

many	options	added	over	time
– Text-based	commands,	headers

• Try	it	yourself:
– As	a	“browser”	fetching	a	URL
– Run	“telnet	en.wikipedia.org	80”
– Type	“GET	/wiki/Vegemite	HTTP/1.0”						

to	server	followed	by	a	blank	line
– Server	will	return	HTTP	response	with			

the	page	contents	(or	other	info)
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PLT	(Page	Load	Time)
• PLT	is	the	key	measure	of	web	
performance	
– From	click	until	user	sees	page
– Small	increases	in	PLT	decrease	sales

• PLT	depends	on	many	factors
– Structure	of	page/content
– HTTP	(and	TCP!)	protocol
– Network	RTT	and	bandwidth
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Early	Performance
• HTTP/1.0	used	one	TCP	connection	
to	fetch	one	web	resource
– Made	HTTP	very	easy	to	build
– But	gave	fairly	poor	PLT…
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Early	Performance	(2)
• Many	reasons	why	PLT	is	larger	than	

necessary
– Sequential	request/responses,	even		

when	to	different	servers
– Multiple	TCP	connection	setups	to									

the	same	server
– Multiple	TCP	slow-start	phases

• Network	is	not	used	effectively
– Worse	with	many	small	resources	/	page



• What	performance	optimizations	were	
introduced	by	newer	HTTP	versions?		Which	ones	
are	reliably	used?
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Parallel	Connections
• One	simple	way	to	reduce	PLT

– Browser	runs	multiple	(8,	say)	HTTP			
instances	in	parallel

– Server	is	unchanged;	already	handled	
concurrent	requests	for	many	clients

• How	does	this	help?
– Single	HTTP	wasn’t	using	network	much	…
– So	parallel	connections	aren’t	slowed	much
– Pulls	in	completion	time	of	last	fetch
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Persistent	Connections
• Parallel	connections	compete	with	
each	other	for	network	resources
– 1	parallel	client	≈	8	sequential	clients?
– Exacerbates	network	bursts,	and	loss

• Persistent	connection	alternative
– Make	1	TCP	connection	to	1	server
– Use	it	for	multiple	HTTP	requests



Persistent	Connections	(2)
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One	request	per	connection

Sequential	requests	
per	connection

Pipelined	requests	
per	connection
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Persistent	Connections	(3)
• Widely	used	as	part	of	HTTP/1.1

– Supports	optional	pipelining
– PLT	benefits	depending	on	page	
structure,	but	easy	on	network

• Issues	with	persistent	connections
– How	long	to	keep	TCP	connection?



Polaris:	Faster	Page	Loads	Using	
Finegrained Dependency	Tracking

Slides	courtesy	of	Ravi	Netravali



Web	Performance
• Users	demand	fast	page	loads
• Slow	page	loads	lead	to	lost	revenue	and	low	search	rank	



Modern	Web	Pages
• Waterfall	diagram	shows	progression	of	page	load

34

webpagetest tool	for	http://coursera.org	(Firefox,	5/1	Mbps,	from	VA,	3/1/13)	
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Modern	Web	Pages	(2)

Yikes!
-23	requests
-1	Mb	data
-2.6	secs

webpagetest tool	for	http://coursera.org	(Firefox,	5/1	Mbps,	from	VA,	3/1/13)	



Question

• How	can	we	optimize	this	page	load	process?
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Network	Protocols
• SPDY/HTTP2

– Multiplexes	requests	onto	single	TCP	connection	(one	per	origin)
– Compresses	HTTP	headers
– Mandatory	TLS
– Server	Push:	let’s	servers	proactively	push	objects	to	clients,	

without	explicit	requests	(saves	RTTs)
• QUIC

– UDP	rather	than	TCP
– Reduces	connection	establishment	for	secure	connections
– Multiplexing	without	HOL	blocking
– Pluggable	congestion	control



Caches

• CDNs	in	network	(e.g.,	Akamai)
– Run	in	network	and	shared	across	clients

• Browser	caches
– Caching	rules	specified	in	server-generated	HTTP	headers
– Content	served	only	when	cached	HTTP	headers	exactly	match	
those	in	new	request

• Challenge:	dynamically	generated	content,	personalization



Compression	Proxies

Web	
Server

Compression
Proxy

Client	
Browser

• Images	àWebP format
• Minify	JS/CSS
• GZip all	text	objects

• Compress	objects	in-flight	between	clients	and	servers	àmain	goal	is	to	
reduce	bandwidth	usage!

