
Computer	Networks

Application	Layer	Protocols

2

Topic
• The	DNS	(Domain	Name	System)

– Human-readable	host	names,	and	more
– Part	1:	the	distributed	namespace

www.uw.edu?

Network

128.94.155.135

Names	and	Addresses
• Names are	higher-level	identifiers	for	resources
• Addresses are	lower-level	locators	for	resources

– Multiple	levels,	e.g.	full	name	à email	à IP	address	à Ethernet	address
• Resolution (or	lookup)	is	mapping	a	name	to	an	address

3

Directory

Name,	e.g.
“Andy	Tanenbaum,”
or	“flits.cs.vu.nl”	

Address,	e.g.
“Vrijie Universiteit,	Amsterdam”

or	IPv4	“130.30.27.38”
Lookup

4

Before	the	DNS	– HOSTS.TXT
• Directory	was	a	file	HOSTS.TXT	
regularly	retrieved	for	all	hosts	from	
a	central	machine	at	the	NIC	
(Network	Information	Center)

• Names	were	initially	flat,	became	
hierarchical	(e.g.,	lcs.mit.edu)	~85	

• Neither	manageable	nor	efficient				
as	the	ARPANET	grew	…

5

DNS
• A	naming	service	to	map	between	host	

names	and	their	IP	addresses	(and	more)
– www.uwa.edu.au	à 130.95.128.140

• Goals:
– Easy	to	manage	(esp.	with	multiple	parties)
– Efficient	(good	performance,	few	resources)

• Approach:
– Distributed	directory	based	on	a	hierarchical	

namespace
– Automated	protocol	to	tie	pieces	together

DNS	Namespace
• Hierarchical,	starting	from	“.”	(dot,	typically	omitted)

6

TLDs	(Top-Level	Domains)
• Run	by	ICANN	(Internet	Corp.	for	Assigned	Names	and	Numbers)

– Starting	in	‘98;	naming	is	financial,	political,	and	international		J

• 22+	generic	TLDs
– Initially	.com,	.edu ,	.gov.,	.mil,	.org,	.net
– Added	.aero,	.museum,	etc.	from	’01	through	.xxx	in	’11
– Different	TLDs	have	different	usage	policies

• ~250	country	code	TLDs
– Two	letters,	e.g.,	“.au”,	plus	international	characters	since	2010
– Widely	commercialized,	e.g.,	.tv (Tuvalu)
– Many	domain	hacks,	e.g.,	instagr.am	(Armenia),	goo.gl	(Greenland)

7

DNS	Zones
• A	zone is	a	contiguous	portion	of	the	namespace

8

A	zoneDelegation

9

DNS	Zones	(2)
• Zones	are	the	basis	for	distribution

– EDU	Registrar	administers	.edu
– UW	administers	washington.edu
– CS&E	administers	cs.washington.edu

• Each	zone	has	a	nameserver to	
contact	for	information	about	it
– Zone	must	include	contacts	for	
delegations,	e.g.,	.edu knows	
nameserver for	washington.edu

DNS	Resource	Records
• A	zone	is	comprised	of	DNS	resource	records	that	give	
information	for	its	domain	names

10

Type Meaning
SOA Start of authority, has key zone parameters
A IPv4 address of a host
AAAA (“quad A”) IPv6 address of a host
CNAME Canonical name for an alias
MX Mail exchanger for the domain
NS Nameserver of domain or delegated subdomain

11

DNS	Resource	Records	(2)

IP	addresses	
of	computers

Name	server

Mail	gateways

12

DNS	Resolution
• DNS	protocol	lets	a	host	resolve	any	
host	name	(domain)	to	IP	address

• If	unknown,	can	start	with	the	root	
nameserver and	work	down	zones

• Let’s	see	an	example	first	…

DNS	Resolution	(2)
• flits.cs.vu.nl	resolves	robot.cs.washington.edu

13

14

Iterative	vs.	Recursive	Queries
• Recursive	query

– Nameserver completes	resolution		
and	returns	the	final	answer

– E.g.,	flits	à local	nameserver
• Iterative	query

– Nameserver returns	the	answer	or	
who	to	contact	next	for	the	answer

– E.g.,	local	nameserverà all	others

Question

• What	are	the	performance	and	security	
implications	of	the	DNS	scheme?

