
10/13/08 

1 

P561: Network Systems
Week 3: Internetworking I

Tom Anderson
Ratul Mahajan

TA: Colin Dixon

Limits of a single wire LAN
One wire can limit us in terms of:

−  Distance
−  Number of nodes
−  Performance

How do we scale to a larger, faster network?

2

Switch
or Hub

nodes

wire

Scaling beyond one wire
Intra-network:

•  Hubs, switches

Inter-network:
•  Routers

Key tasks:
•  Routing, forwarding, addressing

Key challenges:
•  Scale, heterogeneity, robustness

3

Bridges and extended LANs
“Transparently” interconnect LANs with a bridge

or switch
−  Receive frames from each LAN; selectively forward to

the others
−  Each LAN is its own collision domain

a

4

bridge

Backward learning algorithm
To optimize overall performance:

−  Should NOT forward AB
−  Should forward AC

How does the bridge know?
−  Learn who is where by observing source addresses
−  Forward using destination address; age for robustness
−  Flood if unknown

Only works for tree topologies

5

bridge
B

A

C

Why stop at one bridge?

Need to know where to
forward!

Full-blown routing
problem

•  Need to go beyond a
purely local view

B3

A

C

E

D
B2

B5

B

B7 K

F

H

B4

J

B1

B6

G

I

6

10/13/08 

2 

Internetworks

Set of interconnected networks, e.g., the Internet
−  Scale and heterogeneity

R2
R1

H4

H5

H3 H2 H1

Network 2 (Ethernet)

Network 1 (Ethernet)

H6

Network 3 (FDDI)

Network 4
(point-to-point)

H7 R3 H8

7

In terms of protocol stacks
IP is the glue: a global routing and addressing layer across

heterogeneous networks

8

R1

ETH FDDI

IP IP

ETH

TCP R2

FDDI PPP

IP

R3

PPP ETH

IP

H1

IP

ETH

TCP

H8

How can a packet from A get to F?

A

B

C D

H

G

F

E

v

w

z

x

y

9

Forwarding vs. routing
Forwarding: the process that each router goes

through for every packet to send it on its way
−  Involves local decisions

Routing: the process that all routers go through to
calculate the routing tables
−  Involves non-local decisions

10

Three ways to forward

Source routing
•  The source embeds path information in packets
•  E.g., Driving directions

Datagram forwarding
•  The source embeds destination address in the packet
•  E.g., Postal service

Virtual circuits
•  Pre-computed connections: static or dynamic
•  Embed connection IDs in packets
•  E.g., Airline travel

11

Source routing (Myrinet)
List path in packet

−  Ex: A-> F (v, w, y)

Source routes can be strict or loose
•  Loose source routes need another forwarding

mechanism

Sources need a view of the topology

12

10/13/08 

3 

Datagrams (Ethernet, IP)

Each packet has destination address
Each switch/router has forwarding table of

destination -> next hop
−  At v: F -> w
−  At w: F-> y
−  Forwarding decision made independently for each

arriving packet

Distributed algorithm for calculating tables
(routing)

13

Virtual circuits (ATM)
Each connection has destination address; each

packet has virtual circuit ID (VCI)
Each switch has forwarding table of connection

next hop
−  at connection setup, allocate virtual circuit ID (VCI) at

each switch in path
−  (input #, input VCI) -> (output #, output VCI)

•  At v: (A, 12) -> (w, 2)
•  At w: (v, 2) -> (y, 7)

14

Comparison of forwarding methods

15

Routing goals
Compute best path

−  Defining “best” is slippery

Scale to billions of hosts
−  Minimize control messages and routing table size

Quickly adapt to failures or changes
−  Node and link failures, plus message loss

16

A network is a graph
Routing is essentially a problem in graph theory

−  switches = nodes; links = edges; delay/hops = cost
Need dynamic computation to adapt to changes

a

=router

=link

X

1
1

1

1

1

1

1

1
1 =cost

17

Routing alternatives

Spanning Tree (Ethernet)
−  Convert graph into a tree; route only along tree

Distance vector (RIP)
−  exchange routing tables with neighbors
−  no one knows complete topology

Link state (OSPF, IS-IS)
−  send everyone your neighbors
−  everyone computes shortest path

