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Abstract

In this paper, we present the design, implementation,
and evaluation of a novel endpoint congestion control
system that achieves near-optimal performance in all
likely circumstances. Our approach, called the Probe
Control Protocol (PCP), emulates network-based control
by using explicit short probes to test and temporarily ac-
quire available bandwidth. Like TCP, PCP requires no
network support beyond plain FIFO queues. Our initial
experiments show that PCP, unlike TCP, achieves rapid
startup, small queues, and low loss rates, and that the ef-
ficiency of our approach does not compromise eventual
fairness and stability. Further, PCP is compatible with
sharing links with legacy TCP hosts, making it feasible
to deploy.

1 Introduction
The efficient and fair allocation of distributed resources
is a longstanding problem in network research. Today,
almost all operating systems use TCP congestion con-
trol [27] to manage remote network resources. TCP
assumes no network support beyond that packets are
dropped when the network is overloaded; it uses these
packet losses as a signal to control its sending rate. Pro-
vided that all endpoints use a compatible algorithm, per-
sistent congestion can be averted while still achieving
good throughput and fair allocation of the shared re-
source.

However, it has long been understood that TCP is far
from optimal in many circumstances. TCP managed net-
works perform poorly for moderate sized flows on idle
links [12, 28], interactive applications [21], applications
demanding minimally variable response times [13], high
bandwidth-delay paths [32], and wireless networks [5].
In each case, the response in the cited papers has been
to propose explicit network support. Clearly, network-
based resource allocation can be designed to perform op-
timally. Thus, the research debate has largely focused on
the appropriate knobs to place in the network, and specif-

ically, the tradeoff between simplicity and optimality in
network support for resource management.

We take a radically different approach. Our goal is
to demonstrate that cooperating endpoints, without any
special support from the network, can achieve near opti-
mal resource allocation in all likely conditions. Our mo-
tivation is partly intellectual – what are the algorithmic
limits to endpoint resource allocation? Our motivation
is also partly practical – it is much easier to deploy an
endpoint solution than to modify every router in the In-
ternet. Since TCP congestion control was first introduced
in 1988, three substantial changes to its algorithm have
been introduced and widely adopted [38]; by contrast, to
date no router-based changes to congestion management
have achieved equally widespread use.

Our approach is simple: we directly emulate network-
based control. Our algorithm, called the Probe Control
Protocol (PCP), sends a short sequence of probe packets
at a specific rate to detect whether the network can cur-
rently support the test rate, given its current traffic load.
If so, the endpoint sends at that rate; if not, e.g., if other
hosts are already using the bandwidth, the endpoint tries
a new probe at a slower rate. A key element is that we
use rate pacing (instead of TCP-like ack clocking) for all
traffic; this allows probes to be short and precise. These
short probes are “low impact” compared to the TCP ap-
proach of sending at the target rate for the full round trip
time. Thus, endpoints can be aggressive with respect to
testing for available bandwidth, without causing packet
loss for existing flows. For example, a new arrival can
use history to safely guess the currently available band-
width. Since most links are idle most of the time, this
often allow endpoints to jump (almost) immediately to
full utilization of the link.

We have implemented PCP as a user-level process
on Linux. Initial tests on the RON testbed show that
PCP can outperform TCP by an average of a fac-
tor of two for 200KB transfers over the wide area,
without having any measurable impact on competing
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TCP traffic. We supplement these results with simu-
lation experiments, where we show that PCP achieves
our goals of near optimal response time, near zero
packet loss rates, and small router queues, across a
wide variety of operating environments; we further
show that it has better fairness properties than TCP.
A Linux kernel implementation is also currently in
progress. Interested readers can obtain the source codes
for the implementations and the simulation harness at
http://www.cs.washington.edu/homes/arvind/pcp.

A practical limitation of our work is that, like TCP,
we provide no means to counter misbehaving hosts; net-
work based enforcement such as fair queueing [14] is still
the only known means to do so. We show that PCP, un-
like TCP, benefits from fair queueing, thus making it the
first system to do well for both FIFO and fair-queued
routers. Any future network is likely to have a mix-
ture of FIFO and fair-queued routers, making an end-
point solution compatible with all a necessity for net-
work evolution. In our view, TCP’s poor performance
over fair-queuing routers is a barrier to further deploy-
ment of router enforcement. By contrast, PCP can be
seen as a stepping stone for more robust isolation mech-
anisms inside the network, thereby improving the overall
predictability of network performance.

The rest of this paper presents our approach in more
detail. Section 2 outlines the goals of our work, arguing
that TCP is sub-optimal in many common network con-
ditions found today. Section 3 describes the design of
the PCP algorithm. We evaluate our approach in Section
4, discuss related work in Section 5, and summarize our
results in Section 6.

2 Design Goals
Table 1 outlines the design space for congestion control
mechanisms. We argue in this section that PCP explores
a previously unstudied quadrant of the design space –
endpoint emulation of optimal router-based control. If
we were to start from scratch, the design goals for a con-
gestion control algorithm would be clear:

• Minimum response time. The average time required
for an application transfer to complete should be as

small as possible. Since most transfers are rela-
tively short, startup efficiency is particularly impor-
tant [16].

• Negligible packet loss and low queue variability. Be-
cause sources in a distributed system cannot dis-
tinguish between the root causes of packet loss,
whether due to media failure, destination unavailabil-
ity, or congestion, it is particularly important to avoid
adding to that uncertainty. Similarly, large queueing
delays unnecessarily delay interactive response time
and disrupt real-time traffic.

