
11/10/08

1

P561: Network Systems
Week 7: Finding content

 Multicast

Tom Anderson
Ratul Mahajan

TA: Colin Dixon

Today

Finding content and services
•  Infrastructure hosted (DNS)
•  Peer-to-peer hosted (Napster, Gnutella, DHTs)

Multicast: one to many content dissemination
•  Infrastructure (IP Multicast)
•  Peer-to-peer (End-system Multicast, Scribe)

2

Names and addresses

Names: identifiers for objects/services (high level)
Addresses: locators for objects/services (low level)

Resolution: name  address

But addresses are really lower-level names
−  e.g., NAT translation from a virtual IP address to physical IP,

and IP address to MAC address

Ratul Mahajan
Microsoft Research
Redmond

33¢

name

address

3

Naming in systems
Ubiquitous

−  Files in filesystem, processes in OS, pages on the Web

Decouple identifier for object/service from location
−  Hostnames provide a level of indirection for IP

addresses

Naming greatly impacts system capabilities and
performance
−  Ethernet addresses are a flat 48 bits

•  flat  any address anywhere but large forwarding tables
−  IP addresses are hierarchical 32/128 bits

•  hierarchy  smaller routing tables but constrained locations

4

Key considerations

For the namespace
•  Structure

For the resolution mechanism
•  Scalability
•  Efficiency
•  Expressiveness
•  Robustness

5

Internet hostnames
Human-readable identifiers for end-systems
Based on an administrative hierarchy

−  E.g., june.cs.washington.edu, www.yahoo.com
−  You cannot name your computer foo.yahoo.com

In contrast, (public) IP addresses are a fixed-length
binary encoding based on network position
−  128.95.1.4 is june’s IP address, 209.131.36.158 is one of

www.yahoo.com’s IP addresses
−  Yahoo cannot pick any address it wishes

6

11/10/08

2

Original hostname system
When the Internet was really young …
Flat namespace

−  Simple (host, address) pairs
Centralized management

−  Updates via a single master file called HOSTS.TXT
−  Manually coordinated by the Network Information

Center (NIC)
Resolution process

−  Look up hostname in the HOSTS.TXT file
−  Works even today: (c:/WINDOWS/system32/

drivers)/etc/hosts

7

Problems with the original system
Coordination

−  Between all users to avoid conflicts
−  E.g., everyone likes a computer named Mars

Inconsistencies
−  Between updated and old versions of file

Reliability
−  Single point of failure

Performance
−  Competition for centralized resources

8

Domain Name System (DNS)
Developed by Mockapetris and Dunlap, mid-80’s
Namespace is hierarchical

−  Allows much better scaling of data structures
−  e.g., root  edu  washington  cs  june

Namespace is distributed
−  Decentralized administration and access
−  e.g., june managed by cs.washington.edu

Resolution is by query/response
−  With replicated servers for redundancy
−  With heavy use of caching for performance

9

DNS Hierarchy

edu

cs

uw

au org mil com

ee •  “dot” is the root of the hierarchy
•  Top levels now controlled by ICANN
•  Lower level control is delegated
•  Usage governed by conventions
•  FQDN = Fully Qualified Domain Name

yahoo

10

june

www

Name space delegation

Each organization controls its own name space
(“zone” = subtree of global tree)
−  each organization has its own nameservers

•  replicated for availability

−  nameservers translate names within their organization
•  client lookup proceeds step-by-step

−  example: washington.edu
•  contains IP addresses for all its hosts (www.washington.edu)
•  contains pointer to its subdomains (cs.washington.edu)

11

DNS resolution

Reactive
Queries can be recursive or iterative
Uses UDP (port 53)

Root
name
server

Princeton
name
server

CS
name
server

Local
name
server

Client

1
cicada.cs.princeton.edu

192.12.69.60
8

cicada.cs.princeton.edu

princeton.edu, 128.196.128.233

cicada.cs.princeton.edu

cicada.cs.princeton.edu,

192.12.69.60

cicada.cs.princeton.edu

cs.princeton.edu, 192.12.69.5

2

3

4

5

6

7

12

11/10/08

3

Hierarchy of nameservers

Root
name server

Princeton
name server

Cisco
name server

CS
name server

EE
name server

…

…

13

DNS performance: caching

DNS query results are cached at local proxy
−  quick response for repeated translations
−  lookups are the rare case
−  vastly reduces load at the servers
−  what if something new lands on slashdot?