18

10/13/08 

4 

Spanning Tree Example

Convert graph
into a tree;
route only
along the tree

Simple and
avoids loops

B3

A

C

E

D
B2

B5

B

B7 K

F

H

B4

J

B1

B6

G

I

19

Spanning tree algorithm overview
Distributed algorithm to compute spanning tree

−  Robust against failures, needs no organization

Outline:
1.  Elect a root node of the tree (lowest address)
2.  Grow tree as shortest distances from the root (using

lowest address to break distance ties)

20

Spanning tree algorithm in detail
Bridges periodically exchange config messages

−  Contain: best root seen, distance to root, bridge address
Initially, each bridge thinks it is the root

−  Each bridge tells its neighbors its address
On receiving a config message, update position in tree

−  Pick smaller root address, then
−  Shorter distance to root, then
−  Bridge with smaller address

Periodically update neighbors
−  Add one to distance to root, send downstream

Turn off forwarding on ports except those that send/receive
“best”

21

Algorithm Example
Message format: (root, dist to root, bridge)
Messages sequence to and from B3:

1.  B3 sends (B3, 0, B3) to B2 and B5
2.  B3 receives (B2, 0, B2) and (B5, 0, B5)

and accepts B2 as root
3.  B3 sends (B2, 1, B3) to B5
4.  B3 receives (B1, 1, B2) and (B1, 1, B5)

and accepts B1 as root
5.  B3 wants to send (B1, 2, B3)

but doesn’t as its nowhere “best”
6.  B3 receives (B1, 1, B2) and (B1, 1, B5) again … stable
7.  Data forwarding is turned off to A

22

B3
A

C

E
D B2

B5

B

B7 K
F

H

B4
J

B1

B6

G

I

To bridge or not?

Yes:
•  Simple (robust)
•  No configuration required at end hosts or at bridges

No:
•  Scalability
•  Longer paths
•  Minimal control

Research is fast eroding the difference with routing
•  SmartBridge: A scalable bridge architecture, SIGCOMM 2000
•  Floodless in SEATTLE: A scalable Ethernet architecture for large

enterprises, SIGCOMM 2008
23

Distance vector routing
Each router periodically exchanges messages with

neighbors
−  best known distance to each destination (“distance vector”)

Initially, can get to self with zero cost
On receipt of update from neighbor, for each destination

−  switch forwarding tables to neighbor if it has cheaper route
−  update best known distance
−  tell neighbors of any changes

Absent topology changes, will converge to shortest path

24

10/13/08 

5 

DV Example: Initial Table at A

Dest Cost Next
A 0 here
B ∞ -
C ∞ -
D ∞ -
E ∞ -
F ∞ -
G ∞ -

25

DV Example: Table at A, step 1

Dest Cost Next
A 0 here
B 1 B
C 1 C
D ∞ -
E 1 E
F 1 F
G ∞ -

26

DV Example: Final Table at A

Dest Cost Next
A 0 here
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 2 F

Reached in two iterations
=> simple example

27

What if there are changes?

Suppose link between F and G fails
1.  F notices failure, sets its cost to G to

infinity and tells A
2.  A sets its cost to G to infinity too,

since it can’t use F
3.  A learns route from C with cost 2 and

adopts it

a XXXXX

Dest Cost Next
A 0 here
B 1 B
C 1 C
D 2 C
E 1 E
F 1 F
G 3 F

28

Simple example
−  Costs in nodes are to reach Internet

Now link between B and Internet fails …

Count To Infinity Problem

Internet A/2 B/1

29

Count To Infinity Problem

B hears of a route to the Internet via A with cost 2
So B switches to the “better” (but wrong!) route

update

Internet A/2 B/3 XXX

30

10/13/08 

6 

Count To Infinity Problem

A hears from B and increases its cost

update

Internet A/4 B/3 XXX

31

Count To Infinity Problem
B hears from A and (surprise) increases its cost
Cycle continues and we “count to infinity”

Packets caught in a loop between A and B

update

Internet A/4 B/5 XXX

32

Solutions to count to infinity
Lower infinity

Split horizon
−  Do not advertises the destination back to its next hop

– that’s where it learned it from!
−  Solves trivial count-to-infinity problem

Poisoned reverse (RIP)
−  Go farther: advertise infinity back to next hop

33

Question

Why does poisoned reverse bring additional
benefit over split horizon?