• Work conserving. In steady state, resources should
not be left idle when they might be used to send data.

• Stability under extreme load. Aggregate perfor-
mance should approach physical limits, and per-flow
performance should degrade gracefully as load is
added to the system.

• Fairness. Competing connections (or flows) which
are not otherwise limited should receive equal shares
of the bottleneck bandwidth. At the very least, no
flow should starve due to competing flows.

Note that network-based congestion control can easily
achieve all of these goals [4, 46]. With ATM, for exam-
ple, endpoints send a special rate control message into
the network to request bandwidth, enabling the bottle-
neck switch or router to explicitly allocate its scarce ca-
pacity among the competing demands. We call this ap-
proach “request and set” because endpoints never send
faster than the network has indicated. Response time
is minimized because fair share is communicated in the
minimum possible time, a round trip. This also results
in queues being kept empty and bandwidth being allo-
cated fairly. Our goal is to see if we can achieve all
these properties without any special support from the
network [47], by emulating “request and set” mechanics
from endpoints.

By contrast, TCP congestion control achieves the last
three goals [27] but not always the first two. TCP care-
fully coordinates how the sending rate is adjusted up-
wards and downwards in response to successful trans-
missions and congestion signals. We call this approach
“try and backoff” since an end host sends traffic into the
network without any evidence that the network has the
capacity to accept it; only when there is a problem, that
is, a packet loss, does the end host reduce its rate.

Since a TCP endpoint has no knowledge of the true
available bandwidth, it initially starts small and through
a series of steps called slow start, drives the network to
saturation and packet loss, signaling the capacity limit
of the network. Although effective, this process can
waste bandwidth on startup – asymptotically O(n log n)
in terms of the path’s bandwidth delay product [12]. (To
be fair, TCP congestion control was designed at a time



when links were thin and usually fully utilized; in these
situations the efficiency loss of slow start is minimal.)
Further, TCP’s slow start inefficiency is fundamental.
Several proposals have been made for methods to jump
start the initial window size, but they run the risk of caus-
ing increased packet losses in situations where there is
persistent congestion [19].

Once a TCP endpoint determines the available band-
width, in theory the link will be fully utilized, amortizing
the initial inefficiency for a sufficiently long connection.
Of course, many flows are short. Even for long flows,
TCP steady state behavior can be disrupted by the bursty
traffic pattern emitted by other flows entering and exiting
slow start. In practice, TCP may achieve only a fraction
of the available bandwidth, because of the need to slowly
increase its sending rate after a loss event to avoid per-
sistent congestion [30, 32]. Similar problems occur with
TCP in the presence of noise-induced loss, such as with
wireless links [5].

Some researchers have studied how to modify end
hosts to improve TCP performance, while keeping
its basic approach. For example, TCP Vegas [10],
FastTCP [31], Scalable TCP [34], and HighSpeed
TCP [19] all attempt to improve TCP steady state dy-
namics. Vegas and FastTCP are similar to PCP in that
they use packet delay to guide congestion response, but
unlike PCP, they do so only after sending at the target
rate for the entire round trip time. And because all of
these alternate approaches leave slow start unchanged,
they only help the small fraction of transfers that reach
steady state.

Other researchers have explored adding TCP-specific
support to routers. For example, routers can drop pack-
ets before it becomes absolutely necessary [21, 9], as a
way of signalling to end hosts to reduce their sending
rates. However, this trades increased packet losses in
some cases for lower delay in others; most users want
both low loss and low delay. Some have advocated set-
ting a bit in a packet header to signal congestion back
to the sender [44, 18], but this does nothing to address
the slow start inefficiency. This has led some to advocate
adding an ATM-style rate control message to the Inter-
net to allow for more rapid TCP startup [42, 15]. And so
forth.

Our approach is to explore the opposite quadrant in
Table 1. Is it possible to achieve all five goals using only
endpoint control, by emulating the “request and set” se-
mantics of explicit router-based resource allocation? In
doing so, we hope to design a system that is better suited
to the tradeoffs we face today vs. what TCP faced fifteen
years ago. In designing our system, note that we place
the first two goals listed above ahead of the last three, in
priority. While we want our system to to be efficient, sta-
ble and fair under high load, we also want our system to

behave well in the common case.

The common case is that most network paths are
idle most of the time, and are becoming more so over
time [41, 2]. This was not always true! Rather, it is the
natural consequence of the cumulative exponential im-
provement in the cost-performance of network links—at
least in industrialized countries, it no longer makes sense
for humans to wait for networks. By contrast, when TCP
congestion control was initially designed, wide area net-
work bandwidth cost over one thousand times more than
it does today; at that price, fairness would naturally be
more important than improving connection transfer time.
The opposite holds today.

Second, even with HTTP persistent connections, most
Internet transfers never reach TCP steady state [22, 48].
Even when they do, startup effects often dominate per-
formance [12]. For example, a 1MB cross-country trans-
fer over fast Ethernet can achieve an effective through-
put with TCP of only a few Mbps, even with no other
flows sharing the path. Home users are more frequently
bandwidth-limited, but even here, TCP is not well-suited
to a highly predictable environment with little multiplex-
ing.

