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P561: Network Systems 
Week 5: Transport #1 

Tom Anderson 
Ratul Mahajan

TA: Colin Dixon

Administrivia 

Homework #2 
−  Due next week (week 6), start of class 
−  Catalyst turnin 

Fishnet Assignment #3 
−  Due week 7, start of class 
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Homework #1: General’s Paradox 

Can we use messages and retries to synchronize 
two machines so they are guaranteed to do some 
operation at the same time? 
−  No.  Why? 

General’s Paradox Illustrated 

A B 

3:30 ok? 

ok, 3:30 is good for me 

so, its 3:30? 

yeah, but what if you 

 don’t get this ack? 

Consensus revisited 

If distributed consensus is impossible, what then? 

1.  TCP: can agree that destination received data 

2.  Distributed transactions (2 phase commit) 
−  Can agree to eventually do some operation 

3.  Paxos: non-blocking transactions 
−  Always safe, progress if no failures 
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Transport Challenge 

IP: routers can be arbitrarily bad 
−  packets can be lost, reordered, duplicated, have 

limited size & can be fragmented 

TCP: applications need something better 
−  reliable delivery, in order delivery, no duplicates, 

arbitrarily long streams of data, match sender/
receiver speed, process-to-process 
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Reliable Transmission 

How do we send packets reliably? 

Two mechanisms 
−  Acknowledgements 
−  Timeouts 

Simplest reliable protocol: Stop and Wait 

Stop and Wait 
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Packet 

ACK Ti
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 Send a packet, wait until ack arrives 
 retransmit if no ack within timeout 

 Receiver acks each packet as it arrives 

Sender Receiver 

Recovering from error 

Packet 
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ACK lost Packet lost Early timeout 

How can we recognize resends? 

Use unique ID for each pkt 
−  for both packets and acks 

How many bits for the ID? 
−  For stop and wait, a single bit! 
−  assuming in-order delivery… 

Pkt 0 

ACK 0 

Pkt 0 

ACK 1 

Pkt 1 
ACK 0 

What if packets can be delayed? 

Solutions? 
−  Never reuse an ID? 
−  Change IP layer to eliminate 

packet reordering? 
−  Prevent very late delivery? 

•  IP routers keep hop count per pkt, 
discard if exceeded 

•  ID’s not reused within delay bound 

−  TCP won’t work without some 
bound on how late packets can 
arrive! 

0 

0 

 1 

1 

 0 

0 
Accept! 

Reject! 

What happens on reboot? 

How do we distinguish packets sent before and 
after reboot? 
−  Can’t remember last sequence # used unless written 

to stable storage (disk or NVRAM) 

Solutions? 
−  Restart sequence # at 0? 
−  Assume/force boot to take max packet delay? 
−  Include epoch number in packet (stored on disk)? 
−  Ask other side what the last sequence # was? 

−  TCP sidesteps this problem with random initial seq # 
(in each direction) 
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How do we keep the pipe full? 

Unless the bandwidth*delay product 
is small, stop and wait can’t fill pipe 

Solution: Send multiple packets 
without waiting for first to be acked 

Reliable, unordered delivery: 
−  Send new packet after each ack 
−  Sender keeps list of unack’ed packets; 

resends after timeout 
−  Receiver same as stop&wait 

How easy is it to write apps that 
handle out of order delivery? 
−  How easy is it to test those apps? 

Sliding Window: Reliable, ordered 
delivery 

Two constraints: 
−  Receiver can’t deliver packet to application until all 

prior packets have arrived 
−  Sender must prevent buffer overflow at receiver 

Solution: sliding window 
−  circular buffer at sender and receiver 

•  packets in transit <= buffer size  
•  advance when sender and receiver agree packets at beginning 

have been received 

−  How big should the window be? 
•  bandwidth * round trip delay 

Sender/Receiver State 

sender 
−  packets sent and acked (LAR = last ack recvd) 
−  packets sent but not yet acked 
−  packets not yet sent (LFS = last frame sent) 

receiver 
−  packets received and acked (NFE = next frame 

expected) 
−  packets received out of order 
−  packets not yet received (LFA = last frame ok) 

Sliding Window 

LAR LFS 

Send Window 

sent 

acked 

0 1 2 

x x 
x 

x x x x x 

3 4 5 6 

NFE LFA 

Receive Window 

recvd 

acked 

0 1 2 

x x 
x 

x x x x 

3 4 5 6 

x 

What if we lose a packet? 