34

Link state routing

Every router learns complete topology and then
runs shortest-path

Two phases:
−  Topology dissemination -- each node gets complete

topology via reliable flooding
−  Shortest-path calculation (Dijkstra’s algorithm)

As long as every router uses the same information,
will reach consistent tables

35

Topology flooding

Each router identifies direct neighbors; put in
numbered link state packets (LSPs) and
periodically send to neighbors
−  LSPs contain [router, neighbors, costs]

If get a link state packet from neighbor Q
−  drop if seen before
−  else add to database and forward everywhere but Q

Each LSP will travel over the same link at most
once in each direction

36

10/13/08 

7 

Example

LSP generated by X at T=0
Nodes become red as they receive it

X A

C B D

X A

C B D

X A

C B D

X A

C B D

T=0 T=1

T=2 T=3

37

Complications
What happens when a link is added or fails?

−  LSPs are numbered; only forward LSP if its new
−  Use cost infinity to signal a link is down

What happens when a router fails and restarts?
−  How do the other nodes know it has failed?
−  What sequence number should it use?

38

Shortest Paths: Dijkstra’s Algorithm

Graph algorithm for single-source shortest
path

S {}
Q <all nodes keyed by distance>
While Q != {}

 u extract-min(Q)
 S S plus {u}
 for each node v adjacent to u
 “relax” the cost of v

 u is done, add to
shortest paths

39

Dijkstra Example – Step 1

10

2 3

5

2

1

4 6

7

9
0

40

Dijkstra Example – Step 2

10

2 3

5

2

1

4 6

7

9
0

5

10

41

Dijkstra Example – Step 3

8

2 3

5

2

1

4 6

7

9
0

5 7

14

42

10/13/08 

8 

Dijkstra Example – Step 4

8

2 3

5

2

1

4 6

7

9
0

5 7

13

43

Dijkstra Example – Step 5

8

2 3

5

2

1

4 6

7

9
0

5 7

9

44

Dijkstra Example – Done

8

2 3

5

2

1

4 6

7

9
0

5 7

9

45

Question

Does link state algorithm guarantee routing tables
are loop free?

46

Distance vector vs link state
Both are equivalent in terms of paths they compute

•  Ignore the limitations of current standards (RIP)
But they differ in other concerns

•  Memory: distance vector wins
•  Simplicity of coding: distance vector
•  Bandwidth: distance vector (?)
•  Computation: distance vector (?)
•  Convergence speed: link state turns out to be key
•  Other functionality: link state (mapping, troubleshooting)

Neither supports complex policies and neither scales to the
entire Internet

•  Next week: BGP (which is closer to distance vector algorithms)

47

Routing convergence

Three techniques for tackling the problem
•  Loop-free convergence

•  Wait for route computation to converge
•  Trades packets drops for loops

•  Pre-compute backup paths
•  Works best for small number of failures

•  Carry failure information in packets
•  Required until routing converges

48

10/13/08 

9 

Failure carrying packets

49

Route flapping

Constant churn in routes
•  E.g., due to faulty equipment
•  Can overload routers

Flap damping sometimes used
•  Suppress frequent updates
•  Slows convergence

Skeptics
•  Spread bad news quickly, good news slowly

50

On Routing Cost Metrics
How should we choose cost?

−  To get high bandwidth, low delay or low loss?
−  Do costs depend on the load?

Static Metrics
−  Unit cost? Treats OC48 same as ISDN
−  Inverse bandwidth? Typical default
−  Manually tweak to yield desired goal? state of art

Dynamic Metrics
−  Depend on load; try to avoid hotspots (congestion)
−  But can lead to oscillations (damping needed)

51

Internet Protocol (IP)

To connect diverse networks together
Service model:

•  Best effort datagram forwarding

Addressing:
•  Routing scalability

•  Each IP address has “network #” and “host #”
•  Routing uses network #
•  Immense pressure on scalability today

•  Every host gets a globally reachable address
•  Oops: NATs (private host addresses)
•  Retrofitting: sub- and super-nets
•  Redesign: IPv6