Third, computation and memory are becoming
cheaper even faster than wide area network bandwidth.
TCP was originally designed to avoid putting a multipli-
cation operation in the packet handler [27], yet at current
wide area bandwidth prices, it costs (in dollars) the same
amount to send a TCP ack packet as to execute half a
million CPU instructions [25]. One consequence is that
hardware at aggregation points is increasingly limited by
TCP mechanics: to remain TCP “friendly” the aggrega-
tion point must not send any faster than k parallel TCP
connections [6], something that is only efficient if there
are multiple active flows to the same destination. By con-
trast, PCP can benefit directly from an endpoint’s excess
cycles and memory by modeling the likely behavior of a
network path, even if the path has not been recently used.

Finally, our approach integrates better with constant
rate real-time traffic. Without router support, TCP’s con-
tinual attempts to overdrive and backoff the bottleneck
link can disrupt fixed-rate flows that are sharing the link,
by introducing packet delay jitter and loss. To some ex-
tent, this problem can be reduced by sophisticated active
queue management (AQM) [24]. Lacking widespread
deployment of AQM systems, most ISP’s today have
abandoned the vision of integrated services—they pro-
vision logically separate networks to carry voice over IP
as distinct from regular web traffic—as the only practical
way to achieve quality of service goals. By contrast, in
PCP, best effort traffic will normally have very little im-
pact on background fixed-rate traffic, again without any
special hardware support.



Mechanism Description Goal Section

probes
Senders use short transmission bursts with limited payload
to “prove” the existence of available bandwidth, while mini-
mizing any long term effects of failed tests.

low loss Section 3.1

direct jump Given a successful test, senders increase their base rate to the
rate that test.

min response time Section 3.1

probabilistic accept Accept tests taking into account the variance observed in the
available bandwidth measurements.

fairness Section 3.1

rate compensation
When existing senders detect increasing queueing, they re-
duce their rates to drain the queue.

low loss,
low queues

Section 3.2

periodic probes Senders periodically issue new probes to try to acquire addi-
tional bandwidth.

work-conserving Section 3.3

binary search Senders use binary search to allocate the available band-
width.

min response time,
work conserving

Section 3.3

exponential backoff Senders adjust the frequency of tests to avoid test collisions
and failures.

stability Section 3.3

history Senders use heuristics to choose the initial probe rate. min response time Section 3.4

tit for tat Reduce speed of rate compensation if past compensation was
ineffective.

TCP compatibility Section 3.5

Table 2: A Summary of PCP Mechanisms

To sum, TCP is optimized for the wrong case. Like
TCP, the design we describe in this paper provides robust
congestion control for a wide range of operating condi-
tions. But equally importantly, our approach is better
than TCP for the common case: moderate-sized transfers
over mostly idle links with near-zero loss and low delay
even when there is congestion. Of course, network-based
congestion control solutions have already been shown
to provide these characteristics; our point is simply to
demonstrate that we can achieve these goals without net-
work support.

3 PCP Design

In this section, we sketch the various elements of the PCP
design. Table 2 provides a road map. For this discussion,
we assume that PCP is used by all endpoints in the sys-
tem to manage network resources; we defer to the end
of this section a discussion of how to make PCP back-
wardly compatible with TCP end hosts. PCP represents
a clean-slate redesign to endpoint congestion control; we
do however retain the TCP mechanisms for connection
management and flow control.

3.1 Emulating Request-and-Set

PCP is very simple at its most basic (Figure 1): endpoints
send probe packets, which are short sequences of pack-
ets spaced at a target test rate, to determine if the net-
work has the capacity to accommodate the request. If
this probe is successful, the end host can immediately
increase its base rate by the target rate of the probe; it

ra
te

0

C

(1) probe sent

(2) underlying rate adjusted

(3) probe sent

(4) failure discovered

RTT delay
time

Figure 1: Example of a successful and a failed PCP probe.

then transmits the baseline packets in a paced (equally
spaced) manner at the new base rate. The probe rate is
adjusted (primarily) by changing the duration over which
the probe data is sent, not the amount of data that is
sent. If the initial probe is unsuccessful (e.g., the network
does not have the spare capacity), the end host must try
again. A key element of our approach is that endpoints
only increase their base sending rates immediately after
a successful probe, and at no other time; thus, modulo
the round trip delay, a successful probe indicates that the
network resource is unallocated.

Probe success and failure is defined by whether the
probe packets induce queueing inside the network, mea-
sured by whether the delay increases during the probe.
For each PCP data packet, a timestamp is recorded at
the receiver and returned to the sender, akin to the TCP
timestamp option [26]; measuring changes in delay at
the receiver allows us to eliminate variability induced



by the reverse path. Our test for available bandwidth is
similar to the one suggested by Jain and Dovrolis [29],
but is designed to be more robust to the noise caused by
PCP’s probe process. Specifically, we use least squares
to fit a line through the sequence of delay measurements
and accept the test rate if the measurements are consis-
tent with flat or decreasing delay; otherwise, the probe
is rejected. Furthermore, since measurements are rarely
determinative of the true state of the network, we use
a “probabilistic accept” rule that accepts probes non-
deterministically. The least squares fit yields a probabil-
ity distribution function characterized by the estimated
delay slope and a standard error for the estimated value.
A low error indicates a good fit, while a high value might
be due to measurement noise or variability in cross traf-
fic. We randomly choose whether to accept a probe based
on this probability distribution.