Local
name
server

Client

1
cicada.cs.princeton.edu

192.12.69.60
2 (if cicada is cached)

CS
name
server

cicada.cs.princeton.edu

cicada.cs.princeton.edu,

192.12.69.60

2 (if cs is cached)

3

4 (if cs is cached)

14

DNS cache consistency
How do we keep cached copies up to date?

−  DNS entries are modified from time to time
•  to change name  IP address mappings
•  to add/delete names

Cache entries invalidated periodically
−  each DNS entry has time-to-live (TTL) field: how long

can the local proxy can keep a copy
−  if entry accessed after the timeout, get a fresh copy

from the server
−  how do you pick the TTL?
−  how long after a change are all the copies updated?

15

DNS cache effectiveness

16

Traffic seen on UW’s access link in 1999

Negative caching in DNS

Pro: traffic reduction
•  Misspellings, old or non-existent names
•  “Helpful” client features

Con: what if the host appears?

Status:
•  Optional in original design
•  Mandatory since 1998

17

DNS traffic in the wide-area

Study % of DNS
packets

Danzig, 1990 14%

Danzig, 1992 8%

Frazer, 1995 5%

Thomson, 1997 3%

18

11/10/08

4

DNS bootstrapping

Need to know IP addresses of root servers before
we can make any queries

Addresses for 13 root servers ([a-m].root-
servers.net) handled via initial configuration

•  Cannot have more than 13 root server IP addresses

19

DNS root servers

20

123 servers as of Dec 2006

DNS availability

What happens if DNS service is not working?
DNS servers are replicated

−  name service available if at least one replica is
working

−  queries load balanced between replicas

name
server

cicada.cs.princeton.edu

princeton.edu, 128.196.128.233

2

3

name
server

name
server

21

Building on the DNS

Email: ratul@microsoft.com
−  DNS record for ratul in the domain microsoft.com,

specifying where to deliver the email

Uniform Resource Locator (URL) names for Web
pages
−  e.g., www.cs.washington.edu/homes/ratul
−  Use domain name to identify a Web server
−  Use “/” separated string for file name (or script) on

the server

22

DNS evolution
Static host to IP mapping

−  What about mobility (Mobile IP) and dynamic address
assignment (DHCP)?

−  Dynamic DNS
Location-insensitive queries

•  Many servers are geographically replicated
•  E.g., Yahoo.com doesn’t refer to a single machine or even a single

location; want closest server
•  Next week

Security (DNSSec)
Internationalization

23

DNS properties (summary)

Nature of the namespace Hierarchical; flat at each level

Scalability of resolution High

Efficiency of resolution Moderate

Expressiveness of queries Exact matches

Robustness to failures Moderate

24

11/10/08

5

Peer-to-peer content sharing

Want to share content among large number of
users; each serves a subset of files
−  need to locate which user has which files

Question: Would DNS be a good solution for this?

25

Napster (directory-based)

Centralized directory of all users offering each file
Users register their files
Users make requests to Napster central
Napster returns list of users hosting requested file
Direct user-to-user communication to download

files

26

Naptser illustration

1. I h
ave “Foo Fighters”

2. Does anyone have

“Foo Fighters”?
3. Bob has it

4. Share “Foo Fighters”?

5. There you go

27

Naptser vs. DNS

Napster DNS

Nature of the namespace Multi-dimensional Hierarchical; flat
at each level

Scalability Moderate High

Efficiency of resolution High Moderate

Expressiveness of queries High Exact matches

Robustness to failures Low Moderate

28

Gnutella (crawl-based)
Can we locate files without a centralized directory?