Go back N (original TCP) 
−  receiver acks “got up through k” (“cumulative ack”) 
−  ok for receiver to buffer out of order packets 
−  on timeout, sender restarts from k+1 

Selective retransmission (RFC 2018) 
−  receiver sends ack for each pkt in window 
−  on timeout, resend only missing packet 

Can we shortcut timeout? 

If packets usually arrive in order, out of order 
delivery is (probably) a packet loss 
−  Negative ack 

•  receiver requests missing packet 

−  Fast retransmit (TCP) 
•  receiver acks with NFE-1 (or selective ack) 
•  if sender gets acks that don’t advance NFE, resends missing 

packet 
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Sender Algorithm 

Send full window, set timeout  
On receiving an ack: 

if it increases LAR (last ack received) 
     send next packet(s)  

-- no more than window size outstanding at once 

else (already received this ack) 
if receive multiple acks for LAR, next packet may have been 

lost; retransmit LAR + 1 (and more if selective ack) 

On timeout: 
resend LAR + 1 (first packet not yet acked) 

Receiver Algorithm 
On packet arrival: 

if packet is the NFE (next frame expected) 
    send ack 
    increase NFE 
    hand any packet(s) below NFE to application 
else if < NFE (packet already seen and acked) 
    send ack and discard  // Q: why is ack needed? 
else (packet is > NFE, arrived out of order) 
    buffer and send ack for NFE – 1 

 -- signal sender that NFE might have been lost 
   -- and with selective ack: which packets correctly arrived 

What if link is very lossy?  

Wireless packet loss rates can be 10-30% 
−  end to end retransmission will still work 
−  will be inefficient, especially with go back N 

Solution: hop by hop retransmission 
−  performance optimization, not for correctness 

End to end principle 
−  ok to do optimizations at lower layer 
−  still need end to end retransmission; why? 

Avoiding burstiness: ack pacing 

Sender Receiver 

bottleneck 

packets 

acks 

Window size = round trip delay * bit rate 

How many sequence #’s? 

Window size + 1? 
−  Suppose window size = 3 
−  Sequence space: 0 1 2 3 0 1 2 3 
−  send 0 1 2, all arrive 

•  if acks are lost, resend 0 1 2 
•  if acks arrive, send new 3 0 1 

Window <= (max seq # + 1) / 2 

How do we determine timeouts? 
If timeout too small, useless retransmits 

−  can lead to congestion collapse (and did in 86) 
−  as load increases, longer delays, more timeouts, more 

retransmissions, more load, longer delays, more 
timeouts … 

−  Dynamic instability! 
If timeout too big, inefficient 

−  wait too long to send missing packet 
Timeout should be based on actual round trip time 

(RTT) 
−  varies with destination subnet, routing changes, 

congestion, … 
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Estimating RTTs 

Idea: Adapt based on recent past measurements 
−  For each packet, note time sent and time ack received 
−  Compute RTT samples and average recent samples for 

timeout 
−  EstimatedRTT = α x EstimatedRTT + (1 - α) x 

SampleRTT 

−  This is an exponentially-weighted moving average (low 
pass filter) that smoothes the samples. Typically,             
α = 0.8 to 0.9. 

−  Set timeout to small multiple (2) of the estimate 

Estimated Retransmit Timer 

Retransmission ambiguity 

How do we distinguish first ack 
from retransmitted ack? 
−  First send to first ack? 

