
Congestion	Control

Arvind	Krishnamurthy

1

Material	based	on	courses	at	Stanford,	Princeton,	and	MIT

Recap
• Intro	to	networks
• Two	interfaces:	socket	&	traceroute
• Protocols	and	layering

2

Best-Effort	Packet-Delivery	
Service

Host-Network	Division	of	Labor
• Packet	switching

– Divide	messages	into	a	sequence	of	packets
– Headers	with	source	and	destination	address

• Best-effort	delivery
– Packets	may	be	lost
– Packets	may	be	corrupted
– Packets	may	be	delivered	out	of	order

host host

network

• What	is	an	alternative	to	packet	switching?

• What	are	the	advantages	of	packet	switching	
over	other	approaches?

5

Host-Network	Interface:	Why	Packets?
• Data	traffic	is	bursty
• Don’t	want	to	waste	bandwidth

– No	traffic	exchanged	during	idle	periods
• Better	to	allow	multiplexing

– Different	transfers	share	access	to	same	links
• Packets	can	be	delivered	by	most	anything

– RFC	1149:	IP	Datagrams	over	Avian	Carriers

Host-Network	Interface:	Why	Best-Effort?
• Never	having	to	say	you’re	sorry…

– Don’t	reserve	bandwidth	and	memory
– Don’t	do	error	detection	&	correction
– Don’t	remember	from	one	packet	to	next

• Easier	to	survive	failures
– Transient	disruptions	are	okay	during	failover

• Can	run	on	nearly	any	link	technology
– Greater	interoperability	and	evolution

Intermediate	Transport	Layer
• But,	applications want	efficient,	accurate	transfer	of	data	in	order,	in	a	

timely	fashion
– Let	the	end	hosts	handle	all	of	that
– (An	example	of	the	“end-to-end	argument”)

• Transport	layer	can	optionally…
– Detect	and	retransmit	lost	packets
– Put	out-of-order	packets	back	in	order
– Detect	and	handle	corrupted	packets
– Avoid	overloading	the	receiver
– <insert	your	requirement	here>

Computer	Networks

Transport	Layer	Overview

Recall
• Transport	layer	provides	end-to-end	connectivity				
across	the	network

10

TCP
IP

802.11

app

IP

802.11

IP

Ethernet

TCP
IP

Ethernet

app

RouterHost Host

Recall	(2)
• Segments	carry	application	data	
across	the	network

• Segments	are	carried	within	
packets	within	frames

802.11 IP TCP App,	e.g.,	HTTP

Segment

Packet
Frame

12

Transport	Layer	Services
• Provide	different	kinds	of	data	
delivery	across	the	network	to	
applications

Unreliable Reliable
Messages Datagrams	(UDP)
Bytestream Streams (TCP)

Comparison	of	Internet	Transports
• TCP	is	full-featured,	UDP	is	a	glorified	packet

13

TCP	(Streams) UDP	(Datagrams)
Connections Datagrams

Bytes	are	delivered once,	
reliably,	and	in	order

Messages may	be	lost,	
reordered,	duplicated

Arbitrary	length	content Limited	message	size
Flow	control	matches	
sender	to	receiver

Can	send	regardless
of	receiver state

Congestion control	matches	
sender	to	network

Can	send	regardless
of	network	state

14

Connection	Establishment
• Both	sender	and	receiver	must	be	ready	

before	we	start	the	transfer	of	data
– Need	to	agree	on	a	set	of	parameters
– e.g.,	the	Maximum	Segment	Size	(MSS)

• This	is	signaling
– It	sets	up	state	at	the	endpoints
– Like	“dialing”	for	a	telephone	call

15

Three-Way	Handshake
• Used	in	TCP;	opens	connection	for	

data	in	both	directions

• Each	side	probes	the	other	with	a	
fresh	Initial	Sequence	Number	(ISN)
– Sends	on	a	SYNchronize segment
– Echo	on	an	ACKnowledge segment

• Chosen	to	be	robust	even	against	
delayed	duplicates

Active	party
(client)

Passive	party
(server)

16

Three-Way	Handshake	(2)
• Three	steps:

– Client	sends	SYN(x)
– Server	replies	with	SYN(y)ACK(x+1)
– Client	replies	with	ACK(y+1)
– SYNs	are	retransmitted	if	lost

• Sequence	and	ack numbers	
carried	on	further	segments

1

2

3

Active	party
(client)

Passive	party
(server)

Time

• What	are	the	implications	of	using	sequence	
numbers?
– What	happens	when	packets	are	delayed?
– What	are	the	security	issues	here?