We do not assume a hard real-time operating system
implementation; some jitter is acceptable in the schedul-
ing of packets as the fitting process is robust to small
variations in packet spacing. We however assume the
availability of fine-grained clocks; nanosecond clocks
and timers have become commonplace on modern pro-
cessors [40], sufficient for scaling to gigabit speeds.
Generic timestamp and packet pacing logic is also be-
coming increasingly common on network interface hard-
ware.

To enable an apples to apples comparison, we set the
initial probe size to match the initial TCP packet. After
an initial packet exchange to verify the receiver is willing
to accept packets (a mirror of the TCP SYN exchange),
PCP sends, as its first probe, data equal to a maximum
size packet, but divided into k separate chunks (currently,
5). Probe packets may carry live data, so that if the data
to be transferred is sufficiently small, it may complete
within the probe packets – that is, whether or not the net-
work can accept packets indefinitely at the probe rate.
Although some have proposed using a larger initial win-
dow size in TCP to speed its discovery of the available
bandwidth for high capacity paths, this would come at
the potential cost of added congestion on low capacity
paths. By separating the probe rate from the size of the
probe, PCP avoids having to make this trade-off; as we
describe below, we can safely use history to select an ag-
gressive rate for the initial test.

If the probe is successful, PCP immediately jumps to
the requested rate. As a minor optimization, once an end
host is successful in obtaining sufficient bandwidth, we
convert to using k maximum sized packets as probes,
again, paced at the target bit rate. This provides better
accuracy for high bandwidth paths.

3.2 Rate compensation

A key challenge for PCP is to gracefully eliminate
queues that might build up at a bottleneck router. Queues
can build up for several reasons. One obvious cause is
failed probes. If all of the bottleneck bandwidth has been
allocated, any additional probe will induce queueing that
will not disappear until some flow reduces its bandwidth.
As more failed probes accumulate, the queues could
slowly build to the point where packet loss is inevitable.
A more severe cause is due to the time lag between when
an end host makes a probe and when it can allocate the
bandwidth. In PCP, the request and set operations are
not atomic. If two or more hosts send a probe at approx-
imately the same time, both probes may succeed, result-
ing in duplicate allocation of the same bandwidth. In this
case, the link may be over committed, and unless one or
both hosts reduce their rates, queues will quickly build
up to cause packet loss.

Fortunately, it is straightforward for PCP to detect
queueing at the bottleneck. Recall that once an end host
allocates bandwidth, it sends its data as paced packets
at the base rate. If there is no queueing at the bottle-
neck, the delays for these data packets will be regular.
Any increase in the delay indicates a queue, requiring
a rate reduction to eliminate. Note that complex link
layer arbitration, as in 802.11, is perfectly compatible
with PCP; any added delay in those systems is an indica-
tion of queueing – that the endpoints are sending faster
than the underlying network can handle.

Eliminating queues caused by PCP endpoints is also
easy. Whenever a queue is detected, all existing senders
proportionately reduce their rate sufficiently to eliminate
the queue over the next round trip. We call this pro-
cess, rate compensation. Eliminating the queue over one
round trip is more aggressive than is strictly required by
control theory [32], but in our system, any queueing is
an indication of resource contention. Under contention,
proportionate decrease among existing senders, and uni-
form competition for newly available bandwidth among
all senders, helps achieve eventual fairness.

We use two mechanisms to detect over-committed net-
work links. First, we monitor the gap between baseline
PCP packets as they enter and exit a network path. If
the time gap observed at the receiver (∆out) is greater
than the spacing ∆in used by the sender, the bottleneck
link is likely to be overloaded. To avoid making mat-
ters worse, we reduce the base sending rate by a fac-
tor of (∆out − ∆in)/∆out. Second, in order to drain
the queue, we monitor the one-way delays experienced
by PCP packets. If the maximum one-way delay (max-
delay) observed in the previous round trip time is greater
than the minimum observed one-way delay to the des-
tination (min-delay), then there is persistent queueing at
the bottleneck link. To eliminate the queue build-up, we



reduce the sending rate by a factor of (max-delay - min-
delay)/max-delay. In both cases, we bound the propor-
tionate decrease to the TCP backoff rate – no more than
half of the prior rate during any round trip. (We concern
ourselves only with the measurements during the previ-
ous round trip as prior rate compensation is presumed to
have eliminated the overloads during prior round trips.)
If all senders detect queueing and reduce their rate by this
proportion, and no further probes are launched, it is easy
to show that the queue will disappear within one round
trip time. Senders with much shorter round trip times
will reduce their rate more quickly, shouldering more of
the burden of keeping queues small, but they will also be
able to acquire bandwidth more quickly by probing for
new bandwidth at a faster rate.

Once the base rate is reduced, probes may successfully
re-acquire the bandwidth. These probes may be launched
either by other nodes, or even by the reducing node itself.
This is done to foster additive increase, multiplicative de-
crease behavior when there is contention. If the queues
do not dissipate, the existing senders will continue to pro-
portionally decrease their rates. Some combination of
flows will acquire the released bandwidth.

A detail is that we apply the rate compensation incre-
mentally, after every acknowledged packet, by compar-
ing the required rate compensation to the rate reductions
that have already been applied over the previous round
trip time. If the new rate compensation is larger, we re-
duce the sending rate by the difference. This is similar to
a single rate adjustment made once per round trip time,
but operates at a finer granularity. Further, to reduce the
impact of the noise on the system, we discard outliers
represented by either the lowest 10% or the highest 10%
of the measured values.

