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P561: Network Systems 
Week 7: Finding content 

    Multicast 

Tom Anderson 
Ratul Mahajan 

TA: Colin Dixon 

Today 

Finding content and services 
•  Infrastructure hosted (DNS) 
•  Peer-to-peer hosted (Napster, Gnutella, DHTs) 

Multicast: one to many content dissemination 
•  Infrastructure (IP Multicast) 
•  Peer-to-peer (End-system Multicast, Scribe) 
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Names and addresses 

Names: identifiers for objects/services (high level) 
Addresses: locators for objects/services (low level) 

Resolution: name  address 

But addresses are really lower-level names 
−  e.g., NAT translation from a virtual IP address to physical IP, 

and IP address to MAC address 

Ratul Mahajan 
Microsoft Research 
Redmond 

33¢ 

name 

address 
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Naming in systems 
Ubiquitous 

−  Files in filesystem, processes in OS, pages on the Web 

Decouple identifier for object/service from location 
−  Hostnames provide a level of indirection for IP 

addresses 

Naming greatly impacts system capabilities and 
performance 
−  Ethernet addresses are a flat 48 bits 

•  flat  any address anywhere but large forwarding tables 
−  IP addresses are hierarchical 32/128 bits 

•  hierarchy  smaller routing tables but constrained locations 
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Key considerations 

For the namespace 
•  Structure  

For the resolution mechanism 
•  Scalability 
•  Efficiency 
•  Expressiveness 
•  Robustness  
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Internet hostnames 
Human-readable identifiers for end-systems 
Based on an administrative hierarchy 

−  E.g., june.cs.washington.edu, www.yahoo.com 
−  You cannot name your computer foo.yahoo.com 

In contrast, (public) IP addresses are a fixed-length 
binary encoding based on network position 
−  128.95.1.4 is june’s IP address, 209.131.36.158 is one of 

www.yahoo.com’s IP addresses 
−  Yahoo cannot pick any address it wishes 
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Original hostname system 
When the Internet was really young … 
Flat namespace 

−  Simple (host, address) pairs 
Centralized management 

−  Updates via a single master file called HOSTS.TXT 
−  Manually coordinated by the Network Information 

Center (NIC) 
Resolution process 

−  Look up hostname in the HOSTS.TXT file 
−  Works even today: (c:/WINDOWS/system32/

drivers)/etc/hosts 
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Problems with the original system 
Coordination 

−  Between all users to avoid conflicts 
−  E.g., everyone likes a computer named Mars 

Inconsistencies 
−  Between updated and old versions of file 

Reliability 
−  Single point of failure 

Performance 
−  Competition for centralized resources 
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Domain Name System (DNS) 
Developed by Mockapetris and Dunlap, mid-80’s 
Namespace is hierarchical 

−  Allows much better scaling of data structures 
−  e.g., root  edu  washington  cs  june 

Namespace is distributed 
−  Decentralized administration and access 
−  e.g., june managed by cs.washington.edu 

Resolution is by query/response 
−  With replicated servers for redundancy 
−  With heavy use of caching for performance 
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DNS Hierarchy 

edu 

cs 

uw 

au org mil com 

ee •  “dot” is the root of the hierarchy 
•  Top levels now controlled by ICANN 
•  Lower level control is delegated 
•  Usage governed by conventions 
•  FQDN = Fully Qualified Domain Name 

yahoo 
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june 

www 

Name space delegation  

Each organization controls its own name space 
(“zone” = subtree of global tree) 
−  each organization has its own nameservers 

•  replicated for availability 

−  nameservers translate names within their organization 
•  client lookup proceeds step-by-step 

−  example: washington.edu 
•  contains IP addresses for all its hosts (www.washington.edu) 
•  contains pointer to its subdomains (cs.washington.edu) 
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DNS resolution 

Reactive 
Queries can be recursive or iterative 
Uses UDP (port 53) 

Root 
name 
server 

Princeton 
name 
server 

CS 
name 
server 

Local 
name 
server 

Client 

1 
cicada.cs.princeton.edu 

192.12.69.60 
8 

cicada.cs.princeton.edu 

princeton.edu, 128.196.128.233 

cicada.cs.princeton.edu 

cicada.cs.princeton.edu, 

192.12.69.60 

cicada.cs.princeton.edu 

cs.princeton.edu, 192.12.69.5 

2 

3 

4 

5 

6 

7 
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Hierarchy of nameservers 

Root 
name server 

Princeton 
name server 

Cisco 
name server 

CS 
name server 

EE 
name server 

… 

… 
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DNS performance: caching 

DNS query results are cached at local proxy 
−  quick response for repeated translations 
−  lookups are the rare case 
−  vastly reduces load at the servers 
−  what if something new lands on slashdot? 