−  for legal and privacy reasons

Gnutella
−  organize users into ad hoc graph
−  flood query to all users, in breadth first search

•  use hop count to control depth

−  if found, server replies back through path of servers
−  client makes direct connection to server to get file

29

Gnutella illustration

30

11/10/08

6

Gnutella vs. DNS

Content is not indexed in Gnutella
Trade-off between exhaustiveness and efficiency

Gnutella DNS

Nature of the namespace Multi-dimensional Hierarchical;
flat at each level

Scalability Low High

Efficiency of resolution Low Moderate

Expressiveness of queries High Exact matches

Robustness to failures Moderate Moderate

31

Distributed hash tables (DHTs)

Can we locate files without an exhaustive search?
−  want to scale to thousands of servers

DHTs (Pastry, Chord, etc.)
−  Map servers and objects into an coordinate space
−  Objects/info stored based on its key
−  Organize servers into a predefined topology (e.g., a

ring or a k-dimensional hypercube)
−  Route over this topology to find objects

We’ll talk about Pastry (with some slides stolen from Peter
Druschel)

32

Pastry: Id space

objId

128 bit circular id space

nodeIds (uniform random)

objIds (uniform random)

Invariant: node with
numerically closest nodeId
maintains object

nodeIds

O 2128-1

33

Pastry: Object insertion/lookup

X

Route(X)

Msg with key X is
routed to live node
with nodeId
closest to X

Problem:
complete routing
table not feasible

O 2128-1

34

Pastry: Routing

Tradeoff

O(log N) routing table size
O(log N) message forwarding steps

35

Pastry: Routing table (# 65a1fcx)
Row 0

Row 1

Row 2

Row 3

36

11/10/08

7

Pastry: Routing

Properties
log16 N steps
O(log N) state

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

37

Pastry: Leaf sets

Each node maintains IP addresses of the
nodes with the L/2 numerically closest
larger and smaller nodeIds, respectively.
•  routing efficiency/robustness
•  fault detection (keep-alive)
•  application-specific local coordination

38

Pastry: Routing procedure
if (destination is within range of our leaf set)

 forward to numerically closest member
else

 let l = length of shared prefix
 let d = value of l-th digit in D’s address
 if (Rl

d exists)
 forward to Rl

d

 else
 forward to a known node that
 (a) shares at least as long a prefix
 (b) is numerically closer than this node

39

Pastry: Performance

Integrity of overlay/ message delivery:
guaranteed unless L/2 simultaneous failures of

nodes with adjacent nodeIds

Number of routing hops:
No failures: < log16 N expected, 128/4 + 1 max
During failure recovery:

−  O(N) worst case, average case much better

40

Pastry: Node addition

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

New node: d46a1c

41

Node departure (failure)

Leaf set members exchange keep-alive messages

Leaf set repair (eager): request set from farthest
live node in set

Routing table repair (lazy): get table from peers in
the same row, then higher rows

42

11/10/08

8

Pastry: Average # of hops

L=16, 100k random queries
43

Pastry: # of hops (100k nodes)

L=16, 100k random queries
44

45

d462ba

d4213f

d467c4

65a1fc d13da3

A potential route to d467c4 from 65a1fc Pastry: Proximity routing
Assumption: scalar proximity metric, e.g. ping delay, #

IP hops; a node can probe distance to any other node

Proximity invariant: Each routing table entry refers to a
node close to the local node (in the proximity space),
among all nodes with the appropriate nodeId prefix.

Locality-related route qualities: Distance traveled,
likelihood of locating the nearest replica

46

Pastry: Routes in proximity space

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

NodeId space

d467c4

65a1fc
d13da3

d4213f

d462ba

Proximity space

47

Pastry: Distance traveled

L=16, 100k random queries, Euclidean proximity space
48

11/10/08

9

Pastry: Locality properties

1) Expected distance traveled by a message in the
proximity space is within a small constant of the
minimum

2) Routes of messages sent by nearby nodes with same
keys converge at a node near the source nodes

3) Among k nodes with nodeIds closest to the key,
message likely to reach the node closest to the source
node first

49

DHTs vs. DNS

Gnutella DNS

Nature of the namespace Flat Hierarchical;
flat at each level

Scalability High High

Efficiency of resolution Moderate Moderate

Expressiveness of queries Exact matches Exact matches

Robustness to failures High Moderate

50

DHTs are increasingly pervasive in Instant messengers,
p2p content sharing, storage systems, within data centers

DNS using DHT?

