
1

P561: Network Systems
Week 5: Transport #1

Tom Anderson
Ratul Mahajan

TA: Colin Dixon

Administrivia

Homework #2
−  Due next week (week 6), start of class
−  Catalyst turnin

Fishnet Assignment #3
−  Due week 7, start of class

2

Homework #1: General’s Paradox

Can we use messages and retries to synchronize
two machines so they are guaranteed to do some
operation at the same time?
−  No. Why?

General’s Paradox Illustrated

A B

3:30 ok?

ok, 3:30 is good for me

so, its 3:30?

yeah, but what if you

 don’t get this ack?

Consensus revisited

If distributed consensus is impossible, what then?

1.  TCP: can agree that destination received data

2.  Distributed transactions (2 phase commit)
−  Can agree to eventually do some operation

3.  Paxos: non-blocking transactions
−  Always safe, progress if no failures

5

Transport Challenge

IP: routers can be arbitrarily bad
−  packets can be lost, reordered, duplicated, have

limited size & can be fragmented

TCP: applications need something better
−  reliable delivery, in order delivery, no duplicates,

arbitrarily long streams of data, match sender/
receiver speed, process-to-process

2

Reliable Transmission

How do we send packets reliably?

Two mechanisms
−  Acknowledgements
−  Timeouts

Simplest reliable protocol: Stop and Wait

Stop and Wait

Time

Packet

ACK Ti
m

eo
ut

 Send a packet, wait until ack arrives
 retransmit if no ack within timeout

 Receiver acks each packet as it arrives

Sender Receiver

Recovering from error

Packet

ACK

Ti
m

eo
ut

Packet

ACK Ti
m

eo
ut

Packet

Ti
m

eo
ut

Packet

ACK Ti
m

eo
ut

Time

Packet

ACK

Ti
m

eo
ut

Packet

ACK Ti
m

eo
ut

ACK lost Packet lost Early timeout

How can we recognize resends?

Use unique ID for each pkt
−  for both packets and acks

How many bits for the ID?
−  For stop and wait, a single bit!
−  assuming in-order delivery…

Pkt 0

ACK 0

Pkt 0

ACK 1

Pkt 1
ACK 0

What if packets can be delayed?

Solutions?
−  Never reuse an ID?
−  Change IP layer to eliminate

packet reordering?
−  Prevent very late delivery?

•  IP routers keep hop count per pkt,
discard if exceeded

•  ID’s not reused within delay bound

−  TCP won’t work without some
bound on how late packets can
arrive!

0

0

 1

1

 0

0
Accept!

Reject!

What happens on reboot?

How do we distinguish packets sent before and
after reboot?
−  Can’t remember last sequence # used unless written

to stable storage (disk or NVRAM)

Solutions?
−  Restart sequence # at 0?
−  Assume/force boot to take max packet delay?
−  Include epoch number in packet (stored on disk)?
−  Ask other side what the last sequence # was?

−  TCP sidesteps this problem with random initial seq #
(in each direction)

3

How do we keep the pipe full?

Unless the bandwidth*delay product
is small, stop and wait can’t fill pipe

Solution: Send multiple packets
without waiting for first to be acked

Reliable, unordered delivery:
−  Send new packet after each ack
−  Sender keeps list of unack’ed packets;

resends after timeout
−  Receiver same as stop&wait

How easy is it to write apps that
handle out of order delivery?
−  How easy is it to test those apps?

Sliding Window: Reliable, ordered
delivery

Two constraints:
−  Receiver can’t deliver packet to application until all

prior packets have arrived
−  Sender must prevent buffer overflow at receiver

Solution: sliding window
−  circular buffer at sender and receiver

•  packets in transit <= buffer size
•  advance when sender and receiver agree packets at beginning

have been received

−  How big should the window be?
•  bandwidth * round trip delay

Sender/Receiver State

sender
−  packets sent and acked (LAR = last ack recvd)
−  packets sent but not yet acked
−  packets not yet sent (LFS = last frame sent)

receiver
−  packets received and acked (NFE = next frame

expected)
−  packets received out of order
−  packets not yet received (LFA = last frame ok)

Sliding Window

LAR LFS

Send Window

sent

acked

0 1 2

x x
x

x x x x x

3 4 5 6

NFE LFA

Receive Window

recvd

acked

0 1 2

x x
x

x x x x

3 4 5 6

x

What if we lose a packet?