•  What if ack dropped? 

−  Last send to last ack? 
•  What if last ack dropped? 

Might never be able to fix too short 
a timeout! 

Timeout! 

Retransmission ambiguity: 
Solutions? 

TCP: Karn-Partridge 
−  ignore RTT estimates for retransmitted pkts 
−  double timeout on every retransmission 

Add sequence #’s to retransmissions (retry #1, 
retry #2, …) 

Modern TCP (RFC 1323): Add timestamp into 
packet header; ack returns timestamp 

Jacobson/Karels Algorithm 

Problem: 
−  Variance in RTTs gets large as network gets loaded 
−  Average RTT isn’t a good predictor when we need it 

most 
Solution: Track variance too. 

−  Difference = SampleRTT – EstimatedRTT 
−  EstimatedRTT = EstimatedRTT + (δ x Difference) 
−  Deviation = Deviation + δ(|Difference|- Deviation) 
−  Timeout = µ x EstimatedRTT + φ x Deviation 
−  In practice, δ = 1/8, µ = 1 and φ = 4 

Estimate with Mean + Variance 
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Transport: Practice 

Protocols 
−  IP -- Internet protocol 
−  UDP -- user datagram protocol 
−  TCP -- transmission control protocol 
−  RPC -- remote procedure call 
−  HTTP -- hypertext transfer protocol 
−  And a bunch more… 

How do we connect processes? 

IP provides host to host packet delivery 
−  header has source, destination IP address 

For applications to communicate, need to demux 
packets sent to host to target app 
−  Web browser (HTTP), Email servers (SMTP), 

hostname translation (DNS), RealAudio player 
(RTSP), etc. 

−  Process id is OS-specific and transient  

Ports 

Port is a mailbox that processes “rent” 
−  Uniquely identify communication endpoint as           

(IP address, protocol, port) 
How do we pick port #’s? 

−  Client needs to know port # to send server a request 
−  Servers bind to “well-known” port numbers 

•  Ex: HTTP 80, SMTP 25, DNS 53, …  
•  Ports below 1024 reserved for “well-known” services 

−  Clients use OS-assigned temporary (ephemeral) 
ports 

•  Above 1024, recycled by OS when client finished 

Sockets 

OS abstraction representing communication 
endpoint 
−  Layer on top of TCP, UDP, local pipes 

server (passive open) 
−  bind -- socket to specific local port 
−  listen -- wait for client to connect 

client (active open) 
−  connect -- to specific remote port 

User Datagram Protocol (UDP) 

Provides application – application delivery 
Header has source & dest port #’s 

−  IP header provides source, dest IP addresses 

Deliver to destination port on dest machine 
Reply returns to source port on source machine 
No retransmissions, no sequence #s 
=> stateless 

Application 
process 

Application 
process 

Application 
process 

Packets arrive 

Ports 

Message 

Queues 

DeMux 

UDP Delivery 

Kernel 

boundary 
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A brief Internet history... 

1970 1975 1980 1985 1990 1995 

1969 

ARPANET 

created 

1972 

TELNET 
RFC 318 

1973 

FTP 
RFC 454 

1982 

TCP & IP 
RFC 793 & 791 

1977 

MAIL 
RFC 733 

1984 

DNS 
RFC 883 

1986 

NNTP 
RFC 977 

1990 

ARPANET 

dissolved 

1991 

WWW/HTTP 

1992 

MBONE 

1995 

Multi-backbone 

Internet 

TCP: This is your life... 