17

18

Connection	Release
• Orderly	release	by	both	parties	when	

done
– Delivers	all	pending	data	and	“hangs	up”
– Cleans	up	state	in	sender	and	receiver

• Key	problem	is	to	provide	reliability	
while	releasing
– TCP	uses	a	“symmetric”	close	in	which	

both	sides	shutdown	independently

19

TCP	Connection	Release
• Two	steps:

– Active	sends	FIN(x),	ACKs
– Passive	sends	FIN(y),	ACKs
– FINs	are	retransmitted	if	lost

• Each	FIN/ACK	closes	one	
direction	of	data	transfer

Active	party Passive	party

1

2

Computer	Networks

Sliding	Windows

Limitation	of	Stop-and-Wait
• It	allows	only	a	single	message	to	
be	outstanding	from	the	sender:
– Fine	for	LAN	(only	one	frame	fit)
– Not	efficient	for	network	paths	with	
BD	>>	1	packet

Sliding	Window
• Generalization	of	stop-and-wait

– Allows	W	packets	to	be	outstanding
– Can	send	W	packets	per	RTT	(=2D)

– Pipelining improves	performance	
– Need	W=2BD/pkt_size to	fill	network	path

• Bandwidth-delay	product	(BDP)	is	an	useful	
concept

• How	would	a	datacenter	differ	from	a	wide-area	
Internet	in	terms	of	BDP?		
– What	are	the	implications?

23

24

Sliding	Window	Protocol
• Many	variations,	depending	on							

how	buffers,	acknowledgements,				
and	retransmissions	are	handled

• Go-Back-N »
– Simplest	version,	can	be	inefficient

• Selective	Repeat »
– More	complex,	better	performance

Sliding	Window	– Sender	
• Sender	buffers	up	to	W	segments								
until	they	are	acknowledged
– LFS=LAST FRAME SENT,	LAR=LAST ACK REC’D
– Sends	while	LFS	– LAR	≤	W	

.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked Unacked 3 ..Unavailable

Available

seq.	number

Sliding
Window

26

Sliding	Window	– Sender	(2)	
• Transport	accepts	another	segment	
of	data	from	the	Application	...
– Transport	sends	it	(as	LFS–LAR	à 5)

.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked Unacked 3 ..Unavailable

seq.	number

4

27

Sliding	Window	– Sender	(3)	
• Next	higher	ACK	arrives	from	peer…

– Window	advances,	buffer	is	freed	
– LFS–LAR	à 4	(can	send	one	more)	

.. 5 6 7 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked 3 ..Unavail.

Available

seq.	number

..2 Unacked

28

Sliding	Window	– Go-Back-N
• Receiver	keeps	only	a	single	packet	
buffer	for	the		next	segment
– State	variable,	LAS	=	LAST ACK SENT

• On	receive:
– If	seq.	number	is	LAS+1,	accept	and	
pass	it	to	app,	update	LAS,	send	ACK

– Otherwise	discard	(as	out	of	order)

29

Sliding	Window	– Selective	Repeat
• Receiver	passes	data	to	app	in	order,			

and	buffers	out-of-order	segments	to	
reduce	retransmissions

• ACK	conveys	highest	in-order	segment,	
plus	hints	about	out-of-order	segments

• TCP	uses	a	selective	repeat	design;					
we’ll	see	the	details	later

Problem
• Sliding	window	uses	pipelining	to	
keep	the	network	busy
– What	if	the	receiver	is	overloaded?

Streaming	video
Big	Iron Wee	Mobile

Arg …

Sliding	Window	– Receiver	
• Consider	receiver	with	W	buffers

– LAS=LAST ACK SENT,	app	pulls	in-order	
data	from	buffer	with	recv()	call

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too	high

seq.	number

555 5Acceptable

Sliding
Window

Sliding	Window	– Receiver	(2)	
• Suppose	the	next	two	segments	
arrive	but	app	does	not	call	recv()

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too	high

Acceptable

seq.	number

555 5

Sliding	Window	– Receiver	(3)	
• Suppose	the	next	two	segments	
arrive	but	app	does	not	call	recv()
– LAS	rises,	but	we	can’t	slide	window!