Go back N (original TCP)
−  receiver acks “got up through k” (“cumulative ack”)
−  ok for receiver to buffer out of order packets
−  on timeout, sender restarts from k+1

Selective retransmission (RFC 2018)
−  receiver sends ack for each pkt in window
−  on timeout, resend only missing packet

Can we shortcut timeout?

If packets usually arrive in order, out of order
delivery is (probably) a packet loss
−  Negative ack

•  receiver requests missing packet

−  Fast retransmit (TCP)
•  receiver acks with NFE-1 (or selective ack)
•  if sender gets acks that don’t advance NFE, resends missing

packet

4

Sender Algorithm

Send full window, set timeout
On receiving an ack:

if it increases LAR (last ack received)
 send next packet(s)

-- no more than window size outstanding at once

else (already received this ack)
if receive multiple acks for LAR, next packet may have been

lost; retransmit LAR + 1 (and more if selective ack)

On timeout:
resend LAR + 1 (first packet not yet acked)

Receiver Algorithm
On packet arrival:

if packet is the NFE (next frame expected)
 send ack
 increase NFE
 hand any packet(s) below NFE to application
else if < NFE (packet already seen and acked)
 send ack and discard // Q: why is ack needed?
else (packet is > NFE, arrived out of order)
 buffer and send ack for NFE – 1

 -- signal sender that NFE might have been lost
 -- and with selective ack: which packets correctly arrived

What if link is very lossy?

Wireless packet loss rates can be 10-30%
−  end to end retransmission will still work
−  will be inefficient, especially with go back N

Solution: hop by hop retransmission
−  performance optimization, not for correctness

End to end principle
−  ok to do optimizations at lower layer
−  still need end to end retransmission; why?

Avoiding burstiness: ack pacing

Sender Receiver

bottleneck

packets

acks

Window size = round trip delay * bit rate

How many sequence #’s?

Window size + 1?
−  Suppose window size = 3
−  Sequence space: 0 1 2 3 0 1 2 3
−  send 0 1 2, all arrive

•  if acks are lost, resend 0 1 2
•  if acks arrive, send new 3 0 1

Window <= (max seq # + 1) / 2

How do we determine timeouts?
If timeout too small, useless retransmits

−  can lead to congestion collapse (and did in 86)
−  as load increases, longer delays, more timeouts, more

retransmissions, more load, longer delays, more
timeouts …

−  Dynamic instability!
If timeout too big, inefficient

−  wait too long to send missing packet
Timeout should be based on actual round trip time

(RTT)
−  varies with destination subnet, routing changes,

congestion, …

5

Estimating RTTs

Idea: Adapt based on recent past measurements
−  For each packet, note time sent and time ack received
−  Compute RTT samples and average recent samples for

timeout
−  EstimatedRTT = α x EstimatedRTT + (1 - α) x

SampleRTT

−  This is an exponentially-weighted moving average (low
pass filter) that smoothes the samples. Typically,
α = 0.8 to 0.9.

−  Set timeout to small multiple (2) of the estimate

Estimated Retransmit Timer

Retransmission ambiguity

How do we distinguish first ack
from retransmitted ack?
−  First send to first ack?

•  What if ack dropped?

−  Last send to last ack?
•  What if last ack dropped?

Might never be able to fix too short
a timeout!

Timeout!

Retransmission ambiguity:
Solutions?

TCP: Karn-Partridge
−  ignore RTT estimates for retransmitted pkts
−  double timeout on every retransmission

Add sequence #’s to retransmissions (retry #1,
retry #2, …)

Modern TCP (RFC 1323): Add timestamp into
packet header; ack returns timestamp

Jacobson/Karels Algorithm

Problem:
−  Variance in RTTs gets large as network gets loaded
−  Average RTT isn’t a good predictor when we need it

most
Solution: Track variance too.