Local 
name 
server 

Client 

1 
cicada.cs.princeton.edu 

192.12.69.60 
2 (if cicada is cached) 

CS 
name 
server 

cicada.cs.princeton.edu 

cicada.cs.princeton.edu, 

192.12.69.60 

2 (if cs is cached) 

3 

4 (if cs is cached) 
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DNS cache consistency 
How do we keep cached copies up to date? 

−  DNS entries are modified from time to time 
•  to change name  IP address mappings 
•  to add/delete names 

Cache entries invalidated periodically 
−  each DNS entry has time-to-live (TTL) field: how long 

can the local proxy can keep a copy 
−  if entry accessed after the timeout, get a fresh copy 

from the server 
−  how do you pick the TTL? 
−  how long after a change are all the copies updated? 
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DNS cache effectiveness 
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Traffic seen on UW’s access link in 1999 

Negative caching in DNS 

Pro: traffic reduction 
•  Misspellings, old or non-existent names 
•  “Helpful” client features 

Con: what if the host appears? 

Status: 
•  Optional in original design 
•  Mandatory since 1998 
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DNS traffic in the wide-area 

Study % of DNS 
packets 

Danzig, 1990 14% 

Danzig, 1992 8% 

Frazer, 1995 5% 

Thomson, 1997 3% 
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DNS bootstrapping 

Need to know IP addresses of root servers before 
we can make any queries 

Addresses for 13 root servers ([a-m].root-
servers.net) handled via initial configuration 

•  Cannot have more than 13 root server IP addresses 
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DNS root servers 
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123 servers as of Dec 2006 

DNS availability 

What happens if DNS service is not working? 
DNS servers are replicated 

−  name service available if at least one replica is 
working 

−  queries load balanced between replicas 

name 
server 

cicada.cs.princeton.edu 

princeton.edu, 128.196.128.233 

2 

3 

name 
server 

name 
server 
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Building on the DNS 

Email: ratul@microsoft.com 
−  DNS record for ratul in the domain microsoft.com, 

specifying where to deliver the email 

Uniform Resource Locator (URL) names for Web 
pages 
−  e.g., www.cs.washington.edu/homes/ratul 
−  Use domain name to identify a Web server 
−  Use “/” separated string for file name (or script) on 

the server 
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DNS evolution 
Static host to IP mapping 

−  What about mobility (Mobile IP) and dynamic address 
assignment (DHCP)? 

−  Dynamic DNS 
Location-insensitive queries 

•  Many servers are geographically replicated 
•  E.g., Yahoo.com doesn’t refer to a single machine or even a single 

location; want closest server  
•  Next week 

Security (DNSSec) 
Internationalization 
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DNS properties (summary) 

Nature of the namespace Hierarchical; flat at each level 

Scalability of resolution High 

Efficiency of resolution Moderate 

Expressiveness of queries Exact matches 

Robustness to failures Moderate  
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Peer-to-peer content sharing 

Want to share content among large number of 
users; each serves a subset of files 
−  need to locate which user has which files 

Question: Would DNS be a good solution for this? 
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Napster (directory-based) 

Centralized directory of all users offering each file 
Users register their files 
Users make requests to Napster central 
Napster returns list of users hosting requested file 
Direct user-to-user communication to download 

files 
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Naptser illustration 

1. I h
ave “Foo Fighters” 

2. Does anyone have 

“Foo Fighters”? 
3. Bob has it 

4. Share “Foo Fighters”? 

5. There you go 
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Naptser vs. DNS 

Napster DNS  

Nature of the namespace Multi-dimensional Hierarchical; flat 
at each level 

Scalability Moderate High 

Efficiency of resolution High Moderate 

Expressiveness of queries High Exact matches 

Robustness to failures Low Moderate  
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Gnutella (crawl-based) 
Can we locate files without a centralized directory? 