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too	high

Acceptable

seq.	number

555 544Acked

Sliding	Window	– Receiver	(4)	
• If	further	segments	arrive	(even	in	
order)	we	can	fill	the	buffer	
– Must	drop	segments	until	app	recvs!

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too	high

Nothing
Acceptable

seq.	number

555 544Acked 44 4Acked

35

Sliding	Window	– Receiver	(5)	
• App	recv()	takes	two	segments

– Window	slides

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too	high

Acceptable

seq.	number

555 5 44 4Acked

Flow	Control
• Avoid	loss	at	receiver	by	telling	
sender	the	available	buffer	space
– WIN=#Acceptable,	not	W	(from	LAS)

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too	high

Acceptable

seq.	number

555 544Acked

Flow	Control	(2)
• Sender	uses	the	lower	of	the	sliding	
window	and	flow	control	window	
(WIN)	as	the	effective	window	size

.. 5 6 7 5 2 3 ..

LAS

WIN=3

Finished 3 ..Too	high

seq.	number

555 544Acked

38

Flow	Control	(3)
• TCP-style	example

– SEQ/ACK sliding	window
– Flow	control	with	WIN

– SEQ +	length	<	ACK+WIN

– 4KB	buffer	at	receiver
– Circular	buffer	of	bytes

Computer	Networks

Retransmission	Timeouts

Retransmissions
• With	sliding	window,	the	strategy	
for	detecting	loss	is	the	timeout
– Set	timer	when	a	segment	is	sent
– Cancel	timer	when	ack is	received
– If	timer	fires,	retransmit data	as	lost

Retransmit!

41

Timeout	Problem
• Timeout	should	be	“just	right”

– Too	long	wastes	network	capacity
– Too	short	leads	to	spurious	resends
– But	what	is	“just	right”?

Example	of	RTTs

42

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200Seconds

Ro
un

d	
Tr
ip
	T
im

e	
(m

s) Variation	due	to	queuing	at	routers,	
changes	in	network	paths,	etc.

BCNàSEAàBCN

Propagation	(+transmission)	delay	≈	2D

Example	of	RTTs

43

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200Seconds

Ro
un

d	
Tr
ip
	T
im

e	
(m

s)

Timer	too	high!

Timer	too	low!

Need	to	adapt	to	the	
network	conditions

44

Adaptive	Timeout
• Keep	smoothed	estimates	of	the	RTT	(1)	

and	variance	in	RTT	(2)
– Update	estimates	with	a	moving	average
1. SRTTN+1 =	0.9*SRTTN +	0.1*RTTN+1
2. SvarN+1 =	0.9*SvarN +	0.1*|RTTN+1– SRTTN+1|

• Set	timeout	to	a	multiple	of	estimates
– To	estimate	the	upper	RTT	in	practice
– TCP	TimeoutN =	SRTTN +	4*SvarN

Example	of	Adaptive	Timeout

45

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200Seconds

RT
T	
(m

s)

SRTT

Svar

Example	of	Adaptive	Timeout	(2)

46

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200Seconds

RT
T	
(m

s)

Timeout	(SRTT	+	4*Svar)
Early

timeout

Computer	Networks

Congestion	Overview

Nature	of	Congestion
• Simplified	view	of	per	port	output	queues

– Typically	FIFO	(First	In	First	Out),	discard	when	full

48

Router

=

(FIFO)	Queue
Queued
Packets

Router

49

Nature	of	Congestion	(2)
• Queues	help	by	absorbing	bursts	
when	input	>	output	rate

• But	if	input	>	output	rate	persistently,	
queue	will	overflow
– This	is	congestion

• Congestion	is	a	function	of	the	traffic	
patterns	– can	occur	even	if	every	
link	have	the	same	capacity

Effects	of	Congestion
• What	happens	to	performance	as	we	increase	the	load?

50

Effects	of	Congestion	(2)
• What	happens	to	performance	as	we	increase	the	load?