Potential benefits:
•  Robustness to failures
•  Load distribution
•  Performance

Challenges:
•  Administrative control

•  Performance, robustness, load
•  DNS tricks

Average-case improvement vs. self-case
deterioration

51

Churn

Node departure and arrivals
•  A key challenge to correctness and performance of

peer-to-peer systems

Study System studied Session Time

Saroiu, 2002 Gnutella, Napster 50% <= 60 min.
Chu, 2002 Gnutella, Napster 31% <= 10 min.
Sen, 2002 FastTrack 50% <= 1 min.
Bhagwan, 2003 Overnet 50% <= 60 min.
Gummadi, 2003 Kazaa 50% <= 2.4 min.

Observed session times in various peer-to-peer systems.
(Compiled by Rhea et al., 2004)

52

Dealing with churn

Needs careful design; no silver bullet

Rate of recovery >> rate of failures

Robustness to imperfect information

Adapt to heterogeneity

53

Multicast
Many applications require sending messages to a

group of receivers
•  Broadcasting events, telecollaboration, software

updates, popular shows

How do we do this efficiently?
•  Could send to receivers individually but that is not

very efficient

54

11/10/08

10

Multicast efficiency

Send data only once along a link shared by paths to
multiple receivers

R

R
R

R

Sender

55

Two options for
implementing multicast

IP multicast
−  special IP addresses to represent groups of receivers
−  receivers subscribe to specific channels
−  modify routers to support multicast sends

Overlay network
−  PC routers, forward multicast traffic by tunneling over

Internet
−  Works on existing Internet, with no router

modifications

56

IP multicast

How to distribute packets across thousands of
LANs?
−  Each router responsible for its attached LAN
−  Hosts declare interest to their routers

Reduces to:
−  How do we forward packets to all interested routers?

(DVMRP, M-OSPF, MBone)

57

Why not simple flooding?

If haven’t seen a packet before, forward it on every
link but incoming
−  routers need to remember each pkt!
−  every router gets every packet!

R

R

R

Sender

58

Distance vector multicast

Intuition: unicast routing tables form inverse tree
from senders to destination
−  why not use backwards for multicast?
−  Various refinements to eliminate useless transfers

Implemented in DVMRP (Distance Vector
Multicast Routing Protocol)

59

Reverse Path Flooding (RPF)

Router forwards packet from S iff packet came via
shortest path back to S

R

R

R

S

s

s

60

11/10/08

11

Redundant sends

RPF will forward packet to router, even if it will
discard
−  each router gets pkt on all of its input links!

Each router connected to LAN will broadcast
packet

Ethernet

61

Reverse Path Broadcast (RPB)

With distance vector, neighbors exchange routing
tables

Only send to neighbor if on its shortest path back
to source

Only send on LAN if have shortest path back to
source
−  break ties arbitrarily

62

Truncated RPB

End hosts tell routers if interested
Routers forward on LAN iff there are receivers

Routers tell their parents if no active children

63

The state of IP multicast

Available in isolated pockets of the network

But absent at a global scale:
•  Technical issues:

•  Scalable? reliability? congestion control?

•  For ISPs:
•  Profitable? managable?

64

Overlay multicast

Can we efficiently implement multicast
functionality on top of IP unicast?

