
Recap
• TCP	connection	setup/teardown
• Sliding	window,	flow	control
• Retransmission	timeouts
• Fairness,	max-min	fairness
• AIMD	achieves	max-min	fairness

81

Feedback	Signals
• Several	possible	signals,	with	different	pros/cons

– We’ll	look	at	classic	TCP	that	uses	packet	loss	as	a	signal

82

Signal Example Protocol Pros / Cons
Packet loss TCP NewReno

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Packet delay Compound TCP

(Windows)
Hear about congestion early

Need to infer congestion
Router

indication
TCPs with Explicit

Congestion Notification
Hear about congestion early

Require router support

TCP	Tahoe/Reno
• Avoid	congestion	collapse	without	

changing	routers	(or	even	receivers)

• Idea	is	to	fix	timeouts	and	introduce	a	
congestion	window (cwnd)	over	the	
sliding	window	to	limit	queues/loss

• TCP	Tahoe/Reno	implements	AIMD	by	
adapting	cwnd using	packet	loss	as	the	
network	feedback	signal

84

TCP	Tahoe/Reno	(2)
• TCP	behaviors	we	will	study:

– ACK clocking
– Adaptive	timeout	(mean	and	variance)
– Slow-start
– Fast	Retransmission
– Fast	Recovery

• Together,	they	implement	AIMD

Sliding	Window	ACK	Clock
• Each	in-order	ACK advances	the	
sliding	window	and	lets	a	new	
segment	enter	the	network
– ACKs “clock”	data	segments

Ack 1		2		3		4		5		6		7		8		9	10

20	19	18	17	16	15	14	13	12	11	Data

Benefit	of	ACK	Clocking
• Consider	what	happens	when	sender	injects	a	burst	of	
segments	into	the	network

86

Fast	link Fast	linkSlow	(bottleneck)	link

Queue

Benefit	of	ACK	Clocking	(2)
• Segments	are	buffered	and	spread	out	on	slow	link

87

Fast	link Fast	linkSlow	(bottleneck)	link

Segments	
“spread	out”

Benefit	of	ACK	Clocking	(3)
• ACKs maintain	the	spread	back	to	the	original	sender

88

Slow	link
Acks maintain	spread

Benefit	of	ACK	Clocking	(4)
• Sender	clocks	new	segments	with	the	spread

– Now	sending	at	the	bottleneck	link	without	queuing!

89

Slow	link

Segments	spread Queue	no	longer	builds

Benefit	of	ACK	Clocking	(4)
• Helps	the	network	run	with	low			

levels	of	loss	and	delay!

• The	network	has	smoothed	out								
the	burst	of	data	segments

• ACK clock	transfers	this	smooth				
timing	back	to	the	sender

• Subsequent	data	segments	are									
not	sent	in	bursts	so	do	not										
queue	up	in	the	network

91

TCP	Startup	Problem
• We	want	to	quickly	near	the	right	
rate,	cwndIDEAL,	but	it	varies	greatly
– Fixed	sliding	window	doesn’t	adapt	
and	is	rough	on	the	network	(loss!)	

– AI	with	small	bursts	adapts	cwnd
gently	to	the	network,	but	might	take	
a	long	time	to	become	efficient

92

Slow-Start	Solution
• Start	by	doubling	cwnd every	RTT

– Exponential	growth	(1,	2,	4,	8,	16,	…)
– Start	slow,	quickly	reach	large	values

AI

Fixed

TimeW
in
do

w
	(c
w
nd

)

Slow-start

93

Slow-Start	Solution	(2)
• Eventually	packet	loss	will	occur	
when	the	network	is	congested
– Loss	timeout	tells	us	cwnd is	too	
large

– Next	time,	switch	to	AI	beforehand
– Slowly	adapt	cwnd near	right	value

Extent	of	subtitles

• Question:	what	is	the	cwnd at	which	packet	loss	
will	happen	during	slow	start?