51

52

Effects	of	Congestion
• As	offered	load	rises,	congestion	occurs	

as	queues	begin	to	fill:
– Delay	and	loss	rise	sharply	with	more	load
– Throughput	falls	below	load	(due	to	loss)
– Goodput may	fall	below	throughput	(due	

to	spurious	retransmissions)

• None	of	the	above	is	good!
– Want	to	operate	network	just											

before	the	onset	of	congestion

53

Bandwidth	Allocation
• Important	task	for	network	is	to	
allocate	its	capacity	to	senders
– Good	allocation	is	efficient	and	fair

• Efficient means	most	capacity	is	
used	but	there	is	no	congestion

• Fair means	every	sender	gets	a	
reasonable	share	the	network

54

Bandwidth	Allocation	(2)
• Why	is	it	hard?	(Just	split	equally!)

– Number	of	senders	and	their	offered	
load		is	constantly	changing

– Senders	may	lack	capacity	in	different	
parts	of	the	network

– Network	is	distributed;	no	single	party	
has	an	overall	picture	of	its	state

55

Bandwidth	Allocation	(3)
• Key	observation:

– In	an	effective	solution,	Transport	and	
Network	layers	must	work	together

• Network	layer	witnesses	congestion
– Only	it	can	provide	direct	feedback

• Transport	layer	causes	congestion
– Only	it	can	reduce	offered	load

56

Bandwidth	Allocation	(4)
• Solution	context:

– Senders	adapt	concurrently	based	on	
their	own	view	of	the	network

– Design	this	adaption	so	the	network	
usage	as	a	whole	is	efficient	and	fair

– Adaption	is	continuous	since	offered	
loads	continue	to	change	over	time

Computer	Networks

Fairness	of	Bandwidth	
Allocation

58

Efficiency	vs.	Fairness
• Cannot	always	have	both!

– Example	network	with	traffic									
AàB,	BàC	and	AàC	

– How	much	traffic	can	we	carry?

A B C
1 1

59

Efficiency	vs.	Fairness	(2)
• If	we	care	about	fairness:

– Give	equal	bandwidth	to	each	flow
– AàB:	½	unit,	BàC:	½,	and	AàC,	½	
– Total	traffic	carried	is	1	½	units

A B C
1 1

60

Efficiency	vs.	Fairness	(3)
• If	we	care	about	efficiency:

– Maximize	total	traffic	in	network
– AàB:	1	unit,	BàC:	1,	and	AàC,	0	
– Total	traffic	rises	to	2	units!

A B C
1 1

61

The	Slippery	Notion	of	Fairness
• Why	is	“equal	per	flow”	fair	anyway?

– AàC	uses	more	network	resources	
(two	links)	than	AàB	or	BàC

– Host	A	sends	two	flows,	B	sends	one

• Not	productive	to	seek	exact	fairness
– More	important	to	avoid	starvation
– “Equal	per	flow”	is	good	enough

62

Generalizing	“Equal	per	Flow”
• Bottleneck for	a	flow	of	traffic	is		
the	link	that	limits	its	bandwidth
– Where	congestion	occurs	for	the	flow
– For	AàC,	link	A–B	is	the	bottleneck

A B C
1 10

Bottleneck

63

Generalizing	“Equal	per	Flow”	(2)
• Flows	may	have	different	bottlenecks

– For	AàC,	link	A–B	is	the	bottleneck
– For	BàC,	link	B–C	is	the	bottleneck
– Can	no	longer	divide	links	equally	…

A B C
1 10

64

Max-Min	Fairness
• Intuitively,	flows	bottlenecked	on	a	
link	get	an	equal	share	of	that	link

• Max-min	fair	allocation is	one	that:
– Increasing	the	rate	of	one	flow	will	
decrease	the	rate	of	a	smaller	flow

– This	“maximizes	the	minimum”	flow

65

Max-Min	Fairness	(2)
• To	find	it	given	a	network,	imagine	
“pouring	water	into	the	network”
1. Start	with	all	flows	at	rate	0
2. Increase	the	flows	until	there	is	a	

new	bottleneck	in	the	network
3. Hold	fixed	the	rate	of	the	flows	that	

are	bottlenecked
4. Go	to	step	2	for	any	remaining	flows

Max-Min	Example
• Example:	network	with	4	flows,	links	equal	bandwidth

– What	is	the	max-min	fair	allocation?	

66

Max-Min	Example	(2)
• When	rate=1/3,	flows	B,	C,	and	D	bottleneck	R4—R5	

– Fix	B,	C,	and	D,	continue	to	increase	A	

67

Bottleneck

Max-Min	Example	(3)
• When	rate=2/3,	flow	A	bottlenecks	R2—R3.	Done.	