Another detail is that Internet routing changes can
transparently alter the baseline one-way packet delay.
Although some have called for providing endpoints
the ability to detect when their packets have been re-
routed [36], that facility is not available on the Internet
today. There are two cases. If the routing change de-
creases the baseline delay, the node will update its min-
delay, observe there is a difference between the new min-
delay and the previous max-delay, and proceed to reduce
its rate by at most one half. Behavior will then revert
to normal after one round trip, and the end host will be
free to probe to acquire bandwidth on the new path. If the
routing change increases the baseline delay, the node will
see an increase in its max-delay and likewise reduce its
rate in an attempt to compensate. This reduction will dis-
sipate after min-delay has timed out. Note that the probe
process is independent of rate compensation; probe suc-
cess is based on the measured increase in delay during
the probe, and not on the long term estimation of the
queue. Thus, as long as the new path has spare capac-

ity, the end host will be able to quickly re-acquire its re-
leased bandwidth. Both types of routing changes result
in temporarily reduced efficiency, but with the positive
side effect that the affected endpoints are less aggressive
exactly when the state of the network is in flux.

3.3 Probe control

Because probes carry limited payload and rate compen-
sation corrects for any mistakes that occur, an end host
can be aggressive in selecting its probe rates. For exam-
ple, it can pick the probe rate that maximizes its expected
yield – the likelihood of the probe’s success times the re-
quested rate. Unless there are long periods of full uti-
lization of the network, it is better for all concerned for
an arriving flow to quickly grab all available bandwidth,
complete the transfer, and exit the system, leaving fu-
ture resources for future arrivals. Of course, we do want
the system to be work-conserving, stable and fair under
persistent congestion, and thus we need to introduce ad-
ditional mechanism in PCP to accomplish those goals.
That is the topic of this sub-section. Note however that
if high load behavior is your only concern (e.g., response
time and loss rate are unimportant), TCP’s current behav-
ior is adequate, and our design would offer few benefits.

In the absence of any other information, we set the
initial target probe rate to be one maximum sized packet
in half of the round trip time, as measured by the initial
connection establishment (TCP SYN) packet exchange.
If successful, during the next round trip the end host can
send its base rate packets at that probe rate – two maxi-
mum sized packets per round trip time. It may also con-
tinue probing.

In our initial prototype, we use exponential increase
and decrease to guide the search process, doubling the
attempted rate increase after each successful probe, and
halving the rate increase after each unsuccessful one.
This guarantees that, regardless of the starting point or
the capacity of the link, an end host fully allocates the
available bandwidth in O(log n) steps. (A further opti-
mization, which we have not yet implemented, is to use
the slope of the response times from a failed probe to
guess the next probe rate – in essence, the slope tells us
by how much we have overestimated the available band-
width. This will be particularly important for capacity-
constrained paths, as the initial round trip time as mea-
sured by the small connection establishment packet, may
vastly underestimate the round trip time for a maximally
sized packet.) Note that while we never conduct more
than one probe per measured round trip time, if the avail-
able bandwidth is small enough, we may stretch a single
sequence of probe packets across multiple round trips.
Thus, PCP gracefully scales down to very low bandwidth
and/or oversubscribed paths. By contrast, TCP has a
minimum window size of one packet; this can result in



very high packet loss rates for paths where each flow’s
share is less than a single packet per round trip [39, 37].

Since we do not want nodes to continuously probe un-
successfully for bandwidth, we place a lower bound on
the rate that a flow can request from the network, at 1%
of its current base rate. Once an existing sender has failed
to acquire its minimum rate, it exponentially reduces its
frequency of probing, up to a limit of 100 round trips.
Within this interval, the probe is placed randomly. This
is analogous to Ethernet, for a similar purpose. Remov-
ing the limit would improve theoretical scalability, but at
a cost of reduced efficiency in acquiring recently released
bandwidth.

We further note that our probabilistic accept rule for
probes allows a probe to succeed even if it causes a small
amount of queueing, thereby allowing new connections
to succeed at receiving small amounts of bandwidth and
triggering incumbent flows to release their bandwidth
due to rate compensation. As a side effect, the rule
also improves efficiency under heavy load by keeping the
queue non-empty [10]. This behaves much like router-
based active queue management (AQM), but controlled
from the endpoint. A side effect, discussed below, is that
the rule also makes PCP more robust when competing
with legacy TCP flows.

3.4 History Information

As described so far, PCP seems merely to have replicated
the delays caused by TCP slow start – O(log n) steps
to determine the bandwidth. However, we note that the
impact of a PCP probe is independent of its test rate, in
contrast to TCP’s approach of sending at its target rate for
a full round trip time. Thus, it is easy to test aggressively
in PCP, without fear of disrupting existing connections.
We use this flexibility to reduce the startup transient to a
constant number of round trips in the common case.