−  Difference = SampleRTT – EstimatedRTT
−  EstimatedRTT = EstimatedRTT + (δ x Difference)
−  Deviation = Deviation + δ(|Difference|- Deviation)
−  Timeout = µ x EstimatedRTT + φ x Deviation
−  In practice, δ = 1/8, µ = 1 and φ = 4

Estimate with Mean + Variance

6

Transport: Practice

Protocols
−  IP -- Internet protocol
−  UDP -- user datagram protocol
−  TCP -- transmission control protocol
−  RPC -- remote procedure call
−  HTTP -- hypertext transfer protocol
−  And a bunch more…

How do we connect processes?

IP provides host to host packet delivery
−  header has source, destination IP address

For applications to communicate, need to demux
packets sent to host to target app
−  Web browser (HTTP), Email servers (SMTP),

hostname translation (DNS), RealAudio player
(RTSP), etc.

−  Process id is OS-specific and transient

Ports

Port is a mailbox that processes “rent”
−  Uniquely identify communication endpoint as

(IP address, protocol, port)
How do we pick port #’s?

−  Client needs to know port # to send server a request
−  Servers bind to “well-known” port numbers

•  Ex: HTTP 80, SMTP 25, DNS 53, …
•  Ports below 1024 reserved for “well-known” services

−  Clients use OS-assigned temporary (ephemeral)
ports

•  Above 1024, recycled by OS when client finished

Sockets

OS abstraction representing communication
endpoint
−  Layer on top of TCP, UDP, local pipes

server (passive open)
−  bind -- socket to specific local port
−  listen -- wait for client to connect

client (active open)
−  connect -- to specific remote port

User Datagram Protocol (UDP)

Provides application – application delivery
Header has source & dest port #’s

−  IP header provides source, dest IP addresses

Deliver to destination port on dest machine
Reply returns to source port on source machine
No retransmissions, no sequence #s
=> stateless

Application
process

Application
process

Application
process

Packets arrive

Ports

Message

Queues

DeMux

UDP Delivery

Kernel

boundary

7

A brief Internet history...

1970 1975 1980 1985 1990 1995

1969

ARPANET

created

1972

TELNET
RFC 318

1973

FTP
RFC 454

1982

TCP & IP
RFC 793 & 791

1977

MAIL
RFC 733

1984

DNS
RFC 883

1986

NNTP
RFC 977

1990

ARPANET

dissolved

1991

WWW/HTTP

1992

MBONE

1995

Multi-backbone

Internet

TCP: This is your life...

1975 1980 1985 1990

1982

TCP & IP
RFC 793 & 791

1974

TCP described by

Vint Cerf and Bob Kahn

In IEEE Trans Comm

1983

BSD Unix 4.2

supports TCP/IP

1984

Nagel’s algorithm

to reduce overhead

of small packets;

predicts congestion
collapse

1987

Karn’s algorithm

to better estimate
round-trip time

1986

Congestion
collapse

observed

1988

Van Jacobson’s
algorithms

congestion avoidance
and congestion control

(most implemented in
4.3BSD Tahoe)

1990

4.3BSD Reno

fast retransmit

delayed ACK’s

1975

Three-way handshake

Raymond Tomlinson

In SIGCOMM 75

TCP: After 1990

1993 1994 1996

1994

ECN

(Floyd)

Explicit

Congestion

Notification

1993

TCP Vegas

(Brakmo et al)

real congestion
avoidance

1994

T/TCP

(Braden)

Transaction

TCP

1996

SACK TCP

(Floyd et al)

Selective
Acknowledgement 1996

Hoe

Improving TCP
startup

1996

FACK TCP

(Mathis et al)

extension to SACK

2006

PCP

Transmission Control Protocol (TCP)
Reliable bi-directional byte stream

−  No message boundaries
−  Ports as application endpoints

Sliding window, go back N/SACK, RTT est, …
−  Highly tuned congestion control algorithm