15

16

Root	Nameservers
• Root	(dot)	is	served	by	13	server	names

– a.root-servers.net	to	m.root-servers.net
– All	nameservers need	root	IP	addresses
– Handled	via	configuration	file	(named.ca)

• There	are	>250	distributed	server	instances
– Highly	reachable,	reliable	service
– Most	servers	are	reached	by	IP	anycast

(Multiple	locations	advertise	same	IP!	Routes	
take	client	to	the	closest	one.)

– Servers	are	IPv4	and	IPv6	reachable

Root	Server	Deployment

17

Source:	http://www.root-servers.org.	Snapshot	on	27.02.12.	Does	not	represent	current	deployment.

18

Topic
• HTTP,	(HyperText Transfer	Protocol)

– Basis	for	fetching	Web	pages

request
Network

Web	Context	

19

HTTP	request

HTTP	response

Page	as	a	set	of	related	
HTTP	transactions

20

Web	Protocol	Context
• HTTP	is	a	request/response	protocol	
for	fetching	Web	resources
– Runs	on	TCP,	typically	port	80
– Part	of	browser/server	app

TCP
IP

802.11

browser

HTTP
TCP
IP

802.11

server

HTTP
request

response

21

Fetching	a	Web	page	with	HTTP
• Start	with	the	page	URL:

http://en.wikipedia.org/wiki/Vegemite

• Steps:
– Resolve	the	server	to	IP	address	(DNS)
– Set	up	TCP	connection	to	the	server
– Send	HTTP	request	for	the	page
– (Await	HTTP	response	for	the	page)
– Execute	/	fetch	other	Web	resources	/	render
– Clean	up	any	idle	TCP	connections

Protocol Page	on	serverServer

**

Static	vs Dynamic	Web	pages
• Static	web	page	is	a	file	contents,	e.g.,	image
• Dynamic	web	page	is	the	result	of	program	execution

– Javascript on	client,	PHP	on	server,	or	both	

22

23

HTTP	Protocol
• Originally	a	simple	protocol,	with	

many	options	added	over	time
– Text-based	commands,	headers

• Try	it	yourself:
– As	a	“browser”	fetching	a	URL
– Run	“telnet	en.wikipedia.org	80”
– Type	“GET	/wiki/Vegemite	HTTP/1.0”						

to	server	followed	by	a	blank	line
– Server	will	return	HTTP	response	with			

the	page	contents	(or	other	info)

24

PLT	(Page	Load	Time)
• PLT	is	the	key	measure	of	web	
performance	
– From	click	until	user	sees	page
– Small	increases	in	PLT	decrease	sales

• PLT	depends	on	many	factors
– Structure	of	page/content
– HTTP	(and	TCP!)	protocol
– Network	RTT	and	bandwidth

25

Early	Performance
• HTTP/1.0	used	one	TCP	connection	
to	fetch	one	web	resource
– Made	HTTP	very	easy	to	build
– But	gave	fairly	poor	PLT…

26

Early	Performance	(2)
• Many	reasons	why	PLT	is	larger	than	

necessary
– Sequential	request/responses,	even		

when	to	different	servers
– Multiple	TCP	connection	setups	to									

the	same	server
– Multiple	TCP	slow-start	phases

• Network	is	not	used	effectively
– Worse	with	many	small	resources	/	page

• What	performance	optimizations	were	
introduced	by	newer	HTTP	versions?		Which	ones	
are	reliably	used?