1975 1980 1985 1990 

1982 

TCP & IP 
RFC 793 & 791 

1974 

TCP described by 

Vint Cerf and Bob Kahn 

In IEEE Trans Comm 

1983 

BSD Unix 4.2 

supports TCP/IP 

1984 

Nagel’s algorithm 

to reduce overhead 

of small packets; 

predicts congestion 
collapse 

1987 

Karn’s algorithm 

to better estimate 
round-trip time 

1986 

Congestion 
collapse 

observed 

1988 

Van Jacobson’s 
algorithms 

congestion avoidance 
and congestion control 

(most implemented in 
4.3BSD Tahoe) 

1990 

4.3BSD Reno 

fast retransmit 

delayed ACK’s 

1975 

Three-way handshake 

Raymond Tomlinson 

In SIGCOMM 75 

TCP: After 1990 

1993 1994 1996 

1994 

ECN 

(Floyd) 

Explicit  

Congestion 

Notification 

1993 

TCP Vegas  

(Brakmo et al) 

real congestion 
avoidance 

1994 

T/TCP 

(Braden) 

Transaction 

TCP 

1996 

SACK TCP 

(Floyd et al) 

Selective 
Acknowledgement 1996 

Hoe 

Improving TCP 
startup 

1996 

FACK TCP 

(Mathis et al) 

extension to SACK 

2006 

PCP 

Transmission Control Protocol (TCP) 
Reliable bi-directional byte stream 

−  No message boundaries 
−  Ports as application endpoints 

Sliding window, go back N/SACK, RTT est, … 
−  Highly tuned congestion control algorithm 

Flow control 
−  prevent sender from overrunning receiver buffers 

Connection setup 
−  negotiate buffer sizes and initial seq #s 
−  Needs to work between all types of computers 

(supercomputer -> 8086) 

TCP Packet Header 

Source, destination ports 
Sequence # (bytes being 

sent) 
Ack # (next byte 

expected) 
Receive window size 
Checksum 
Flags: SYN, FIN, RST 

TCP Delivery 

Application process 

W rite 
bytes 

TCP 
Send buffer 

Segment Segment Segment 
Transmit segments 

Application process 

Read 
bytes 

TCP 
Receive buffer 

… 

…
 

…
 

IP   x.html IP   TCP  get inde 
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TCP Sliding Window 

Per-byte, not per-packet (why?) 
−  send packet says “here are bytes j-k” 
−  ack says “received up to byte k” 

Send buffer >= send window  
−  can buffer writes in kernel before sending 
−  writer blocks if try to write past send buffer 

Receive buffer >= receive window 
−  buffer acked data in kernel, wait for reads 
−  reader blocks if try to read past acked data 

Visualizing the window 

4 5 6 7 8 9 1 2 3 10 11 12 

offered window 

(advertised by receiver) 
usable window 

sent and 

acknowledged sent, not ACKed 

can send ASAP 
can’t send until 

window moves 

Left side of window advances when data is acknowledged. 

Right side controlled by size of window advertisement 

Flow Control 

What if sender process is faster than receiver 
process? 
−  Data builds up in receive window 
−  if data is acked, sender will send more! 
−  If data is not acked, sender will retransmit! 

Sender must transmit data no faster than it can be 
consumed by the receiver 
−  Receiver might be a slow machine 
−  App might consume data slowly 

Sender sliding window <= free receiver buffer 
−  Advertised window = # of free bytes; if zero, stop 

Sending application 

LastByteWritten 

TCP 

LastByteSent LastByteAcked 

Receiving application 

LastByteRead 

TCP 

LastByteRcvd NextByteExpected 

Sender and Receiver Buffering 

= available buffer = buffer in use 

Example – Exchange of Packets 

SEQ=1 

SEQ=2 

SEQ=3 
SEQ=4 

ACK=2; WIN=3 

ACK=3; WIN=2 

ACK=4; WIN=1 

ACK=5; WIN=0 

Receiver has buffer of 
size 4 and application 
doesn’t read 

Stall due to 
flow control 
here 

T=1 

T=2 

T=3 

T=4 

T=5 

T=6 

Example – Buffer at Sender 

2 1 3 4 5 6 7 8 9 

2 1 3 4 5 6 7 8 9 

2 1 3 4 5 6 7 8 9 

2 1 3 4 5 6 7 8 9 

2 1 3 4 5 6 7 8 9 

2 1 3 4 5 6 7 8 9 

T=1 

T=2 

T=3 

T=4 

T=5 

T=6 

=acked 

=sent 

=advertised 
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How does sender know when to 
resume sending? 