Flow control
−  prevent sender from overrunning receiver buffers

Connection setup
−  negotiate buffer sizes and initial seq #s
−  Needs to work between all types of computers

(supercomputer -> 8086)

TCP Packet Header

Source, destination ports
Sequence # (bytes being

sent)
Ack # (next byte

expected)
Receive window size
Checksum
Flags: SYN, FIN, RST

TCP Delivery

Application process

W rite
bytes

TCP
Send buffer

Segment Segment Segment
Transmit segments

Application process

Read
bytes

TCP
Receive buffer

…

…

…

IP x.html IP TCP get inde

8

TCP Sliding Window

Per-byte, not per-packet (why?)
−  send packet says “here are bytes j-k”
−  ack says “received up to byte k”

Send buffer >= send window
−  can buffer writes in kernel before sending
−  writer blocks if try to write past send buffer

Receive buffer >= receive window
−  buffer acked data in kernel, wait for reads
−  reader blocks if try to read past acked data

Visualizing the window

4 5 6 7 8 9 1 2 3 10 11 12

offered window

(advertised by receiver)
usable window

sent and

acknowledged sent, not ACKed

can send ASAP
can’t send until

window moves

Left side of window advances when data is acknowledged.

Right side controlled by size of window advertisement

Flow Control

What if sender process is faster than receiver
process?
−  Data builds up in receive window
−  if data is acked, sender will send more!
−  If data is not acked, sender will retransmit!

Sender must transmit data no faster than it can be
consumed by the receiver
−  Receiver might be a slow machine
−  App might consume data slowly

Sender sliding window <= free receiver buffer
−  Advertised window = # of free bytes; if zero, stop

Sending application

LastByteWritten

TCP

LastByteSent LastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvd NextByteExpected

Sender and Receiver Buffering

= available buffer = buffer in use

Example – Exchange of Packets

SEQ=1

SEQ=2

SEQ=3
SEQ=4

ACK=2; WIN=3

ACK=3; WIN=2

ACK=4; WIN=1

ACK=5; WIN=0

Receiver has buffer of
size 4 and application
doesn’t read

Stall due to
flow control
here

T=1

T=2

T=3

T=4

T=5

T=6

Example – Buffer at Sender

2 1 3 4 5 6 7 8 9

2 1 3 4 5 6 7 8 9

2 1 3 4 5 6 7 8 9

2 1 3 4 5 6 7 8 9

2 1 3 4 5 6 7 8 9

2 1 3 4 5 6 7 8 9

T=1

T=2

T=3

T=4

T=5

T=6

=acked

=sent

=advertised

9

How does sender know when to
resume sending?

If receive window = 0, sender stops
−  no data => no acks => no window updates

Sender periodically pings receiver with one byte
packet
−  receiver acks with current window size

Why not have receiver ping sender?

Should sender be greedy (I)?

Should sender transmit as soon as any space
opens in receive window?
−  Silly window syndrome

•  receive window opens a few bytes
•  sender transmits little packet
•  receive window closes

Solution (Clark, 1982): sender doesn’t resume
sending until window is half open

Should sender be greedy (II)?
App writes a few bytes; send a packet?

−  Don’t want to send a packet for every keystroke
−  If buffered writes >= max segment size
−  if app says “push” (ex: telnet, on carriage return)
−  after timeout (ex: 0.5 sec)

Nagle’s algorithm
−  Never send two partial segments; wait for first to be

acked, before sending next
−  Self-adaptive: can send lots of tinygrams if network is

being responsive
But (!) poor interaction with delayed acks (later)

TCP Connection Management
Setup

−  assymetric 3-way handshake
Transfer

−  sliding window; data and acks in both directions
Teardown

−  symmetric 2-way handshake
Client-server model

−  initiator (client) contacts server
−  listener (server) responds, provides service

Three-Way Handshake

Opens both directions for transfer

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y ,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

Do we need 3-way handshake?

Allows both sides to
−  allocate state for buffer size, state variables, …
−  calculate estimated RTT, estimated MTU, etc.

