

Source routing

- · The source embeds path information in packets
- E.g., Driving directions
- Datagram forwarding
 - $\cdot\;$ The source embeds destination address in the packet
 - E.g., Postal service
- Virtual circuits
 - · Pre-computed connections: static or dynamic
 - · Embed connection IDs in packets
 - E.g., Airline travel

14

Datagrams (Ethernet, IP)

Each packet has destination address

Each switch/router has forwarding table of destination -> next hop

- At v: F -> w
- At w: F-> y
- Forwarding decision made independently for each arriving packet

13

Distributed algorithm for calculating tables (routing)

Virtual circuits (ATM)

Each connection has destination address; each packet has virtual circuit ID (VCI)

Each switch has forwarding table of connection \rightarrow next hop

- at connection setup, allocate virtual circuit ID (VCI) at each switch in path
- (input #, input VCI) -> (output #, output VCI)
 At v: (A, 12) -> (w, 2)

• At w: (v, 2) -> (y, 7)

Comparison of forwarding methods

	Src routing	Datagrams	Virtual circuits
Header size	worst	ок	best
Forwarding table size	none	# of hosts or networks	# of circuits
Forwarding overhead	best	Lookup	Lookup
Setup overhead	none	none	=~ datagram forwarding
Error recovery	Tell all sources	Tell all routers	Tear down circuit and reroute
QoS support	hard	hard	easier

To bridge or not?

Yes:

- Simple (robust)
- + No configuration required at end hosts or at bridges
- No:
 - Scalability
 - Longer paths
 - Minimal control
 - Millina control

Research is fast eroding the difference with routing

 SmartBridge: A scalable bridge architecture, SIGCOMM 2000
 Floodless in SEATTLE: A scalable Ethernet architecture for large enterprises, SIGCOMM 2008

Solutions to count to infinity

Lower infinity ©

Split horizon

- Do not advertises the destination back to its next hop
 that's where it learned it from!
- Solves trivial count-to-infinity problem

Poisoned reverse (RIP)

- Go farther: advertise infinity back to next hop

33

Link state routing

Every router learns complete topology and then runs shortest-path

Two phases:

- Topology dissemination -- each node gets complete topology via reliable flooding
- Shortest-path calculation (Dijkstra's algorithm)
- As long as every router uses the same information, will reach consistent tables

- Simplicity of coding: distance vector
- Bandwidth: distance vector (?)
- · Computation: distance vector (?)
- Convergence speed: link state ← turns out to be key
- Other functionality: link state (mapping, troubleshooting)

Neither supports complex policies and neither scales to the entire Internet

Next week: BGP (which is closer to distance vector algorithms)

47

56

55

Subnetting – More Hierarchy Split one network # into multiple Network number Host number physical networks Class B address Internal structure 00000000 isn't propagated Subnet mask (255.255.255.0) Helps allocation efficiency Host ID Network number Subnet ID Subnetted address 57

IP Forwarding Revisited

IP address still has network #, host #

- With class A/B/C, split was obvious from first few bitsNow split varies as you traverse the network!
- Routing table contains variable length "prefixes"
 - IP address and length indicating what bits are fixedNext hop to use for each prefix

61

63

To find the next hop:

- There can be multiple matches
- Take the longest matching prefix

IPv6 addressing 16 byte addresses (4x IPv4) • 1.5K per sq. foot of earth's surface Written in hexadecimal as 8 groups of 2-bytes • E.g., 1234:5678:9abc:def1:2345:6789:abcd Prefix Use 00...0 (128 bits) Unspecified 00...1 (128 bits) Loopback Multicast 1111 1111 1111 1110 10 Link local unicast 1111 1110 11 Site local unicast Everything else Global unicast

Address resolution protocol (ARP)

Routers take packets to other networks

How to deliver packets within the same network? • Need IP address to link-layer mapping

- ARP is a dynamic approach to learn mapping
 - Node A sends broadcast query for IP address X
 Node B with IP address X replies with its MAC address M
 - A caches (X, M); old information is timed out
 - Also: B caches A's MAC and IP addresses, other nodes refresh

71

ARP Example To send first message use ARP to learn MAC address For later messages (common case), consult ARP cache

Internet control message protocol (ICMP)

What happens when things go wrong?

Need a way to test/debug a large, widely distributed system

ICMP is used for error and information reporting:

- Errors that occur during IP forwarding
- Queries about the status of the network

Fragment Considerations

Relating fragments to original datagram provides:

- Tolerance of loss, reordering and duplication
- Ability to fragment fragments

Consequences of fragmentation:

- Loss of any fragments causes loss of entire packet
- Need to time-out reassembly when any fragments lost

79

Path MTU Discovery

Path MTU is the smallest MTU along path

Packets less than this size don't get fragmented

Fragmentation is a burden for routers

We already avoid reassembling at routersAvoid fragmentation too by having hosts learn path MTUs

Hosts send packets, routers return error if too large - Hosts discover limits, can fragment at source

Reassembly at destination as before