If receive window = 0, sender stops 
−  no data => no acks => no window updates 

Sender periodically pings receiver with one byte 
packet 
−  receiver acks with current window size 

Why not have receiver ping sender? 

Should sender be greedy (I)? 

Should sender transmit as soon as any space 
opens in receive window? 
−  Silly window syndrome 

•  receive window opens a few bytes 
•  sender transmits little packet 
•  receive window closes 

Solution (Clark, 1982): sender doesn’t resume 
sending until window is half open 

Should sender be greedy (II)? 
App writes a few bytes; send a packet? 

−  Don’t want to send a packet for every keystroke 
−  If buffered writes >= max segment size 
−  if app says “push” (ex: telnet, on carriage return) 
−  after timeout (ex: 0.5 sec) 

Nagle’s algorithm 
−  Never send two partial segments; wait for first to be 

acked, before sending next 
−  Self-adaptive: can send lots of tinygrams if network is 

being responsive 
But (!) poor interaction with delayed acks (later) 

TCP Connection Management 
Setup 

−  assymetric 3-way handshake 
Transfer 

−  sliding window; data and acks in both directions 
Teardown 

−  symmetric 2-way handshake 
Client-server model 

−  initiator (client) contacts server 
−  listener (server) responds, provides service 

Three-Way Handshake 

Opens both directions for transfer 

Active participant 
(client) 

Passive participant 
(server) 

SYN, SequenceNum =  x 

SYN + ACK, SequenceNum =  y , 

ACK, Acknowledgment =  y  +  1 

Acknowledgment =  x  +  1 

+data 

Do we need 3-way handshake? 

Allows both sides to 
−  allocate state for buffer size, state variables, … 
−  calculate estimated RTT, estimated MTU, etc. 

Helps prevent 
−  Duplicates across incarnations 
−  Intentional hijacking 

•  random nonces => weak form of authentication 

Short-circuit? 
−  Persistent connections in HTTP (keep connection open) 
−  Transactional TCP (save seq #, reuse on reopen) 
−  But congestion control effects dominate 



10 

TCP Transfer 

Connection is bi-directional 
−  acks can carry response data 

(client) (server) 
Seq = x + MSS; Ack  = y+1 

Seq = y+MSS; Ack = x+2MSS+1 

Seq = x + 2*MSS; Ack = y+1 

Seq = x + 3*MSS; Ack = y+MSS+1 

TCP Connection Teardown 

Symmetric: either side can close connection (or RST!) 
Web server Web browser 

FIN 

ACK 

data, ACK  

FIN  
data, ACK  

ACK 

Half-open connection; data 
can be continue to be sent 

Can reclaim connection  right away 
(must be at least 1MSL after first FIN) 

Can reclaim connection  
after 2 MSL 

CLOSED 

LISTEN 

SYN_RCVD SYN_SENT 

ESTABLISHED 

CLOSE_WAIT 

LAST_ACK CLOSING 

TIME_WAIT 

FIN_WAIT_2 

FIN_WAIT_1 

Passive open Close 

Send/ SYN 
SYN/SYN + ACK 

SYN + ACK/ACK 

SYN/SYN + ACK 

ACK 

Close /FIN 

FIN/ACK Close /FIN 

FIN/ACK 

Timeout after two  
segment lifetimes FIN/ACK 

ACK 

ACK 

ACK 

Close /FIN 

Close 

CLOSED 

Active open /SYN 

TCP State Transitions TCP Connection Setup, with States 

Active participant 
(client) 

Passive participant 
(server) 

SYN, SequenceNum =  x 

SYN + ACK, SequenceNum =  y , 

ACK, Acknowledgment =  y  +  1 

Acknowledgment =  x  +  1 

+data 

LISTEN 

SYN_RCVD 

SYN_SENT 

ESTABLISHED 

ESTABLISHED 

TCP Connection Teardown 

Web server Web browser 

FIN 

ACK 

ACK  

FIN  

FIN_WAIT_1 

CLOSE_WAIT 

LAST_ACK 

FIN_WAIT_2 

TIME_WAIT 

CLOSED 
CLOSED 

… 

The TIME_WAIT State 
We wait 2MSL (two times the maximum segment 

lifetime of 60 seconds) before completing the 
close 

Why? 