Helps prevent
−  Duplicates across incarnations
−  Intentional hijacking

•  random nonces => weak form of authentication

Short-circuit?
−  Persistent connections in HTTP (keep connection open)
−  Transactional TCP (save seq #, reuse on reopen)
−  But congestion control effects dominate

10

TCP Transfer

Connection is bi-directional
−  acks can carry response data

(client) (server)
Seq = x + MSS; Ack = y+1

Seq = y+MSS; Ack = x+2MSS+1

Seq = x + 2*MSS; Ack = y+1

Seq = x + 3*MSS; Ack = y+MSS+1

TCP Connection Teardown

Symmetric: either side can close connection (or RST!)
Web server Web browser

FIN

ACK

data, ACK

FIN
data, ACK

ACK

Half-open connection; data
can be continue to be sent

Can reclaim connection right away
(must be at least 1MSL after first FIN)

Can reclaim connection
after 2 MSL

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACK CLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/ SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close /FIN

FIN/ACK Close /FIN

FIN/ACK

Timeout after two
segment lifetimes FIN/ACK

ACK

ACK

ACK

Close /FIN

Close

CLOSED

Active open /SYN

TCP State Transitions TCP Connection Setup, with States

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y ,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

+data

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

TCP Connection Teardown

Web server Web browser

FIN

ACK

ACK

FIN

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK

FIN_WAIT_2

TIME_WAIT

CLOSED
CLOSED

…

The TIME_WAIT State
We wait 2MSL (two times the maximum segment

lifetime of 60 seconds) before completing the
close

Why?

ACK might have been lost and so FIN will be resent
Could interfere with a subsequent connection

11

TCP Handshake in an
Uncooperative Internet

TCP Hijacking
−  if seq # is predictable,

attacker can insert packets
into TCP stream

−  many implementations of
TCP simply bumped
previous seq # by 1

−  attacker can learn seq # by
setting up a connection

Solution: use random
initial sequence #’s
−  weak form of

authentication

Malicious attacker
Server

SYN, SequenceNum = x

SYN + ACK, y, x + 1

Client

“HTTP get URL”, x + MSS

web page, y + MSS

ACK, y+1

fake web page, y+MSS

TCP Handshake in an
Uncooperative Internet

TCP SYN flood
−  server maintains state

for every open
connection

−  if attacker spoofs source
addresses, can cause
server to open lots of
connections

−  eventually, server runs
out of memory

Malicious attacker Server
SYN, SequenceNum = x

SYN + ACK, y, x + 1

SYN, p SYN, q SYN, r SYN, s

TCP SYN cookies

Solution: SYN cookies
−  Server keeps no state in

response to SYN; instead
makes client store state

−  Server picks return seq # y
= © that encrypts x

−  Gets © +1 from sender;
unpacks to yield x

Can data arrive before ACK?

Client Server
SYN, SequenceNum = x

SYN + ACK, ©, x + 1

ACK, © + 1

How can TCP choose segment size?

Pick LAN MTU as segment size?
−  LAN MTU can be larger than WAN MTU
−  E.g., Gigabit Ethernet jumbo frames

Pick smallest MTU across all networks in
Internet?
−  Most traffic is local!

•  Local file server, web proxy, DNS cache, ...

−  Increases packet processing overhead
Discover MTU to each destination? (IP DF bit)
Guess?

Layering Revisited
IP layer “transparent” packet delivery

−  Implementation decisions affect higher layers (and
vice versa)

•  Fragmentation => reassembly overhead
– path MTU discovery

•  Packet loss => congestion or lossy link?
–  link layer retransmission

•  Reordering => packet loss or multipath?
– router hardware tries to keep packets in order

•  FIFO vs. active queue management

IP Packet Header Limitations

Fixed size fields in IPv4 packet header
−  source/destination address (32 bits)

•  limits to ~ 4B unique public addresses; about 600M allocated
•  NATs map multiple hosts to single public address

−  IP ID field (16 bits)
•  limits to 65K fragmented packets at once => 100MB in flight?
•  in practice, fewer than 1% of all packets fragment