We achieve this by keeping history information about
the base rates previously used to each Internet address.
When this history information is available, we set the ini-
tial probe rate to be 1/3 of the previous base rate, and
then use binary search from that point forward. This
allows the end host to usually identify the optimal rate
within two round trip times after the initial connection
establishment. We also keep track of the variance in base
rates and the accuracy of predictions made based on the
history information; if the history provides inaccurate es-
timate, we halve/double the initial probe rate after each
inaccurate/accurate prediction, up to 1/3 of the base rate.
Note that we do not set the initial rate to be the entire pre-
vious base rate, to avoid the chance that multiple hosts
will simultaneously probe for, and seemingly acquire,
the full link bandwidth. Our use of history is similar to
that of the MIT Congestion Manager (CM) [6] but more
general; because CM uses TCP, it can only reuse the con-

gestion window if multiple transfers to the same location
happen almost simultaneously. A mistakenly large con-
gestion window in TCP could cause massive packet loss.
Because the cost of making a mistake with history in PCP
is only a wasted probe, we can make more aggressive use
of potentially stale data of the likely available bandwidth
of a path.

3.5 TCP Compatibility

To be feasible to deploy, PCP must be able to share net-
work resources with existing TCP connections. Naively,
as TCP increases its window size, queues will build up,
and any PCP endpoints will reduce their sending rate
to compensate. The TCP host will proceed unimpeded,
continuing to increase its window size, causing further
rate reductions from the PCP hosts.

We do not believe it is essential for PCP to be strictly
fair with respect to TCP hosts, since that might well re-
quire simulating TCP’s precise semantics. Rather, our
goal is for PCP to be incentive compatible when sharing
resources with TCP, so that it outperforms TCP while
avoiding starvation for TCP hosts. Since PCP does much
better than TCP for the common case of short to mod-
erate transfers, there is substantial room for PCP to out-
perform TCP without needing to actively penalize TCP
senders.

Our design walks this delicate balancing act. First, we
recognize when a bottleneck is being shared with TCP,
by observing when PCP’s rate compensation is ineffec-
tive at reducing the queue size over several consecutive
round trips. Normally PCP would continue to decrease
its rate in the hope of eliminating the queue, but instead
we apply a “tit for tat” rule, decreasing the rate compen-
sation by a factor of ten for as long as rate compensation
is ineffective. While this might seem counter-intuitive
– increasing aggressiveness precisely at the point when
congestion is building – “tit for tat” is needed to counter
TCP’s overly aggressive behavior. Eventually, the TCP
connection will over-drive the link, causing loss and
backoff for the TCP sender; PCP can then increase its
rate during these periods. Our measurements and simu-
lation results indicate that the TCP backoff and reduced
PCP rate compensation balance out in most cases. When
the TCP flow completes, any remaining PCP flows will
find that rate compensation again becomes effective, en-
abling them to revert to their normal behavior.

In all other respects, PCP is backwardly compati-
ble with legacy TCP hosts. We re-use the TCP packet
header, indicating whether PCP should be used as an op-
tion in the TCP SYN packet. If the PCP receiver ac-
knowledges the option, the sender uses PCP; otherwise
we use traditional TCP congestion control.

There is no fundamental reason we cannot design a
PCP sender to interoperate with an unmodified TCP re-
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Figure 2: Cumulative distribution function of the average
transfer time for the 380 wide-area paths in the RON testbed.

ceiver. The principal difference between a PCP and a
TCP receiver are in the precise semantics of timestamps
and delayed acknowledgments. TCP timestamps are
similar in theory to those used in PCP to measure one-
way delay, but the TCP specification is tightly bound to
the TCP retransmit timer logic. The TCP timestamp re-
flects the time that the data being acknowledged was re-
ceived, not the time that the packet causing the acknowl-
edgment was received. Instead, we plan to use round
trip measurements to approximate one-way delay when
interoperating with a TCP receiver. Similarly, PCP as-
sumes that delayed acknowledgments are turned off; a
PCP sender can disable the receiver’s delayed acknowl-
edgment logic by simply reordering every other packet
or by sending all probe packets as doublets.

An interesting, and future, research question is
whether we can design a PCP receiver to induce a TCP
sender to use PCP congestion control. Savage et al. [49]
have shown that a malicious receiver can abuse a sender’s
TCP control logic to cause it to send at an arbitrary rate;
we believe we can leverage those ideas for inducing PCP
compatibility with legacy TCP senders.

4 Evaluation
In this section, we first present data from a user-level im-
plementation of PCP; we then use simulation to exam-
ine the behavior of PCP in more detail. Our results are
both preliminary and incomplete; for example, we pro-
vide no study of the sensitivity of our results to the choice
of PCP’s internal parameters.

4.1 Performance Results from a User Level Imple-
mentation

This section presents data for PCP and TCP transfers
over the Internet between twenty North American nodes
selected from the RON testbed [3].

We implemented the PCP protocol in a user-level pro-
cess; this is a conservative measure of PCP’s effective-
ness, since timestamps and packet pacing are less accu-
rate when done outside the operating system kernel. To
enable an apples-to-apples comparison, we also imple-
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Figure 3: Transfer times for the user-level implementation.

mented TCP-SACK in the same user-level process. With
TCP-SACK, selective acknowledgments give the sender
a complete picture of which segments have been received
without loss. The sender uses fast retransmit whenever
it receives three out-of-order acknowledgments and then
enters fast recovery. Our TCP implementation assumes
delayed acknowledgments, where every other packet ar-
riving within a short time interval of 200 ms is acknowl-
edged. As in most other implementations [38], acknowl-
edgments are sent out immediately for the very first data
packet (in order to avoid the initial delayed ACK time-
out when the congestion window is simply one) and for
all packets that are received out-of-order. Removing de-
layed ACKs would improve TCP response time, but po-
tentially at a cost of worse packet loss rates by making
TCP’s slow start phase more aggressive and overshoot-
ing the available network resources to a greater extent.
We used RON to validate that our user-level implemen-
tation of TCP yielded similar results to native kernel TCP
transfers for our measured paths.