52

Network Host
7 24

0

Network Host

14 16

1 0

Network Host

21 8

1 1 0

IPv4 Address Formats

32 bits written in “dotted quad” notation
−  Example: 18.31.0.135

Class A

Class B

Class C

27

Multicast Group # 1 1 1 Class D 0

53

Network Example

Network number: 128.96.0.0 128.96.0.15
128.96.0.1

H1
R1

128.97.0.2
Network number: 128.97.0.0

128.97.0.1
128.97.0.139

R2
H2

128.98.0.1
128.98.0.14

Network number: 128.98.0.0

H3

54

10/13/08 

10 

Problems with IPv4 Addresses
Only 4B possible addresses

−  20B+ microprocessors fabricated in 2001

Rigid class structure makes it worse
−  Internal fragmentation: cannot use all addresses
−  Class B disproportionately popular (only ~16K nets)

Router tables still too large
−  2M class C networks!
−  Need better aggregation

55

Flexible IP Address Allocation

Subnets
−  split net addresses between multiple sites

Supernets
−  assign adjacent net addresses to same org
−  classless routing (CIDR)

•  combine routing table entries whenever all nodes with same
prefix share same hop

56

Network number Host number

Class B address

Subnet mask (255.255.255.0)

Subnetted address

111111111111111111111111 00000000

Network number Host ID Subnet ID

Subnetting – More Hierarchy

Split one network #
into multiple
physical networks

Internal structure
isn’t propagated

Helps allocation
efficiency

57

Subnet mask: 255.255.255.128
Subnet number: 128.96.34.0 128.96.34.15

128.96.34.1
H1

R1

128.96.34.130 Subnet mask: 255.255.255.128
Subnet number: 128.96.34.128

128.96.34.129
128.96.34.139

R2
H2

128.96.33.1
128.96.33.14 Subnet mask: 255.255.255.0

Subnet number: 128.96.33.0

H3

Subnet Example

58

CIDR (Supernetting)
CIDR = Classless Inter-Domain Routing

Aggregate adjacent advertised network routes
−  Ex: ISP has class C addresses 192.4.16 through

192.4.31
−  Really like one larger 20 bit address class …
−  Advertise as such (network number, prefix length)
−  Reduces size of routing tables

59

Border gateway
(advertises path to
11000000000001)

Regional network

Corporation X
(11000000000001000001)

Corporation Y
(11000000000001000000)

CIDR Example
X and Y routes can be aggregated because they

form a bigger contiguous range.

/19

/20

/20

60

10/13/08 

11 

IP Forwarding Revisited

IP address still has network #, host #
−  With class A/B/C, split was obvious from first few bits
−  Now split varies as you traverse the network!

Routing table contains variable length “prefixes”
−  IP address and length indicating what bits are fixed
−  Next hop to use for each prefix

To find the next hop:
−  There can be multiple matches
−  Take the longest matching prefix

61

The sky is falling!

62

IPv6 addressing

16 byte addresses (4x IPv4)
•  1.5K per sq. foot of earth’s surface
•  Written in hexadecimal as 8 groups of 2-bytes

•  E.g., 1234:5678:9abc:def1:2345:6789:abcd

63

Prefix Use

00…0 (128 bits) Unspecified

00…1 (128 bits) Loopback

1111 1111 Multicast

1111 1110 10 Link local unicast

1111 1110 11 Site local unicast

Everything else Global unicast

IPv6 vs. IPv4

Pretty similar overall

Except that the address length of v6 offers some
unique flexibilities

•  Stateless autoconfiguration of hosts (in a few slides)
•  Deeper hierarchy and more efficient aggregation (e.g.,

geographical)

Two ways to map an IPv4 address to IPv6

64

Network Address Translators (NATs)

Middle-boxes that change IP addresses or ports for
packets that traverse network edge

Original goal: enable internal hosts to use private
addresses while still being able to communicate
with external hosts

Side-effect: Limit allowed communication patterns

65

Without NATs

66

Source: http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_7-3/anatomy.html

10/13/08 

12 

With NATs

67

Source: http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_7-3/anatomy.html

NAT Pros and Cons
Pros:

•  Enable decentralized address assignment
•  Admins like the security they provide

Cons:
•  Break end-to-end semantics

•  Gets in the way of IPSec
•  Uncomfortable existence with ICMP and fragmentation

•  Hinders many applications
•  Some applications needs additional infrastructure to work
•  Many possible, unknown behaviors – hard to adapt to
•  Perhaps the single-biggest challenge in deploying new apps