−  for legal and privacy reasons 

Gnutella 
−  organize users into ad hoc graph 
−  flood query to all users, in breadth first search 

•  use hop count to control depth 

−  if found, server replies back through path of servers 
−  client makes direct connection to server to get file 
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Gnutella illustration 

30 
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Gnutella vs. DNS 

Content is not indexed in Gnutella 
Trade-off between exhaustiveness and efficiency 

Gnutella DNS 

Nature of the namespace Multi-dimensional  Hierarchical; 
flat at each level 

Scalability Low High 

Efficiency of resolution Low Moderate 

Expressiveness of queries High Exact matches 

Robustness to failures Moderate Moderate  
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Distributed hash tables (DHTs) 

Can we locate files without an exhaustive search? 
−  want to scale to thousands of servers 

DHTs (Pastry, Chord, etc.) 
−  Map servers and objects into an coordinate space 
−  Objects/info stored based on its key 
−  Organize servers into a predefined topology (e.g., a 

ring or a k-dimensional hypercube) 
−  Route over this topology to find objects 

We’ll talk about Pastry (with some slides stolen from Peter 
Druschel) 
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Pastry: Id space 

objId 

128 bit circular id space 

nodeIds (uniform random) 

objIds (uniform random) 

Invariant: node with 
numerically closest nodeId 
maintains object 

nodeIds 

O 2128-1 
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Pastry: Object insertion/lookup  

X 

Route(X) 

Msg with key X is 
routed to live node 
with nodeId 
closest to X  

Problem: 
complete routing 
table not feasible 

O 2128-1 
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Pastry: Routing 

Tradeoff 

O(log N) routing table size 
O(log N) message forwarding steps 

35 

Pastry: Routing table (# 65a1fcx) 
Row 0 

Row 1 

Row 2 

Row 3 

36 
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Pastry: Routing  

Properties 
log16 N steps  
O(log N) state 

d46a1c 

Route(d46a1c) 

d462ba 

d4213f 

d13da3 

65a1fc 

d467c4 
d471f1 
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Pastry: Leaf sets 

Each node maintains IP addresses of  the 
nodes with the L/2 numerically closest 
larger and smaller nodeIds, respectively.  
•  routing efficiency/robustness  
•  fault detection (keep-alive) 
•  application-specific local coordination 
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Pastry: Routing procedure 
if (destination is within range of our leaf set)  

 forward to numerically closest member 
else 

 let l = length of shared prefix  
 let d = value of l-th digit in D’s address 
 if (Rl

d  exists)  
  forward to Rl

d 

 else  
  forward to a known node that  
  (a) shares at least as long a prefix 
  (b) is numerically closer than this node 
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Pastry: Performance 

Integrity of overlay/ message delivery: 
guaranteed unless L/2 simultaneous failures of 

nodes with adjacent nodeIds 

Number of routing hops: 
No failures: < log16 N   expected, 128/4 + 1 max 
During failure recovery: 

−  O(N) worst case, average case much better  
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Pastry: Node addition  

d46a1c 

Route(d46a1c) 

d462ba 

d4213f 

d13da3 

65a1fc 

d467c4 
d471f1 

New node: d46a1c 
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Node departure (failure) 

Leaf set members exchange keep-alive messages 

Leaf set repair (eager): request set from farthest 
live node in set 

Routing table repair (lazy): get table from peers in 
the same row, then higher rows 

42 
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Pastry: Average # of hops 

L=16, 100k random queries 
43 

Pastry: # of hops (100k nodes) 

L=16, 100k random queries 
44 

45 

d462ba 

d4213f 

d467c4 

65a1fc d13da3 

A potential route to d467c4 from 65a1fc Pastry: Proximity routing 
Assumption: scalar proximity metric,  e.g. ping delay, # 

IP hops; a node can probe distance to any other node 

Proximity invariant: Each routing table entry refers to a 
node close to the local node (in the proximity space), 
among all nodes with the appropriate nodeId prefix. 

Locality-related route qualities: Distance traveled, 
likelihood of locating the nearest replica 
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Pastry: Routes in proximity space  

d46a1c 

Route(d46a1c) 

d462ba 

d4213f 

d13da3 

65a1fc 

d467c4 
d471f1 

NodeId space 

d467c4 

65a1fc 
d13da3 

d4213f 

d462ba 

Proximity space 
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Pastry: Distance traveled 

L=16, 100k random queries, Euclidean proximity space 
48 
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Pastry: Locality properties 

1)  Expected distance traveled by a message in the 
proximity space is within a small constant of the 
minimum 

2)  Routes of messages sent by nearby nodes with same 
keys converge at a node near the source  nodes 

3)  Among k nodes with nodeIds closest to the key, 
message likely to reach the node closest to the source 
node first 
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DHTs vs. DNS 

Gnutella DNS 

Nature of the namespace Flat Hierarchical; 
flat at each level 

Scalability High High 

Efficiency of resolution Moderate Moderate 

Expressiveness of queries Exact matches Exact matches 

Robustness to failures High Moderate  
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DHTs are increasingly pervasive in Instant messengers, 
p2p content sharing, storage systems, within data centers 

DNS using DHT? 