ACK might have been lost and so FIN will be resent 
Could interfere with a subsequent connection 
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TCP Handshake in an 
Uncooperative Internet 

TCP Hijacking 
−  if seq # is predictable, 

attacker can insert packets 
into TCP stream 

−  many implementations of 
TCP simply bumped 
previous seq # by 1 

−  attacker can learn seq # by 
setting up a connection 

Solution: use random 
initial sequence #’s 
−  weak form of 

authentication  

Malicious attacker 
Server 

SYN, SequenceNum =  x 

SYN + ACK, y, x + 1 

Client 

“HTTP get URL”, x + MSS 

web page, y + MSS 

ACK, y+1 

fake web page, y+MSS 

TCP Handshake in an 
Uncooperative Internet 

TCP SYN flood 
−  server maintains state 

for every open 
connection 

−  if attacker spoofs source 
addresses, can cause 
server to open lots of 
connections 

−  eventually, server runs 
out of memory 

Malicious attacker Server 
SYN, SequenceNum =  x 

SYN + ACK, y, x + 1 

SYN, p  SYN, q SYN, r SYN, s 

TCP SYN cookies 

Solution: SYN cookies 
−  Server keeps no state in 

response to SYN; instead 
makes client store state 

−  Server picks return seq # y 
= © that encrypts x 

−  Gets © +1 from sender; 
unpacks to yield x 

Can data arrive before ACK? 

Client Server 
SYN, SequenceNum =  x 

SYN + ACK, ©, x + 1 

ACK, © + 1 

How can TCP choose segment size? 

Pick LAN MTU as segment size? 
−  LAN MTU can be larger than WAN MTU  
−  E.g., Gigabit Ethernet jumbo frames 

Pick smallest MTU across all networks in 
Internet? 
−  Most traffic is local! 

•  Local file server, web proxy, DNS cache, ... 

−  Increases packet processing overhead 
Discover MTU to each destination? (IP DF bit) 
Guess? 

Layering Revisited 
IP layer “transparent” packet delivery 

−  Implementation decisions affect higher layers (and 
vice versa) 

•  Fragmentation => reassembly overhead 
– path MTU discovery 

•  Packet loss => congestion or lossy link? 
–  link layer retransmission 

•  Reordering => packet loss or multipath? 
– router hardware tries to keep packets in order 

•  FIFO vs. active queue management 

IP Packet Header Limitations 

Fixed size fields in IPv4 packet header 
−  source/destination address (32 bits) 

•  limits to ~ 4B unique public addresses; about 600M allocated 
•  NATs map multiple hosts to single public address 

−  IP ID field (16 bits) 
•  limits to 65K fragmented packets at once => 100MB in flight? 
•  in practice, fewer than 1% of all packets fragment 

−  Type of service (8 bits) 
•  unused until recently; used to express priorities 

−  TTL (8 bits) 
•  limits max Internet path length to 255; typical max is 30 

−  Length (16 bits) 
•  Much larger than most link layer MTU’s 
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TCP Packet Header Limitations 

Fixed size fields in TCP packet header 
−  seq #/ack # -- 32 bits (can’t wrap within MSL) 

•  T1 ~ 6.4 hours; OC-192 ~ 3.5 seconds 
−  source/destination port # -- 16 bits 

•  limits # of connections between two machines (NATs) 
•  ok to give each machine multiple IP addresses 

−  header length 
•  limits # of options 

−  receive window size -- 16 bits (64KB) 
•  rate = window size / delay 
•  Ex: 100ms delay => rate ~ 5Mb/sec 
•  RFC 1323: receive window scaling 
•  Defaults still a performance problem 

HTTP on TCP 

How do we reduce the # of 
messages? 