68

Bottleneck

Bottleneck

Max-Min	Example	(4)
• End	with	A=2/3,	B,	C,	D=1/3,	and	R2—R3,	R4—R5	full	

– Other	links	have	extra	capacity	that	can’t	be	used

• ,	linksxample:	network	with	4	flows,	links	equal	
bandwidth
– What	is	the	max-min	fair	allocation?	

69

Adapting	over	Time
• Allocation	changes	as	flows	start	and	stop

70

Time	

Computer	Networks

Additive	Increase	Multiplicative	
Decrease	(AIMD)

72

Bandwidth	Allocation	Models
• Open	loop	versus	closed	loop

– Open:	reserve	bandwidth	before	use
– Closed:	use	feedback	to	adjust	rates

• Host	versus	Network	support
– Who	sets/enforces	allocations?

• Window	versus	Rate	based
– How	is	allocation	expressed?

TCP	is	a	closed	loop,	host-driven,	and	window-based

73

Additive	Increase	Multiplicative	Decrease	
• AIMD	is	a	control	law	hosts	can					
use	to	reach	a	good	allocation
– Hosts	additively	increase	rate	while	
network	is	not	congested

– Hosts	multiplicatively	decrease							
rate	when	congestion	occurs

– Used	by	TCP

• Let’s	explore	the	AIMD	game	…

74

AIMD	Game
• Hosts	1	and	2	share	a	bottleneck

– But	do	not	talk	to	each	other	directly
• Router	provides	binary	feedback

– Tells	hosts	if	network	is	congested

Rest	of
Network

Bottleneck

Router

Host	1

Host	2

1

1
1

AIMD	Game	(2)
• Each	point	is	a	possible	allocation

Host	1

Host	20 1

1

Fair

Efficient

Optimal
Allocation

Congested

AIMD	Game	(3)
• AI	and	MD	move	the	allocation	

Host	1

Host	20 1

1

Fair,	y=x

Efficient,	x+y=1

Optimal
Allocation

Congested

Multiplicative
Decrease

Additive
Increase

AIMD	Game	(4)
• Play	the	game!

Host	1

Host	20 1

1

Fair

Efficient

Congested

A	starting	
point

AIMD	Game	(5)
• Always	converge	to	good	allocation!

Host	1

Host	20 1

1

Fair

Efficient

Congested

A	starting	
point

AIMD	Sawtooth
• Produces	a	“sawtooth”	pattern		
over	time	for	rate	of	each	host
– This	is	the	TCP	sawtooth (later)

Multiplicative
Decrease

Additive
Increase

Time

Host	1	or	
2’s	Rate

• What	are	alternatives	to	AIMD?

• What	are	their	strengths/weaknesses?

80

Feedback	Signals
• Several	possible	signals,	with	different	pros/cons

– We’ll	look	at	classic	TCP	that	uses	packet	loss	as	a	signal

81

Signal Example Protocol Pros / Cons
Packet loss TCP NewReno

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Packet delay Compound TCP

(Windows)
Hear about congestion early

Need to infer congestion
Router

indication
TCPs with Explicit

Congestion Notification
Hear about congestion early

Require router support

TCP	Tahoe/Reno
• Avoid	congestion	collapse	without	

changing	routers	(or	even	receivers)

• Idea	is	to	fix	timeouts	and	introduce	a	
congestion	window (cwnd)	over	the	
sliding	window	to	limit	queues/loss

• TCP	Tahoe/Reno	implements	AIMD	by	
adapting	cwnd using	packet	loss	as	the	
network	feedback	signal

83

TCP	Tahoe/Reno	(2)
• TCP	behaviors	we	will	study:

– ACK clocking
– Adaptive	timeout	(mean	and	variance)
– Slow-start
– Fast	Retransmission
– Fast	Recovery

• Together,	they	implement	AIMD

Sliding	Window	ACK	Clock
• Each	in-order	ACK advances	the	
sliding	window	and	lets	a	new	
segment	enter	the	network
– ACKs “clock”	data	segments

Ack 1		2		3		4		5		6		7		8		9	10

20	19	18	17	16	15	14	13	12	11	Data

Benefit	of	ACK	Clocking
• Consider	what	happens	when	sender	injects	a	burst	of	
segments	into	the	network

85

Fast	link Fast	linkSlow	(bottleneck)	link

Queue

Benefit	of	ACK	Clocking	(2)
• Segments	are	buffered	and	spread	out	on	slow	link

86

Fast	link Fast	linkSlow	(bottleneck)	link

Segments	
“spread	out”

Benefit	of	ACK	Clocking	(3)
• ACKs maintain	the	spread	back	to	the	original	sender

87

Slow	link
Acks maintain	spread

Benefit	of	ACK	Clocking	(4)
• Sender	clocks	new	segments	with	the	spread

– Now	sending	at	the	bottleneck	link	without	queuing!