27

28

Parallel	Connections
• One	simple	way	to	reduce	PLT

– Browser	runs	multiple	(8,	say)	HTTP			
instances	in	parallel

– Server	is	unchanged;	already	handled	
concurrent	requests	for	many	clients

• How	does	this	help?
– Single	HTTP	wasn’t	using	network	much	…
– So	parallel	connections	aren’t	slowed	much
– Pulls	in	completion	time	of	last	fetch

29

Persistent	Connections
• Parallel	connections	compete	with	
each	other	for	network	resources
– 1	parallel	client	≈	8	sequential	clients?
– Exacerbates	network	bursts,	and	loss

• Persistent	connection	alternative
– Make	1	TCP	connection	to	1	server
– Use	it	for	multiple	HTTP	requests

Persistent	Connections	(2)

30

One	request	per	connection

Sequential	requests	
per	connection

Pipelined	requests	
per	connection

31

Persistent	Connections	(3)
• Widely	used	as	part	of	HTTP/1.1

– Supports	optional	pipelining
– PLT	benefits	depending	on	page	
structure,	but	easy	on	network

• Issues	with	persistent	connections
– How	long	to	keep	TCP	connection?

Polaris:	Faster	Page	Loads	Using	
Finegrained Dependency	Tracking

Slides	courtesy	of	Ravi	Netravali

Web	Performance
• Users	demand	fast	page	loads
• Slow	page	loads	lead	to	lost	revenue	and	low	search	rank	

Modern	Web	Pages
• Waterfall	diagram	shows	progression	of	page	load

34

webpagetest tool	for	http://coursera.org	(Firefox,	5/1	Mbps,	from	VA,	3/1/13)	

35

Modern	Web	Pages	(2)

Yikes!
-23	requests
-1	Mb	data
-2.6	secs

webpagetest tool	for	http://coursera.org	(Firefox,	5/1	Mbps,	from	VA,	3/1/13)	

Question

• How	can	we	optimize	this	page	load	process?

36

Network	Protocols
• SPDY/HTTP2

– Multiplexes	requests	onto	single	TCP	connection	(one	per	origin)
– Compresses	HTTP	headers
– Mandatory	TLS
– Server	Push:	let’s	servers	proactively	push	objects	to	clients,	

without	explicit	requests	(saves	RTTs)
• QUIC

– UDP	rather	than	TCP
– Reduces	connection	establishment	for	secure	connections
– Multiplexing	without	HOL	blocking
– Pluggable	congestion	control

Caches

• CDNs	in	network	(e.g.,	Akamai)
– Run	in	network	and	shared	across	clients

• Browser	caches
– Caching	rules	specified	in	server-generated	HTTP	headers
– Content	served	only	when	cached	HTTP	headers	exactly	match	
those	in	new	request

• Challenge:	dynamically	generated	content,	personalization

Compression	Proxies

Web	
Server

Compression
Proxy

Client	
Browser

• Images	àWebP format
• Minify	JS/CSS
• GZip all	text	objects

• Compress	objects	in-flight	between	clients	and	servers	àmain	goal	is	to	
reduce	bandwidth	usage!

• Pages	58%	smaller	at	the	median	(most	benefit	from	image	compression)
• Page	load	time	increased	by	6%	at	median

• Does	not	reduce	#	of	RTTs	required	to	load	page
• Indirection	to	contact	proxy	can	increase	magnitude	of	each	RTT

Example:	Google	Flywheel	(NSDI	‘15)

Cloud	Browsers

Long-delay	Link
(e.g.,	cellular	last-mile)

Web	
Servers

Proxy

Bulk	
Response

HTTP	
Request

Short-delay	Link

Client	
Browser

Local
Cache

Headless	browser

• Incur	RTTs	required	to	load	page	over	low-delay,	high	bandwidth	proxy	links
• Examples:	Opera	Mini,	Amazon	Silk,	Parcel,	Cumulus