• Pages	58%	smaller	at	the	median	(most	benefit	from	image	compression)
• Page	load	time	increased	by	6%	at	median

• Does	not	reduce	#	of	RTTs	required	to	load	page
• Indirection	to	contact	proxy	can	increase	magnitude	of	each	RTT

Example:	Google	Flywheel	(NSDI	‘15)



Cloud	Browsers

Long-delay	Link
(e.g.,	cellular	last-mile)

Web	
Servers

Proxy

Bulk	
Response

HTTP	
Request

Short-delay	Link

Client	
Browser

Local
Cache

Headless	browser

• Incur	RTTs	required	to	load	page	over	low-delay,	high	bandwidth	proxy	links
• Examples:	Opera	Mini,	Amazon	Silk,	Parcel,	Cumulus



Page	Load
Client

x.com
web	server

<script	src=‘‘x.com/first.js’’/>	

<script	src=‘‘x.com/second.js’’/>

<link	src=‘‘x.com/style.css’’/>

4
RTTs



Dependency	Graphs

index.html

<script	src=‘‘x.com/first.js’’/>	

<script	src=‘‘x.com/second.js’’/>

<link	src=‘‘x.com/style.css’’/>

first.js
var x	=	5;

second.js
var n	=	document.getElementsByTagName(“link”);
if	(	n	==	0	)	{…}

style.css
p {
color:	red;

}

index.html

first.js

style.css

second.js

Model	page	loads	as	directed	acyclic	graphs
– Page	load	time	=	time	to	completely	resolve	dependency	graph



Dependency	Graphs

Lexical	HTML	Dependencies

index.htm
l

first.js second.js style.css

index.htm
l

first.js

style.css

second.js

True	Dependency	Graph

index.htm
l

first.js

second.js

style.css

HTML	Tag	Order

Missing	Dependencies

3	RTTs

4	RTTs

Conservative	
Assumptions

<script	src=‘‘x.com/first.js’’/>	

<script	src=‘‘x.com/second.js”/>

<link	src=‘‘x.com/style.css’’/>



Outline
• Scout:	tracks	fine-grained	dependencies	between	page’s	objects

• Polaris:	dynamic	client-side	scheduler	written	in	JavaScript	
– Uses	fine-grained	dependencies	to	reduce	page	load	times

– Traditional	dependency	graphs	miss	30%	of	edges

– 34% faster	(1.3	seconds)	on	12	Mbits/s	link	with	100	ms RTT

Client Server



Scout
• Scout	tracks	many	different	dependencies	across	a	page’s	state

3	Types	of	Dependencies

Write/Read
first.js
x	=	6;

second.js
y	=	x	+	5;

Read/Write Write/Write
first.js

x	=	[1,3,5];

third.js
x.push(7);

first.js
alert(“first	message”);

second.js
alert(“second	message”);

second.js
y	=	x.length;



• JS	proxy	objects

var x		=	 {‘prop’:	1}; new	Proxy({‘prop’:	1},	log_handlers);
read	x.prop

Log
Read	x.prop

1
{‘prop’:	1}

x.prop =	9; write	x.prop

var y		=	x.prop;

Write	x.prop

Tracking	Dependencies

• Many	others	described	in	paper
– Global	variables
– Recursive	proxying (e.g.,	x.y.z)
– DOM	(e.g.,	document.getElementById(“foo”))

{‘prop’:	9}	

Proxy



Polaris

Scheduler	Stub

Unmodified	
Web	

Browser Fine-grained	
Dependency	

Graph

HTTP(s) request	(e.g., ‘GET	/’)

HTTP(s) response
Offline	

Dependency	
Tracker
(Scout)Client

Web	Servers

Original	
HTML

<html>
…
</html
>

Scheduler	
Logic

Fine-grained	
Dependency	

Graph



Request	Scheduling	with	Polaris
Always	fetch	objects	on	the	dynamic	critical	path

dynamic	critical	path

static	critical	path

Loaded	object

Unloaded	object



• Gains	increase	with	
increasing	link	rate

• Gains	increase	with	
increasing	RTT

1.3	seconds	saved

Evaluating	Polaris

• Large	error	bars:	
page	structure	
matters	too!

• Baseline	is	Firefox



Dynamically	Generated	Dependency	Graphs

• Scout	can	be	integrated	into	the	pipeline	that	generates	dynamic	content

• JavaScript	nondeterminism (e.g.,	Math.random())

• If	pages	have	random	structures,	Polaris	(nor	any	prior	structure-based	optimizer)	
may	not	reduce	page	load	times
– But	the	page	will	still	load	to	completion	(defaults	to	conservative	approach)!

– Eliminate	it	(e.g.,	deterministic	seed	for	Math.random())
– Track	all	possible	execution	paths	(ensures	correctness,	but	overconstrains page	load)

• Content	may	vary	dynamically,	but	page	structure	is	often	stable	(Klotski,	NSDI	‘15)
– Example:	Washington	Post	uses	fixed	templates	for	articles