Potential benefits:  
•  Robustness to failures 
•  Load distribution 
•  Performance 

Challenges: 
•  Administrative control 

•  Performance, robustness, load 
•  DNS tricks 

Average-case improvement vs. self-case 
deterioration 
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Churn 

Node departure and arrivals 
•  A key challenge to correctness and performance of 

peer-to-peer systems 

Study                  System studied                Session Time 

Saroiu, 2002         Gnutella, Napster              50%  <= 60 min. 
Chu, 2002             Gnutella, Napster              31%  <= 10 min. 
Sen, 2002              FastTrack                            50%  <=  1 min. 
Bhagwan, 2003    Overnet                                50%  <= 60 min. 
Gummadi, 2003   Kazaa                                   50%  <=  2.4 min. 

Observed session times in various peer-to-peer systems. 
(Compiled by Rhea et al., 2004) 
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Dealing with churn 

Needs careful design; no silver bullet 

Rate of recovery >> rate of failures 

Robustness to imperfect information 

Adapt to heterogeneity 
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Multicast 
Many applications require sending messages to a 

group of receivers 
•  Broadcasting events, telecollaboration, software 

updates, popular shows 

How do we do this efficiently? 
•  Could send to receivers individually but that is not 

very efficient 

54 
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Multicast efficiency 

Send data only once along a link shared by paths to 
multiple receivers 

R 

R 
R 

R 

Sender 

55 

Two options for  
implementing multicast 

IP multicast 
−  special IP addresses to represent groups of receivers 
−  receivers subscribe to specific channels 
−  modify routers to support multicast sends 

Overlay network 
−  PC routers, forward multicast traffic by tunneling over 

Internet 
−  Works on existing Internet, with no router 

modifications 
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IP multicast 

How to distribute packets across thousands of 
LANs? 
−  Each router responsible for its attached LAN 
−  Hosts declare interest to their routers 

Reduces to: 
−  How do we forward packets to all interested routers? 

(DVMRP, M-OSPF, MBone) 
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Why not simple flooding? 

If haven’t seen a packet before, forward it on every 
link but incoming 
−  routers need to remember each pkt! 
−  every router gets every packet! 

R 

R 

R 

Sender 
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Distance vector multicast 

Intuition: unicast routing tables form inverse tree 
from senders to destination 
−  why not use backwards for multicast? 
−  Various refinements to eliminate useless transfers 

Implemented in DVMRP (Distance Vector 
Multicast Routing Protocol)  

59 

Reverse Path Flooding (RPF) 

Router forwards packet from S iff packet came via 
shortest path back to S 

R 

R 

R 

S 

s 

s 
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Redundant sends 

RPF will forward packet to router, even if it will 
discard 
−  each router gets pkt on all of its input links! 

Each router connected to LAN will broadcast 
packet 

Ethernet 

61 

Reverse Path Broadcast (RPB) 

With distance vector, neighbors exchange routing 
tables 

Only send to neighbor if on its shortest path back 
to source 

Only send on LAN if have shortest path back to 
source 
−  break ties arbitrarily 
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Truncated RPB 

End hosts tell routers if interested 
Routers forward on LAN iff there are receivers 

Routers tell their parents if no active children 
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The state of IP multicast 

Available in isolated pockets of the network 

But absent at a global scale: 
•  Technical issues: 

•  Scalable? reliability? congestion control? 

•  For ISPs: 
•  Profitable? managable? 

64 

Overlay multicast 

Can we efficiently implement multicast 
functionality on top of IP unicast? 