94

95

Slow-Start	Solution	(3)
• Combined	behavior,	after	first	time

– Most	time	spent	near	right	value

AI

Fixed

Time

Window

ssthresh

cwndC

cwndIDEAL
AI	phase

Slow-start

Slow-Start	(Doubling)	Timeline

96

Increment	cwnd
by	1	packet	for	
each	ACK

Additive	Increase	Timeline

97

Increment	cwnd by	
1	packet	every	cwnd
ACKs	(or	1	RTT)

98

TCP	Tahoe	(Implementation)
• Initial	slow-start	(doubling)	phase

– Start	with	cwnd =	1	(or	small	value)
– cwnd +=	1	packet	per	ACK

• Later	Additive	Increase	phase
– cwnd +=	1/cwnd packets	per	ACK
– Roughly	adds	1	packet	per	RTT

• Switching	threshold	(initially	infinity)
– Switch	to	AI	when	cwnd >	ssthresh
– Set	ssthresh =	cwnd/2	after	loss
– Begin	with	slow-start	after	timeout

Extent	of	subtitles

• How	can	we	improve	on	TCP	Tahoe?

99

100

Timeout	Misfortunes
• Why	do	a	slow-start	after	timeout?

– Instead	of	MD	cwnd (for	AIMD)

• Timeouts	are	sufficiently	long	that	
the	ACK clock	will	have	run	down
– Slow-start	ramps	up	the	ACK clock

• We	need	to	detect	loss	before	a	
timeout	to	get	to	full	AIMD
– Done	in	TCP	Reno

101

Inferring	Loss	from	ACKs
• TCP	uses	a	cumulative	ACK

– Carries	highest	in-order	seq.	number
– Normally	a	steady	advance

• Duplicate	ACKs	give	us	hints	about	
what	data	hasn’t	arrived
– Tell	us	some	new	data	did	arrive,					
but	it	was	not	next	segment

– Thus	the	next	segment	may	be	lost

102

Fast	Retransmit
• Treat	three	duplicate	ACKs	as	a	loss	

– Retransmit	next	expected	segment
– Some	repetition	allows	for	reordering,	
but	still	detects	loss	quickly

Ack 1		2		3		4		5		5		5		5		5		5

Fast	Retransmit	(2)

103

Ack 10
Ack 11
Ack 12
Ack 13

.	.	.	

Ack 13

Ack 13
Ack 13

Data	14.	.	.	
Ack 13

Ack 20
.	

Data	20
Third	duplicate	
ACK,	so	send	14 Retransmission	fills	

in	the	hole	at	14
ACK	jumps	after	
loss	is	repaired

.	

Data	14	was	
lost	earlier,	but	
got	15	to	20

104

Fast	Retransmit	(3)
• It	can	repair	single	segment	loss	

quickly,	typically	before	a	timeout

• However,	we	have	quiet	time	at	the	
sender/receiver	while	waiting	for	the	
ACK	to	jump

• And	we	still	need	to	MD	cwnd …

105

Inferring	Non-Loss	from	ACKs
• Duplicate	ACKs	also	give	us	hints	
about	what	data	has	arrived
– Each	new	duplicate	ACK	means	that	
some	new	segment	has	arrived

– It	will	be	the	segments	after	the	loss
– Thus	advancing	the	sliding	window	
will	not	increase	the	number	of	
segments	stored	in	the	network

106

Fast	Recovery
• First	fast	retransmit,	and	MD	cwnd
• Then	pretend	further	duplicate	
ACKs	are	the	expected	ACKs
– Lets	new	segments	be	sent	for	ACKs	
– Reconcile	views	when	the	ACK	jumps

Ack 1		2		3		4		5		5		5		5		5		5

Fast	Recovery	(2)

107

Ack 12
Ack 13
Ack 13

Ack 13
Ack 13

Data	14Ack 13

Ack 20
.	