−  Type of service (8 bits)
•  unused until recently; used to express priorities

−  TTL (8 bits)
•  limits max Internet path length to 255; typical max is 30

−  Length (16 bits)
•  Much larger than most link layer MTU’s

12

TCP Packet Header Limitations

Fixed size fields in TCP packet header
−  seq #/ack # -- 32 bits (can’t wrap within MSL)

•  T1 ~ 6.4 hours; OC-192 ~ 3.5 seconds
−  source/destination port # -- 16 bits

•  limits # of connections between two machines (NATs)
•  ok to give each machine multiple IP addresses

−  header length
•  limits # of options

−  receive window size -- 16 bits (64KB)
•  rate = window size / delay
•  Ex: 100ms delay => rate ~ 5Mb/sec
•  RFC 1323: receive window scaling
•  Defaults still a performance problem

HTTP on TCP

How do we reduce the # of
messages?

Delayed ack: wait for 200ms for
reply or another pkt arrival

TCP RST from web server

SYN

SYN+ACK

ACK

http get

ACK

http data

ACK

FIN

ACK

FIN

ACK

Bandwidth Allocation

How do we efficiently share network resources
among billions of hosts?
−  Congestion control

•  Sending too fast causes packet loss inside network ->
retransmissions -> more load -> more packet losses -> …

•  Don’t send faster than network can accept

−  Fairness
•  How do we allocate bandwidth among different users?
•  Each user should (?) get fair share of bandwidth

Chapter 6, Figure 1

Buffer absorbs bursts when input rate > output
If sending rate is persistently > drain rate, queue builds
Dropped packets represent wasted work

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

Congestion

Packets dropped here

Chapter 6, Figure 2

Router

Source
2

Source
1

Source
3

Router

Router

Destination
2

Destination
1

Fairness

Each flow from a source to a destination should (?) get an
equal share of the bottleneck link … depends on paths
and other traffic

The Problem

Original TCP sent full window of data
When links become loaded, queues fill up, and this

can lead to:
−  Congestion collapse: when round-trip time exceeds

retransmit interval -- every packet is retransmitted
many times

−  Synchronized behavior: network oscillates between
loaded and unloaded

13

TCP Congestion Control

Goal: efficiently and fairly allocate network
bandwidth
−  Robust RTT estimation
−  Additive increase/multiplicative decrease

•  oscillate around bottleneck capacity

−  Slow start
•  quickly identify bottleneck capacity

−  Fast retransmit
−  Fast recovery

Tracking the Bottleneck Bandwidth

Sending rate = window size/RTT
Multiplicative decrease

−  Timeout => dropped packet => cut window size in
half

•  and therefore cut sending rate in half

Additive increase
−  Ack arrives => no drop => increase window size by

one packet/window
•  and therefore increase sending rate a little

TCP “Sawtooth”

Oscillates around bottleneck bandwidth
−  adjusts to changes in competing traffic

Slow start

How do we find bottleneck bandwidth?
−  Start by sending a single packet

•  start slow to avoid overwhelming network
−  Multiplicative increase until get packet loss

•  quickly find bottleneck
−  Remember previous max window size

•  shift into linear increase/multiplicative decrease when get
close to previous max ~ bottleneck rate

•  called “congestion avoidance”

Slow Start

Quickly find the bottleneck bandwidth

TCP Mechanics Illustrated

78

Source Dest Router

100 Mbps

0.9 ms latency
10 Mbps

0 latency

14

Slow Start Problems

Bursty traffic source
−  will fill up router queues, causing losses for other flows
−  solution: ack pacing

Slow start usually overshoots bottleneck
−  will lose many packets in window
−  solution: remember previous threshold

Short flows
−  Can spend entire time in slow start!
−  solution: persistent connections?