One answer: Narada (with some slides stolen from ESM 
folks) 
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   Naïve unicast 

66 

          End Systems 
Routers 

Gatech 

CMU 

Stanford 

Berkeley 
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An alternative: end-system multicast 

Stanford 

CMU 

Stan1 

Stan2 

Berk2 

Overlay  Tree 

Gatech 

Berk1 

Berkeley 

Gatech Stan1 

Stan2 

Berk1 

Berk2 

CMU 

End-system vs. IP multicast 

Benefits: 
•  Scalable 

•  No state at routers 
•  Hosts maintain state only for groups they are part of 

•  Easier to deploy (no need for ISPs’ consent) 
•  Reuse unicast reliability and congestion control 

Challenges: 
•  Performance 
•  Efficient use of the network  

68 
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Berk2 Berk1 

CMU 

  Gatech 

Stan1 Stan2 

Narada design 

CMU 

Berk2   Gatech Berk1 

Stan1 Stan2 

Step 1 

Spanning tree: source rooted tree built over the mesh 
•  Constructed using well known routing algorithms 
•  Small delay from source to receivers 

Mesh: Rich overlay graph that includes all  group members 
•  Members have low degrees 
•  Small delay between any pair of members along the mesh 

Step 2 

Narada components 

Mesh optimization 
−  Distributed heuristics for ensuring shortest path delay 

between members  along the mesh is small 

Mesh management 
−  Ensures mesh remains connected in face of 

membership changes 

Spanning tree construction: 
−  DVMRP 

70 
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Mesh optimization heuristics 

Continuously evaluate adding new links and 
dropping existing links such that 

•  Links that reduce mesh delay are added 
•  Unhelpful links are deleted, without partition 
•  Stability 

Berk1 

Stan2 
CMU 

  Gatech1 

Stan1 

Gatech2 

A poor mesh 

Link addition heuristic 

Members periodically probe non-neighbors 
New Link added if Utility Gain > Add threshold 

72 

Delay improves to Stan1, CMU  
but marginally. 
Do not add link! 

Delay improves to CMU, Gatech1  
and significantly.   
Add link! 

Berk1 

Stan2 
CMU 

  Gatech1 

Stan1 

Gatech2 

Probe 

Berk1 

Stan2 
CMU 

  Gatech1 

Stan1 

Gatech2 
Probe 
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Link deletion heuristic 

Members  periodically monitor existing links 
Link dropped if Cost of dropping < Drop threshold 
Cost computation and drop threshold is chosen 

with stability and partitions in mind 

Used by Berk1 to reach only Gatech2 and vice versa. 
                           Drop!! 

  Gatech1 Berk1 

Stan2 
CMU 

Stan1 

Gatech2 
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Narada delay (performance) 

74 

Internet Routing  
can be sub-optimal 

(ms) 

(m
s)

 

2x unicast delay 1x unicast delay 

Internet 
experiments 

Narada stress (efficiency) 
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Naive Unicast  

IP Multicast 

Narada : 14-fold reduction in worst-case stress !  

Waxman topology: 1024 routers, 3145 
links 
Group Size : 128   
Fanout Range : <3-6> for all members 

Scalable overlay multicast 

Can we design an overlay multicast system that 
scales to very large groups? 

One answer: Scribe (with some slides stolen from Kasper Egdø 
and Morten Bjerre) 
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Scribe 

Built on top of a DHT (Pastry) 

Key ideas:  
•  Treat the multicast group name as a key into the DHT  
•  Publish info to the key owner, called the Rendezvous 

point 
•  Paths from subscribers to the RP form the multicast 

tree 
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Creating a group (1100) 

1100 1101 

1111 

1001 

0111 

0100 

Rendezvous Point 
(Pastry root) Group Creator 

creates Group 1100 

GroupID 1100 

ACL xxx 

Parent Null 
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Joining a group 

GroupID 1100 
Parent 1100 
Child 1001 

GroupID 1100 
Parent 1001 
Child 0100 

GroupID 1100 
Parent 1101 
Child 0100 

Child 0111 

1100 1101 

1111 

1001 

0111 

0100 

Rendezvous Point 
(Pastry root) 

Joining member 

Join request 
GroupID 1100 

Parent 1001 
Child 0111 

GroupID 1100 
ACL xxx 

Parent Null 
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Multicasting 

1100 1101 

1111 

1001 

0111 

0100 

Rendezvous Point 
(Pastry root) 

Message 

Multicast down tree 
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Repairing failures 

GroupID 1100 
Parent 1100 
Child 1001 

GroupID 1100 
Parent 1001 
Child 0100 

GroupID 1100 
Parent 1111 
Child 0100 

Child 0111 

1100 1101 

1111 

1001 

0111 

0100 

Rendezvous Point 
(Pastry root) Failed Node 

Join request 
Join request 

GroupID 1100 
Parent 1001 
Child 0111 

GroupID 1100 
ACL Xxx 

Parent Null 

Child 1111 
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Next week 

Building scalable services 
•  CDNs,  BitTorrent, caching, replication, load 

balancing, prefetching, … 
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