For each pair of the twenty RON nodes, and in each
direction, we ran three experiments: a single PCP trans-
fer, a single TCP-SACK transfer, and four parallel PCP
transfers. Each transfer was 250KB, repeated one hun-
dred times and averaged. Figure 2 presents the cumula-
tive distribution function of the transfer times for these
380 paths. PCP outperforms TCP in the common case
because of its better startup behavior. The average PCP
response time is 0.52 seconds; the average TCP response
time is 1.33 seconds. To put this in perspective, four
parallel PCP 250KB transfers complete on average in
roughly the same time as a single 250KB TCP trans-
fer. Further, worst case performance is much worse for
TCP; while all PCP transfers complete within 2 seconds,
over 10% of TCP transfers take longer than 5 seconds.
While this could be explained by PCP being too aggres-
sive relative to competing TCP traffic, we will see in the
next graph that this is not the case. Rather, for congested
links, TCP’s steady state behavior is easily disrupted by
background packet losses induced by shorter flows enter-
ing and exiting slow start.
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Figure 4: Performance of TCP, PCP and fair queueing. File transfer time includes connection setup. Bottleneck bandwidth is
40 Mb/s, average RTT is 25 ms, fixed length flows of 250 KB. Fair queueing and PCP suffer no packet loss; the corresponding lines
in the loss rate graph overlap with the x-axis.
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Figure 5: Performance of TCP and PCP through a bottleneck router that implements fair queueing. Bottleneck bandwidth is
40 Mb/s, average RTT is 25 ms, fixed length flows of 250 KB. Fair queueing and PCP suffer no packet loss.

In Figure 3, we examine the behavior of PCP and TCP
as a function of flow size, for a single pair of nodes. The
TCP behavior is dominated by slow start for small trans-
fers, and steady state behavior for large transfers; since
this path has a significant background loss rate caused
by other TCP flows, TCP is unable to achieve more than
5Mb/s in steady state. By contrast, PCP is able to transfer
large files at over 15Mb/s, without increasing the back-
ground loss rate seen by TCP flows. To show this, we
ran four parallel PCP transfers simultaneously with the
TCP transfer; the TCP transfer was unaffected by the
PCP traffic. In other words, for this path, there is a sig-
nificant background loss rate, limiting TCP performance,
despite the fact that the congested link has room for sub-
stantial additional bandwidth.

While some researchers have suggested specific mod-
ifications to TCP’s additive increase rule to improve its
performance for high bandwidth paths, we believe these
changes would have made little difference for our tests,
as most of our paths have moderate bandwidth and most
of our tests use moderate transfer sizes. Quantitatively
evaluating these alternatives against PCP is future work.

4.2 Simulation Results

We next use simulation to examine PCP’s behavior in
more detail. We chose not to use ns-2 for our simulations
as it tends to be slow and scales poorly with the number
of nodes or flows in the system. Using our own simulator
also enabled us to reuse the same code for PCP and TCP
that we ran on RON. Recall that we validated our TCP
implementation against the TCP in the RON kernel.

For comparison, we also implemented centralized fair

queueing [14] in our simulator. This mechanism achieves
near-perfect isolation and fairness by scheduling pack-
ets from active flows in a bit-sliced round robin fashion.
Given such a centralized router mechanism, it is possible
for endpoints to infer their fair share by sending a pair
of back to back packets, and observing their separation
upon reception [35]. We model a fair-queueing system
where the router also assists the endpoint in determining
the optimal sending rate in the following manner. The
endpoint transmits a control packet every RTT, and the
router tags this packet with the flow’s fair bandwidth al-
location and the current queue for the flow. The endpoint
simply sends at its fair share rate while compensating for
queue buildups resulting from dynamic changes in the
number of flows. While the resulting design might be
difficult to realize in practice as it requires the router to
communicate multiple bits of congestion information to
the endpoint, it is intended as a bound on what is possi-
ble.

4.2.1 Impact of Varying Offered Load

We begin by evaluating the effect of varying load on the
performance of our proposed algorithm and its alterna-
tives. We consider a simple topology with a single bot-
tleneck shared by many competing flows. The bottle-
neck bandwidth is 40 Mb/s and is shared by a hundred
source-destination pairs. We model the bottleneck router
as a FIFO drop-tail router for TCP and PCP flows. The
buffering at the bottleneck is set to the bandwidth delay
product. The round trip times for the source-destination
pairs are uniformly distributed from 15 ms to 35 ms. We
simulate fixed-length flows of 200 packets of size 1250
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Figure 6: Performance when flow lengths and inter-arrival times are Pareto distributed. Mean flow length is 250 KB, bottleneck
bandwidth is 40 Mb/s, and average RTT is 25 ms. Note that the standard deviation plot is depicted on a different scale due to the
higher variances caused by Pareto-distributed flow lengths. Fair queueing and PCP suffer no packet loss.
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Figure 7: Performance with synchronized start of flows. Flow length is 250 KB, bottleneck bandwidth is 40 Mb/s, and average
RTT is 25 ms. Fair queueing suffers no packet loss.

bytes each (resulting in an overall flow size of 250 KB).
We vary the arrival rate of new flows to control the of-
fered load to the system. The flow arrivals are random-
ized, using a Poisson arrival process, to avoid synchro-
nization artifacts and to simulate varying load conditions,
but the mean arrival rate is fixed based on the desired
level of load.