Avoiding burstiness: ack pacing

Sender Receiver

bottleneck

packets

acks

Window size = round trip delay * bit rate

Ack Pacing After Timeout

Packet loss causes timeout,
disrupts ack pacing
−  slow start/additive increase are

designed to cause packet loss

After loss, use slow start to regain
ack pacing
−  switch to linear increase at last

successful rate
−  “congestion avoidance”

1

2
3

4
5

1

1

1

1
1

2

5

Ti
m

eo
ut

Putting It All Together

Timeouts dominate performance!

Fast Retransmit

Can we detect packet loss without a
timeout?
−  Receiver will reply to each packet with

an ack for last byte received in order
Duplicate acks imply either

−  packet reordering (route change)
−  packet loss

TCP Tahoe
−  resend if sender gets three duplicate

acks, without waiting for timeout

1

2
3

4
5

1

1

1

1
1

2

5

Fast Retransmit Caveats

Assumes in order packet delivery
−  Recent proposal: measure rate of out of order

delivery; dynamically adjust number of dup acks
needed for retransmit

Doesn’t work with small windows (e.g. modems)
−  what if window size <= 3

Doesn’t work if many packets are lost
−  example: at peak of slow start, might lose many

packets

15

Fast Retransmit

Regaining ack pacing limits performance

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

window
(in segs)

round-trip times

Slow Start + Congestion Avoidance + Fast
Retransmit

Fast Recovery

Use duplicate acks to maintain ack
pacing
−  duplicate ack => packet left network
−  after loss, send packet after every

other acknowledgement

Doesn’t work if lose many packets in a
row
−  fall back on timeout and slow start to

reestablish ack pacing

1

2
3

4
5

1

1

1

1
1

2

3

Fast Recovery

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

window
(in segs)

round-trip times

Slow Start + Congestion Avoidance + Fast
Retransmit + Fast Recovery

Delayed ACKS

Problem:
−  In request/response programs, server will send

separate ACK and response packets
•  computing the response can take time

TCP solution:
−  Don’t ACK data immediately
−  Wait 200ms (must be less than 500ms)
−  Must ACK every other packet
−  Must not delay duplicate ACKs

Delayed Acks

Recall that acks are delayed by 200ms to wait for
application to provide data

But (!) TCP congestion control triggered by acks
−  if receive half as many acks => window grows half as

fast

Slow start with window = 1
−  ack will be delayed, even though sender is waiting for

ack to expand window

What if two TCPs share link?
Reach equilibrium independent of initial bw

−  assuming equal RTTs, “fair” drops at the router

16

Equilibrium Proof
Se

nd
in

g
R

at
e

fo
r

A

Sending Rate for B

Link Bandwidth

Fair Allocation

x

What if TCP and UDP share link?

Independent of initial rates, UDP will get priority!
TCP will take what’s left.

What if two different TCP
implementations share link?

If cut back more slowly after drops => will grab
bigger share

If add more quickly after acks => will grab bigger
share

Incentive to cause congestion collapse!
−  Many TCP “accelerators”
−  Easy to improve perf at expense of network

One solution: enforce good behavior at router

What if TCP connection is short?

Slow start dominates performance
−  What if network is unloaded?
−  Burstiness causes extra drops

Packet losses unreliable indicator
−  can lose connection setup packet
−  can get drop when connection near done
−  signal unrelated to sending rate

In limit, have to signal every connection
−  50% loss rate as increase # of connections

Example: 10KB document
10Mb/s Ethernet,70ms RTT, 536 MSS

Ethernet ~ 10 Mb/s
64KB window, 70ms RTT ~ 7.5 Mb/s
can only use 10KB window ~ 1.2 Mb/s
5% drop rate ~ 275 Kb/s (steady state)
model timeouts ~ 228 Kb/s
slow start, no losses ~ 140 Kb/s
slow start, with 5% drop ~ 75 Kb/s

Short flow bandwidth

Flow length=10Kbytes, RTT=70ms

17

TCP over Wireless

What’s the problem?

How might we fix it?

97

TCP over 10Gbps Pipes

What’s the problem?

How might we fix it?

98

TCP and ISP router buffers

What’s the problem?

How might we fix it?

99

TCP and Real-time Flows

What’s the problem?

How might we fix it?

100