Delayed ack: wait for 200ms for 
reply or another pkt arrival 

TCP RST from web server 

SYN 

SYN+ACK 

ACK 

http get 

ACK 

http data 

ACK 

FIN 

ACK 

FIN 

ACK 

Bandwidth Allocation 

How do we efficiently share network resources 
among billions of hosts? 
−  Congestion control 

•  Sending too fast causes packet loss inside network -> 
retransmissions -> more load -> more packet losses -> … 

•  Don’t send faster than network can accept 

−  Fairness 
•  How do we allocate bandwidth among different users? 
•  Each user should (?) get fair share of bandwidth 

Chapter 6, Figure 1 

Buffer absorbs bursts when input rate > output 
If sending rate is persistently > drain rate, queue builds 
Dropped packets represent wasted work 

Destination 
1.5-Mbps T1 link 

Router 

Source 
2 

Source 
1 

100-Mbps FDDI 

10-Mbps Ethernet 

Congestion 

Packets dropped here 

Chapter 6, Figure 2 

Router 

Source 
2 

Source 
1 

Source 
3 

Router 

Router 

Destination 
2 

Destination 
1 

Fairness 

Each flow from a source to a destination should (?) get an 
equal share of the bottleneck link … depends on paths 
and other traffic 

The Problem 

Original TCP sent full window of data 
When links become loaded, queues fill up, and this 

can lead to: 
−  Congestion collapse: when round-trip time exceeds 

retransmit interval -- every packet is retransmitted 
many times 

−  Synchronized behavior: network oscillates between 
loaded and unloaded 
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TCP Congestion Control   

Goal: efficiently and fairly allocate network 
bandwidth 
−  Robust RTT estimation 
−  Additive increase/multiplicative decrease 

•  oscillate around bottleneck capacity 

−  Slow start 
•  quickly identify bottleneck capacity 

−  Fast retransmit 
−  Fast recovery 

Tracking the Bottleneck Bandwidth 

Sending rate = window size/RTT 
Multiplicative decrease 

−  Timeout => dropped packet => cut window size in 
half 

•  and therefore cut sending rate in half 

Additive increase 
−  Ack arrives => no drop => increase window size by 

one packet/window 
•  and therefore increase sending rate a little 

TCP “Sawtooth” 

Oscillates around bottleneck bandwidth 
−  adjusts to changes in competing traffic 

Slow start 

How do we find bottleneck bandwidth? 
−  Start by sending a single packet 

•  start slow to avoid overwhelming network 
−  Multiplicative increase until get packet loss 

•  quickly find bottleneck 
−  Remember previous max window size 

•  shift into linear increase/multiplicative decrease when get 
close to previous max ~ bottleneck rate 

•  called “congestion avoidance” 

Slow Start 

Quickly find the bottleneck bandwidth 

TCP Mechanics Illustrated 

78 

Source Dest Router 

100 Mbps 

0.9 ms latency 
10 Mbps 

0 latency 
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Slow Start Problems 

Bursty traffic source 
−  will fill up router queues, causing losses for other flows 
−  solution: ack pacing 

Slow start usually overshoots bottleneck 
−  will lose many packets in window 
−  solution: remember previous threshold 

Short flows 
−  Can spend entire time in slow start! 
−  solution: persistent connections? 