68

Are NATs here to stay?
Originally intended as a stop-gap measure against IP address

space exhaustion

Now it appears they are here to stay (in some form)
•  They fix a fundamental flaw in the communication model Internet

designers imagined
•  Network admins dislike unfettered access to their hosts
•  “Tussle” between users, admins, app developers

Focus on alleviating the adverse effects
•  Industry is focusing on standardizing their behavior
•  Research on making them first-class citizens

•  IPNL: A NAT-extended Internet architecture, SIGCOMM 2001
•  An End-Middle-End Approach to Connection Establishment, SIGCOMM 2007

69

Getting an IP address
“Static” IP addresses

−  IP address assigned to each machine; sysadmin must configure

Dynamic Host Configuration Protocol (DHCP)
−  One DHCP server with the bootstrap info

•  Host address, gateway address, subnet mask, …
•  Find DHCP server using LAN broadcast

−  Addresses are leased; renew periodically
−  Other configuration info as well (DNS, router, MTU, etc.)

“Stateless” autoconfiguration (in IPv6)
−  Reuse Ethernet addresses for lower portion of address
−  Learn higher portion from routers

70

Address resolution protocol (ARP)

Routers take packets to other networks
How to deliver packets within the same network?

•  Need IP address to link-layer mapping
ARP is a dynamic approach to learn mapping

−  Node A sends broadcast query for IP address X
−  Node B with IP address X replies with its MAC

address M
−  A caches (X, M); old information is timed out
−  Also: B caches A’s MAC and IP addresses, other nodes

refresh

71

ARP Example
To send first message use ARP to learn MAC address
For later messages (common case), consult ARP cache

time

A B

Who is X?

I am X

<Message 1>

<Message 2>

72

10/13/08 

13 

Internet control message protocol
(ICMP)

What happens when things go wrong?
−  Need a way to test/debug a large, widely distributed

system

ICMP is used for error and information reporting:
−  Errors that occur during IP forwarding
−  Queries about the status of the network

73

ICMP Generation

ICMP messages include portion of IP packet that
triggered the error (if applicable) in their
payload

source dest

ICMP IP packet

IP packet

Error during
forwarding!

74

Common ICMP Messages
Destination unreachable

−  “Destination” can be host, network, port or protocol
Redirect

−  To shortcut circuitous routing
TTL Expired

−  Used by the “traceroute” program
Echo request/reply

−  Used by the “ping” program

75

ICMP Restrictions

The generation of error messages is limited to
avoid cascades … error causes error that causes
error!

Don’t generate ICMP error in response to:
−  An ICMP error
−  Broadcast/multicast messages (link or IP level)
−  IP header that is corrupt or has bogus source address

ICMP messages are often rate-limited too.

76

Fragmentation Issue

Different networks may have
different frame limits (MTUs)
−  Ethernet 1.5K, FDDI 4.5K

Don’t know if packet will be too
big for path beforehand
−  IPv4: fragment on demand and

reassemble at destination
−  IPv6: network returns error

message so host can learn limit

R1

H4

H5

H3 H2 H1

Network 2 (Ethernet)

H6

Network 3 (FDDI)

Fragment?

77

Fragment Fields

Fragments of one
packet identified
by (source, dest,
frag id) triple
−  Make unique

Offset gives start,
length changed

Flags are More
Fragments (MF)
Don’t Fragment
(DF)

V ersion HLen TOS Length

Identifier for Fragments Flags Fragment Offset

TTL Protocol Checksum

Source Address

Destination Address

Options (variable) Pad
(variable)

0 4 8 16 19 31

Data

78

10/13/08 

14 

Fragment Considerations

Relating fragments to original datagram provides:
−  Tolerance of loss, reordering and duplication
−  Ability to fragment fragments

Consequences of fragmentation:
−  Loss of any fragments causes loss of entire packet
−  Need to time-out reassembly when any fragments lost

79

Path MTU Discovery
Path MTU is the smallest MTU along path

−  Packets less than this size don’t get fragmented

Fragmentation is a burden for routers
−  We already avoid reassembling at routers
−  Avoid fragmentation too by having hosts learn path MTUs

Hosts send packets, routers return error if too large
−  Hosts discover limits, can fragment at source
−  Reassembly at destination as before

80