Data	20
Third	duplicate	
ACK,	so	send	14

Data	14	was	
lost	earlier,	but	
got	15	to	20

Retransmission	fills	
in	the	hole	at	14

Set	ssthresh,	
cwnd =		cwnd/2	

Data	21
Data	22

More	ACKs	advance	
window;	may	send	

segments	before	jump

Ack 13

Exit	Fast	Recovery

108

Fast	Recovery	(3)
• With	fast	retransmit,	it	repairs	a	single	

segment	loss	quickly	and	keeps	the	ACK
clock	running

• This	allows	us	to	realize	AIMD
– No	timeouts	or	slow-start	after	loss,	just	

continue	with	a	smaller	cwnd

• TCP	Reno	combines	slow-start,	fast	
retransmit	and	fast	recovery
– Multiplicative	Decrease	is	½	

TCP	Reno

109

MD	of	½	,	no	slow-start

ACK	clock	
running

TCP	sawtooth

110

TCP	Reno,	NewReno,	and	SACK
• Reno	can	repair	one	loss	per	RTT

– Multiple	losses	cause	a	timeout

• NewReno further	refines	ACK	heuristics
– Repairs	multiple	losses	without	timeout

• SACK	is	a	better	idea
– Receiver	sends	ACK	ranges	so	sender				

can	retransmit	without	guesswork

Extent	of	subtitles

• Check	out	simulation	at:
– http://guido.appenzeller.net/anims/
– Or:	goo.gl/sqmGWp

111

Computer	Networks

Explicit	Congestion	Notification

113

Congestion	Avoidance	vs.	Control
• Classic	TCP	drives	the	network	into	congestion	and	
then	recovers
– Needs	to	see	loss	to	slow	down

• Would	be	better	to	use	the	network	but	avoid	
congestion	altogether!
– Reduces	loss	and	delay

• Question:	how	can	we	do	this	with	router	support?

Feedback	Signals
• Delay	and	router	signals	can	let	us	avoid	congestion

114

Signal Example Protocol Pros / Cons
Packet loss Classic TCP

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Packet delay Compound TCP

(Windows)
Hear about congestion early

Need to infer congestion
Router

indication
TCPs with Explicit

Congestion Notification
Hear about congestion early

Require router support

ECN	(Explicit	Congestion	Notification)
• Router	detects	the	onset	of	congestion	via	its	queue

– When	congested,	it	marks affected	packets	(IP	header)

115

ECN	(2)
• Marked	packets	arrive	at	receiver;	treated	as	loss

– TCP	receiver	reliably	informs	TCP	sender	of	the	congestion

116

117

ECN	(3)
• Advantages:

– Routers	deliver	clear	signal	to	hosts
– Congestion	is	detected	early,	no	loss
– No	extra	packets	need	to	be	sent

• Disadvantages:
– Routers	and	hosts	must	be	upgraded

TCP	Variants
• There	are	many	different	strains	of	TCP	
including:
– Loss-based	congestion	control:	Reno,	BIC,	Cubic
– Delay-based	congestion	control:	Vegas,	Veno,	
Westwood

– High-speed	congestion	control:	Scalable,	HighSpeed,	
HTCP

Delay	Based	Congestion	Control

119

• Basic	idea:
– Before packet	loss	occurs,	detect	the	early	stage	of	
congestion in	the	routers	between	source	and	
destination	

– Additively	decrease	the	sending	rate	when	incipient	
congestion	is	detected

TCP	Vegas

120

• Expected =	cwnd/BaseRTT
• Actual = cwnd/RTT
• DIFF = (Expected-Actual)

BaseRTT:	the	minimum	of	all	measured	RTT
if	(DIFF*BaseRTT < α)

cwnd = cwnd + 1
else	if	(DIFF*BaseRTT > β)

cwnd = cwnd – 1
else	cwnd = cwnd

RTT:	the	actual	round-trip	time	of	a	tagged	packet

α	and	β	are	constant	values	
that	are	set	by	experimentation

TCP	Vegas

121

• Modified	Slow	Start
– Try	to	find	the	correct	window	size	without	incurring	
a	loss