One answer: Narada (with some slides stolen from ESM
folks)

65

 Naïve unicast

66

 End Systems
Routers

Gatech

CMU

Stanford

Berkeley

11/10/08

12

67

An alternative: end-system multicast

Stanford

CMU

Stan1

Stan2

Berk2

Overlay Tree

Gatech

Berk1

Berkeley

Gatech Stan1

Stan2

Berk1

Berk2

CMU

End-system vs. IP multicast

Benefits:
•  Scalable

•  No state at routers
•  Hosts maintain state only for groups they are part of

•  Easier to deploy (no need for ISPs’ consent)
•  Reuse unicast reliability and congestion control

Challenges:
•  Performance
•  Efficient use of the network

68

69

Berk2 Berk1

CMU

 Gatech

Stan1 Stan2

Narada design

CMU

Berk2 Gatech Berk1

Stan1 Stan2

Step 1

Spanning tree: source rooted tree built over the mesh
•  Constructed using well known routing algorithms
•  Small delay from source to receivers

Mesh: Rich overlay graph that includes all group members
•  Members have low degrees
•  Small delay between any pair of members along the mesh

Step 2

Narada components

Mesh optimization
−  Distributed heuristics for ensuring shortest path delay

between members along the mesh is small

Mesh management
−  Ensures mesh remains connected in face of

membership changes

Spanning tree construction:
−  DVMRP

70

71

Mesh optimization heuristics

Continuously evaluate adding new links and
dropping existing links such that

•  Links that reduce mesh delay are added
•  Unhelpful links are deleted, without partition
•  Stability

Berk1

Stan2
CMU

 Gatech1

Stan1

Gatech2

A poor mesh

Link addition heuristic

Members periodically probe non-neighbors
New Link added if Utility Gain > Add threshold

72

Delay improves to Stan1, CMU
but marginally.
Do not add link!

Delay improves to CMU, Gatech1
and significantly.
Add link!

Berk1

Stan2
CMU

 Gatech1

Stan1

Gatech2

Probe

Berk1

Stan2
CMU

 Gatech1

Stan1

Gatech2
Probe

11/10/08

13

Link deletion heuristic

Members periodically monitor existing links
Link dropped if Cost of dropping < Drop threshold
Cost computation and drop threshold is chosen

with stability and partitions in mind

Used by Berk1 to reach only Gatech2 and vice versa.
 Drop!!

 Gatech1 Berk1

Stan2
CMU

Stan1

Gatech2

73

Narada delay (performance)

74

Internet Routing
can be sub-optimal

(ms)

(m
s)

2x unicast delay 1x unicast delay

Internet
experiments

Narada stress (efficiency)

75

Naive Unicast

IP Multicast

Narada : 14-fold reduction in worst-case stress !

Waxman topology: 1024 routers, 3145
links
Group Size : 128
Fanout Range : <3-6> for all members

Scalable overlay multicast

Can we design an overlay multicast system that
scales to very large groups?

One answer: Scribe (with some slides stolen from Kasper Egdø
and Morten Bjerre)

76

Scribe

Built on top of a DHT (Pastry)

Key ideas:
•  Treat the multicast group name as a key into the DHT
•  Publish info to the key owner, called the Rendezvous

point
•  Paths from subscribers to the RP form the multicast

tree

77

Creating a group (1100)

1100 1101

1111

1001

0111

0100

Rendezvous Point
(Pastry root) Group Creator

creates Group 1100

GroupID 1100

ACL xxx

Parent Null

78

11/10/08

14

Joining a group

GroupID 1100
Parent 1100
Child 1001

GroupID 1100
Parent 1001
Child 0100

GroupID 1100
Parent 1101
Child 0100

Child 0111

1100 1101

1111

1001

0111

0100

Rendezvous Point
(Pastry root)

Joining member

Join request
GroupID 1100

Parent 1001
Child 0111

GroupID 1100
ACL xxx

Parent Null

79

Multicasting

1100 1101

1111

1001

0111

0100

Rendezvous Point
(Pastry root)

Message

Multicast down tree

80

Repairing failures

GroupID 1100
Parent 1100
Child 1001

GroupID 1100
Parent 1001
Child 0100

GroupID 1100
Parent 1111
Child 0100

Child 0111

1100 1101

1111

1001

0111

0100

Rendezvous Point
(Pastry root) Failed Node

Join request
Join request

GroupID 1100
Parent 1001
Child 0111

GroupID 1100
ACL Xxx

Parent Null

Child 1111

81

Next week

Building scalable services
•  CDNs, BitTorrent, caching, replication, load

balancing, prefetching, …

82