88

Slow	link

Segments	spread Queue	no	longer	builds

Benefit	of	ACK	Clocking	(4)
• Helps	the	network	run	with	low			

levels	of	loss	and	delay!

• The	network	has	smoothed	out								
the	burst	of	data	segments

• ACK clock	transfers	this	smooth				
timing	back	to	the	sender

• Subsequent	data	segments	are									
not	sent	in	bursts	so	do	not										
queue	up	in	the	network

90

TCP	Startup	Problem
• We	want	to	quickly	near	the	right	
rate,	cwndIDEAL,	but	it	varies	greatly
– Fixed	sliding	window	doesn’t	adapt	
and	is	rough	on	the	network	(loss!)	

– AI	with	small	bursts	adapts	cwnd
gently	to	the	network,	but	might	take	
a	long	time	to	become	efficient

91

Slow-Start	Solution
• Start	by	doubling	cwnd every	RTT

– Exponential	growth	(1,	2,	4,	8,	16,	…)
– Start	slow,	quickly	reach	large	values

AI

Fixed

TimeW
in
do

w
	(c
w
nd

)

Slow-start

92

Slow-Start	Solution	(2)
• Eventually	packet	loss	will	occur	
when	the	network	is	congested
– Loss	timeout	tells	us	cwnd is	too	large
– Next	time,	switch	to	AI	beforehand
– Slowly	adapt	cwnd near	right	value

• In	terms	of	cwnd:
– Expect	loss	for	cwndC ≈	2BD+queue
– Use	ssthresh =	cwndC/2	to	switch	to	AI

93

Slow-Start	Solution	(3)
• Combined	behavior,	after	first	time

– Most	time	spent	near	right	value

AI

Fixed

Time

Window

ssthresh

cwndC

cwndIDEAL
AI	phase

Slow-start

Slow-Start	(Doubling)	Timeline

94

Increment	cwnd
by	1	packet	for	
each	ACK

Additive	Increase	Timeline

95

Increment	cwnd by	
1	packet	every	cwnd
ACKs	(or	1	RTT)

96

TCP	Tahoe	(Implementation)
• Initial	slow-start	(doubling)	phase

– Start	with	cwnd =	1	(or	small	value)
– cwnd +=	1	packet	per	ACK

• Later	Additive	Increase	phase
– cwnd +=	1/cwnd packets	per	ACK
– Roughly	adds	1	packet	per	RTT

• Switching	threshold	(initially	infinity)
– Switch	to	AI	when	cwnd >	ssthresh
– Set	ssthresh =	cwnd/2	after	loss
– Begin	with	slow-start	after	timeout

97

Timeout	Misfortunes
• Why	do	a	slow-start	after	timeout?

– Instead	of	MD	cwnd (for	AIMD)

• Timeouts	are	sufficiently	long	that	
the	ACK clock	will	have	run	down
– Slow-start	ramps	up	the	ACK clock

• We	need	to	detect	loss	before	a	
timeout	to	get	to	full	AIMD
– Done	in	TCP	Reno

98

Inferring	Loss	from	ACKs
• TCP	uses	a	cumulative	ACK

– Carries	highest	in-order	seq.	number
– Normally	a	steady	advance

• Duplicate	ACKs	give	us	hints	about	
what	data	hasn’t	arrived
– Tell	us	some	new	data	did	arrive,					
but	it	was	not	next	segment

– Thus	the	next	segment	may	be	lost

99

Fast	Retransmit
• Treat	three	duplicate	ACKs	as	a	loss	

– Retransmit	next	expected	segment
– Some	repetition	allows	for	reordering,	
but	still	detects	loss	quickly

Ack 1		2		3		4		5		5		5		5		5		5

Fast	Retransmit	(2)

100

Ack 10
Ack 11
Ack 12
Ack 13

.	.	.	