Avoiding burstiness: ack pacing 

Sender Receiver 

bottleneck 

packets 

acks 

Window size = round trip delay * bit rate 

Ack Pacing After Timeout 

Packet loss causes timeout, 
disrupts ack pacing 
−  slow start/additive increase are 

designed to cause packet loss 

After loss, use slow start to regain 
ack pacing 
−  switch to linear increase at last 

successful rate 
−  “congestion avoidance” 

1 

2 
3 

4 
5 

1 

1 

1 

1 
1 

2 

5 

Ti
m

eo
ut

 

Putting It All Together 

Timeouts dominate performance! 

Fast Retransmit 

Can we detect packet loss without a 
timeout? 
−  Receiver will reply to each packet with 

an ack for last byte received in order 
Duplicate acks imply either 

−  packet reordering (route change) 
−  packet loss 

TCP Tahoe 
−  resend if sender gets three duplicate 

acks, without waiting for timeout 

1 

2 
3 

4 
5 

1 

1 

1 

1 
1 

2 

5 

Fast Retransmit Caveats 

Assumes in order packet delivery 
−  Recent proposal: measure rate of out of order 

delivery; dynamically adjust number of dup acks 
needed for retransmit 

Doesn’t work with small windows (e.g. modems) 
−  what if window size <= 3 

Doesn’t work if many packets are lost 
−  example: at peak of slow start, might lose many 

packets 
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Fast Retransmit 

Regaining ack pacing limits performance 
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Fast Recovery 

Use duplicate acks to maintain ack 
pacing 
−  duplicate ack => packet left network 
−  after loss, send packet after every 

other acknowledgement 

Doesn’t work if lose many packets in a 
row 
−  fall back on timeout and slow start to 

reestablish ack pacing 
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Fast Recovery 
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Delayed ACKS 

Problem:   
−  In request/response programs, server will send 

separate ACK and response packets 
•  computing the response can take time 

TCP solution: 
−  Don’t ACK data immediately 
−  Wait 200ms (must be less than 500ms) 
−  Must ACK every other packet 
−  Must not delay duplicate ACKs 

Delayed Acks 

Recall that acks are delayed by 200ms to wait for 
application to provide data 

But (!) TCP congestion control triggered by acks 
−  if receive half as many acks => window grows half as 

fast 

Slow start with window = 1 
−  ack will be delayed, even though sender is waiting for 

ack to expand window 

What if two TCPs share link? 
Reach equilibrium independent of initial bw 

−  assuming equal RTTs, “fair” drops at the router 
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Equilibrium Proof 
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What if TCP and UDP share link? 

Independent of initial rates, UDP will get priority!  
TCP will take what’s left. 

What if two different TCP 
implementations share link? 

If cut back more slowly after drops => will grab 
bigger share 

If add more quickly after acks => will grab bigger 
share 

Incentive to cause congestion collapse! 
−  Many TCP “accelerators”  
−  Easy to improve perf at expense of network 

One solution: enforce good behavior at router 

What if TCP connection is short? 

Slow start dominates performance 
−  What if network is unloaded? 
−  Burstiness causes extra drops 

Packet losses unreliable indicator 
−  can lose connection setup packet 
−  can get drop when connection near done 
−  signal unrelated to sending rate 

In limit, have to signal every connection 
−  50% loss rate as increase # of connections 

Example: 10KB document 
10Mb/s Ethernet,70ms RTT, 536 MSS 

Ethernet ~ 10 Mb/s 
64KB window, 70ms RTT ~ 7.5 Mb/s 
can only use 10KB window ~ 1.2 Mb/s 
5% drop rate ~ 275 Kb/s (steady state) 
model timeouts ~ 228 Kb/s 
slow start, no losses ~ 140 Kb/s 
slow start, with 5% drop ~ 75 Kb/s 

Short flow bandwidth  

Flow length=10Kbytes, RTT=70ms 
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TCP over Wireless 

What’s the problem? 

How might we fix it? 
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TCP over 10Gbps Pipes 

What’s the problem? 

How might we fix it? 
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TCP and ISP router buffers 

What’s the problem? 

How might we fix it? 
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TCP and Real-time Flows 

What’s the problem? 

How might we fix it? 
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