– exponentially	increasing	its	window	every	other RTT	
and	use	the	other	RTT	to	calculate	DIFF

– As	soon	as	Vegas	detects	queue	buildup	during	slow	
start,	it	transitions	to	congestion	avoidance

Cubic
• Two	key	modifications:

– Cubic	window	growth	with	inflection	point	at	congestion	
window	at	previous	loss

– Safe	exit	for	slow	start	(i.e.,	transition	from	exponential	
growth	to	linear	growth)

Multipath
• Mobile	user

– WiFi and	cellular	at	the	same	time
• High-end	servers

– Multiple	Ethernet	cards
• Data	centers

– Rich	topologies	with	many	paths

• Question:	what	are	the	benefits	of	multipath?

Multipath	TCP	Protocol

124

Working	With	Unmodified	Apps
• Present	the	same	socket	API	and	expectations

– Identified	by	the	“five	tuple”	(IP	address,	port	#,	protocol)

From http://queue.acm.org/detail.cfm?id=2591369

Working	With	Unmodified	Hosts
• Establish	the	TCP	connection	in	the	normal	way

– Create	a	socket	to	a	single	remote	IP	address/port

• And	then	add	more	subflows,	if	possible

A B

Each host tells its Initial
Sequence Number (ISN)

to the other host.

Negotiating	MPTCP	Capability
• How	do	hosts	know	they	both	speak	MPTCP?

– During	the	3-way	SYN/SYN-ACK/ACK	handshake

• If	SYN-ACK	doesn’t	contain	MP_CAPABLE
– Don’t	try	to	add	any	subflows!

Adding	Subflows,	Idealized
• How	to	associate	a	new	subflow with	the	connection?

– Use	a	token	generated	from	original	subflow set-up
• How	to	start	using	the	new	subflow?

– Simply	start	sending	packets	with	new	IP/port	pairs
– …	and	associate	them	with	the	existing	connection

• How	could	two	end-points	learn	about	extra	IP	addresses	
for	establishing	new	subflows?
– Implicitly:	one	end-point	establishes	a	new	subflow,	to	
already-known	address(es)	at	the	other	end-point

Sequence	Numbers
• Challenges	across	subflows

– Out-of-order	packets	due	to	RTT	differences
– Access	networks	that	rewrite	sequence	numbers
– Middleboxes upset	by	discontinuous	TCP	byte	stream
– Need	to	retransmit	lost	packets	on	a	different	subflow

• Two	levels	of	sequence	numbers
– Sequence	numbers	per	subflow
– Sequence	numbers	for	the	entire	connection

• Enables
– Efficient	detection	of	loss	on	each	subflow
– Retransmission	of	lost	packet	on	a	different	subflow

Receive	Buffer	Space
• Each	TCP	connection	has	a	receive	buffer

– Buffer	space	to	store	incoming	data
– …	until	it	is	read	by	the	application

• TCP	flow	control
– Receiver	advertises	the	available	buffer	space
– …	using	the	“receive	window”

• Should	each	subflow have	its	own	receive	window?
– Starvation	of	some	subflows in	a	connection?
– Fairness	relative	to	other	TCP	connections?
– Fragmentation	of	the	available	buffer	space?

• Instead,	use	a	common	receive	window

Fairness	and	Efficiency	in	Multipath	
Congestion	Control

Slides	from	Damon	Wischik

Goal	#1:	Fairness	at	Shared	Bottlenecks

To	be	fair,	Multipath	TCP	should	take	as	much	capacity	as	TCP	at	a	
bottleneck	link,	no	matter	how	many	paths	it	is	using.