Ack 13

Ack 13
Ack 13

Data	14.	.	.	
Ack 13

Ack 20
.	

Data	20
Third	duplicate	
ACK,	so	send	14 Retransmission	fills	

in	the	hole	at	14
ACK	jumps	after	
loss	is	repaired

.	

Data	14	was	
lost	earlier,	but	
got	15	to	20

101

Fast	Retransmit	(3)
• It	can	repair	single	segment	loss	

quickly,	typically	before	a	timeout

• However,	we	have	quiet	time	at	the	
sender/receiver	while	waiting	for	the	
ACK	to	jump

• And	we	still	need	to	MD	cwnd …

102

Inferring	Non-Loss	from	ACKs
• Duplicate	ACKs	also	give	us	hints	
about	what	data	has	arrived
– Each	new	duplicate	ACK	means	that	
some	new	segment	has	arrived

– It	will	be	the	segments	after	the	loss
– Thus	advancing	the	sliding	window	
will	not	increase	the	number	of	
segments	stored	in	the	network

103

Fast	Recovery
• First	fast	retransmit,	and	MD	cwnd
• Then	pretend	further	duplicate	
ACKs	are	the	expected	ACKs
– Lets	new	segments	be	sent	for	ACKs	
– Reconcile	views	when	the	ACK	jumps

Ack 1		2		3		4		5		5		5		5		5		5

Fast	Recovery	(2)

104

Ack 12
Ack 13
Ack 13

Ack 13
Ack 13

Data	14Ack 13

Ack 20
.	

Data	20
Third	duplicate	
ACK,	so	send	14

Data	14	was	
lost	earlier,	but	
got	15	to	20

Retransmission	fills	
in	the	hole	at	14

Set	ssthresh,	
cwnd =		cwnd/2	

Data	21
Data	22

More	ACKs	advance	
window;	may	send	

segments	before	jump

Ack 13

Exit	Fast	Recovery

105

Fast	Recovery	(3)
• With	fast	retransmit,	it	repairs	a	single	

segment	loss	quickly	and	keeps	the	ACK
clock	running

• This	allows	us	to	realize	AIMD
– No	timeouts	or	slow-start	after	loss,	just	

continue	with	a	smaller	cwnd

• TCP	Reno	combines	slow-start,	fast	
retransmit	and	fast	recovery
– Multiplicative	Decrease	is	½	

TCP	Reno

106

MD	of	½	,	no	slow-start

ACK	clock	
running

TCP	sawtooth

107

TCP	Reno,	NewReno,	and	SACK
• Reno	can	repair	one	loss	per	RTT

– Multiple	losses	cause	a	timeout

• NewReno further	refines	ACK	heuristics
– Repairs	multiple	losses	without	timeout

• SACK	is	a	better	idea
– Receiver	sends	ACK	ranges	so	sender				

can	retransmit	without	guesswork

Computer	Networks

Explicit	Congestion	Notification

109

Congestion	Avoidance	vs.	Control
• Classic	TCP	drives	the	network	into	
congestion	and	then	recovers
– Needs	to	see	loss	to	slow	down

• Would	be	better	to	use	the	network	
but	avoid	congestion	altogether!
– Reduces	loss	and	delay

• But	how	can	we	do	this?

Feedback	Signals
• Delay	and	router	signals	can	let	us	avoid	congestion

110

Signal Example Protocol Pros / Cons
Packet loss Classic TCP

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Packet delay Compound TCP

(Windows)
Hear about congestion early

Need to infer congestion
Router

indication
TCPs with Explicit

Congestion Notification
Hear about congestion early

Require router support

ECN	(Explicit	Congestion	Notification)
• Router	detects	the	onset	of	congestion	via	its	queue

– When	congested,	it	marks affected	packets	(IP	header)

111

ECN	(2)
• Marked	packets	arrive	at	receiver;	treated	as	loss

– TCP	receiver	reliably	informs	TCP	sender	of	the	congestion

112

113

ECN	(3)
• Advantages:

– Routers	deliver	clear	signal	to	hosts
– Congestion	is	detected	early,	no	loss
– No	extra	packets	need	to	be	sent

• Disadvantages:
– Routers	and	hosts	must	be	upgraded