Page	Load
Client

x.com
web	server

<script	src=‘‘x.com/first.js’’/>	

<script	src=‘‘x.com/second.js’’/>

<link	src=‘‘x.com/style.css’’/>

4
RTTs

Dependency	Graphs

index.html

<script	src=‘‘x.com/first.js’’/>	

<script	src=‘‘x.com/second.js’’/>

<link	src=‘‘x.com/style.css’’/>

first.js
var x	=	5;

second.js
var n	=	document.getElementsByTagName(“link”);
if	(n	==	0)	{…}

style.css
p {
color:	red;

}

index.html

first.js

style.css

second.js

Model	page	loads	as	directed	acyclic	graphs
– Page	load	time	=	time	to	completely	resolve	dependency	graph

Dependency	Graphs

Lexical	HTML	Dependencies

index.htm
l

first.js second.js style.css

index.htm
l

first.js

style.css

second.js

True	Dependency	Graph

index.htm
l

first.js

second.js

style.css

HTML	Tag	Order

Missing	Dependencies

3	RTTs

4	RTTs

Conservative	
Assumptions

<script	src=‘‘x.com/first.js’’/>	

<script	src=‘‘x.com/second.js”/>

<link	src=‘‘x.com/style.css’’/>

Outline
• Scout:	tracks	fine-grained	dependencies	between	page’s	objects

• Polaris:	dynamic	client-side	scheduler	written	in	JavaScript	
– Uses	fine-grained	dependencies	to	reduce	page	load	times

– Traditional	dependency	graphs	miss	30%	of	edges

– 34% faster	(1.3	seconds)	on	12	Mbits/s	link	with	100	ms RTT

Client Server

Scout
• Scout	tracks	many	different	dependencies	across	a	page’s	state

3	Types	of	Dependencies

Write/Read
first.js
x	=	6;

second.js
y	=	x	+	5;

Read/Write Write/Write
first.js

x	=	[1,3,5];

third.js
x.push(7);

first.js
alert(“first	message”);

second.js
alert(“second	message”);

second.js
y	=	x.length;

• JS	proxy	objects

var x		=	 {‘prop’:	1}; new	Proxy({‘prop’:	1},	log_handlers);
read	x.prop

Log
Read	x.prop

1
{‘prop’:	1}

x.prop =	9; write	x.prop

var y		=	x.prop;

Write	x.prop

Tracking	Dependencies

• Many	others	described	in	paper
– Global	variables
– Recursive	proxying (e.g.,	x.y.z)
– DOM	(e.g.,	document.getElementById(“foo”))

{‘prop’:	9}	

Proxy

Polaris

Scheduler	Stub

Unmodified	
Web	

Browser Fine-grained	
Dependency	

Graph

HTTP(s) request	(e.g., ‘GET	/’)

HTTP(s) response
Offline	

Dependency	
Tracker
(Scout)Client

Web	Servers

Original	
HTML

<html>
…
</html
>

Scheduler	
Logic

Fine-grained	
Dependency	

Graph

Request	Scheduling	with	Polaris
Always	fetch	objects	on	the	dynamic	critical	path

dynamic	critical	path

static	critical	path

Loaded	object

Unloaded	object

• Gains	increase	with	
increasing	link	rate

• Gains	increase	with	
increasing	RTT

1.3	seconds	saved

Evaluating	Polaris

• Large	error	bars:	
page	structure	
matters	too!

• Baseline	is	Firefox

Dynamically	Generated	Dependency	Graphs

• Scout	can	be	integrated	into	the	pipeline	that	generates	dynamic	content

• JavaScript	nondeterminism (e.g.,	Math.random())

• If	pages	have	random	structures,	Polaris	(nor	any	prior	structure-based	optimizer)	
may	not	reduce	page	load	times
– But	the	page	will	still	load	to	completion	(defaults	to	conservative	approach)!

– Eliminate	it	(e.g.,	deterministic	seed	for	Math.random())
– Track	all	possible	execution	paths	(ensures	correctness,	but	overconstrains page	load)

• Content	may	vary	dynamically,	but	page	structure	is	often	stable	(Klotski,	NSDI	‘15)
– Example:	Washington	Post	uses	fixed	templates	for	articles