A multipath
TCP flow with
two subflows

Regular	TCP

Goal	#2:	Use	Efficient	Paths

Each	flow	has	a	choice	of	a	1-hop	and	a	2-hop	path.	
How	should	split	its	traffic?

12Mb/s

12Mb/s
12Mb/s

Use	Efficient	Paths

If	each	flow	split	its	traffic	1:1	...

8Mb/s

8Mb/s

8Mb/s

12Mb/s

12Mb/
s 12Mb/

s

Use	Efficient	Paths

If	each	flow	split	its	traffic	2:1	...

9Mb/s

9Mb/s

9Mb/s

12Mb/s

12Mb/s

12Mb/s

Use	Efficient	Paths

Better:	Each	connection	on	a	one-hop	path
Each	connection	should	send	all	traffic	on	the	least-
congested	paths

12Mb/s

12Mb/s

12Mb/s

12Mb/
s

12Mb/s
12Mb/s

Use	Efficient	Paths

Better:	Each	connection	on	a	one-hop	path
Each	connection	should	send	all	traffic	on	the	least-congested	
paths
But	keep	some	traffic	on	the	alternate	paths	as	a	probe

12Mb/s

12Mb/s

12Mb/s

12Mb/
s

12Mb/s
12Mb/s

Goal	#3:	Be	Fair	Compared	to	TCP
• Least-congested	paths	may	not	be	best!

– Due	to	differences	in	round-trip	time

• Two	paths
– WiFi:	high	loss,	low	RTT
– Cellular:	low	loss,	high	RTT

• Using	the	least-congested	path
– Choose	the	cellular	path,	due	to	low	loss
– But,	the	RTT	is	high
– So	throughput	is	low!

Be	Fair	Compared	to	TCP
• To	be	fair,	Multipath	TCP	should	give	a	connection	at	least	as	much	throughput	

as	it	would	get	with	a	single-path	TCP	on	the	best	of	its	paths.
– Ensure	incentive	for	deploying	MPTCP

• A	Multipath	TCP	should	take	no	more	capacity	on	any	path	(or	collection	of	
paths)	than	if	it	was	a	single-path	TCP	flow	using	the	best	of	those	paths.
– Do	no	harm!

Achieving	These	Goals
• Regular	TCP

– Maintain	a	congestion	window	w
– On	an	ACK,	increase	by	1/w	(increase	1	per	window)
– On	a	loss,	decrease	by	w/2

• MPTCP
– Maintain	a	congestion	window	per	path	wr
– On	an	ACK	on	path	r,	increase	wr
– On	a	loss	on	path	r,	decrease	by	wr/2

• How	much	to	increase	wr on	an	ACK??
– If	r	is	the	only	path	at	that	bottleneck,	increase	by	1/wr

If	Multiple	Paths	Share	Bottleneck?
• Don’t	take	any	more	bandwidth	on	a	link	than	the	best	of	the	TCP	paths	would

– But,	where	might	the	bottlenecks	be?
– Multiple	paths	might	share	the	same bottleneck

• So,	consider	all	possible	subsets of	the	paths
– Set	R	of	paths
– Subset	S	of	R	that	includes	path	r

• E.g.,	consider	path	3
– Suppose	paths	1,	3,	and	4	share	a	bottleneck
– …	but,	path	2	does	not
– Then,	we	care	about	S	=	{1,3,4}

Achieving	These	Goals
• What	is	the	best of	these	subflows	achieving?

– Path	s	is	achieving	throughput	of	ws/RTTs
– So	best	path	is	getting	maxs(ws/RTTs)

• What	total bandwidth	are	these	subflows	getting?
– Across	all subflows	sharing	that	bottleneck
– Sum	over	s	in	S	of	ws/RTTs

• Consider	the	ratio of	the	two
– Increase	by	less	if	many	subflows	are	sharing

• And	pick	the	results	for	the	set	S	with	min	ratio
– To	account	for	the	most paths	sharing	a	bottleneck