The simulation parameters for this and the following
experiments were chosen to be illustrative; they are not
intended to be representative. For instance, instead of us-
ing a mixture of flow sizes as with real workloads, we
typically use fixed size flows so that we can compare
mean response times.

Figure 4 presents the variation in key performance
characteristics as we increase the offered load from 15%
to about 90% of bottleneck capacity. Since each flow of-
fers 250 KB or 2 Mb of load, three new flows per second
implies an offered load of 6 Mb/s or 15% of bottleneck
capacity. We measure the response time to complete each
transfer, including the cost of connection establishment.
We also report the variability in response time (fairness),
the queue size at the bottleneck, and the average loss rate
at the bottleneck.

The results show that PCP has better response time
than TCP and exhibits smaller variations in response
time. PCP’s response time is close to that of fair queue-
ing. For low load conditions, PCP adds about two round-
trip delays to fair queueing as it probes for available
bandwidth before ramping up to the sending rate. At high
load, PCP continues to perform well, ensuring that the
bottleneck is kept busy; PCP keeps queues small while

holding down average response time. Across the spec-
trum of load conditions, PCP keeps queue sizes lower
than TCP, and has no packet loss even at high loads. Even
at moderate loads, packet losses can dramatically penal-
ize specific TCP flows [12]; PCP avoids this effect.

4.2.2 TCP and PCP over Fair Queueing Routers

We next study the performance of TCP and PCP flows
when they are transmitted through routers that imple-
ment fair queueing. Our goal is to show that PCP is com-
patible with and benefits from general-purpose network
enforcement. Others have argued for TCP-specific rules
for penalizing misbehaving endpoints [20], but we argue
that this unnecessarily constrains the choice of end host
algorithm.

In theory, fair queueing is neutral to the choice of end-
point congestion control algorithm. An endpoint that
sends faster than its fair share will build up queues and
cause packet loss, but only to its own packets. However,
the inefficiency imposed by TCP slow start has no benefit
if the bottleneck resource is fair queued, but the endpoint
has no way in general of knowing how the network is
being managed.

We use the same simulation parameters as those used
in the previous experiment, but substitute the FIFO drop-
tail router with a fair-queued router. Figure 5 shows that
PCP benefits from fair queueing, with lower response
time variance even at high loads. Bandwidth probes initi-
ated by arriving PCP flows are allowed to succeed due to
the isolation of flows by the fair-queued router. TCP, on
the other hand, performs slightly worse with fair queue-
ing. When a TCP flow exceeds its fair share of router
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Figure 8: Effect of varying bottleneck bandwidth. Average RTT is 25 ms, flow lengths are 250 KB, and interarrival times are set
to operate the system at 60% load. Fair queueing and PCP suffer no packet loss.
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Figure 9: Effect of varying round-trip time. Bottleneck bandwidth is 40 Mb/s, flow lengths are 250 KB, and interarrival times are
set to operate the system at 60% load. Fair queueing and PCP suffer no packet loss.

buffer space under loaded conditions, it suffers multiple
losses, causing its performance to drop severely; in con-
trast, a drop-tail router spreads the packet losses more
smoothly across all of its flows.

4.2.3 Bursty Traffic Patterns

We now evaluate the performance of PCP under bursty
settings, where the history information might potentially
yield incorrect predictions. First, we repeat the experi-
ment from the previous section using a mixture of flow
lengths instead of fixed length flows. We retain the mean
length of flow to be 250 KB, but vary flow lengths ac-
cording to a Pareto distribution with shape 1.25. We
also set inter-arrival times to follow a Pareto distribu-
tion with shape 1.2. These parameters model self-similar
traffic observed in real traces. Figure 6 plots the results.
PCP provides performance close to router-based control
in this case.

We next evaluate the different protocols when a num-
ber of concurrent flows are repeatedly started together
resulting in synchronized transfers. In addition, we arti-
ficially rig PCP’s history mechanism to always provide
the estimate that all of the bottleneck bandwidth is avail-
able to each flow. By initiating multiple flows simultane-
ously with this estimate, we intend to evaluate PCP’s per-
formance when the history mechanism provides grossly
inaccurate estimates. Figure 7 depicts the results as we
vary the number of synchronized flows, each transferring
250 KB through our base configuration comprising of a
40 Mb/s bottleneck and 25 ms average RTT. Since the
flow start times are synchronized, the TCP flows enter
slow-start phase together. When the number of concur-
rent TCP flows is six or more, their combined ramp-up

during slow-start results in filling up the router queue
and causes a large number of packet losses. PCP also
suffers from packet loss due to inaccurate history infor-
mation, most of which occurs during the first RTT af-
ter transitioning to a high sending rate. But the send-
ing rate is throttled in the subsequent round-trip as the
PCP sender performs rate compensation in response to
increased inter-packet gaps and one-way delays.

4.2.4 Impact of Varying Simulation Parameters

We then perform sensitivity analysis to study the effect of
varying the parameters of the topology. Figure 8 presents
the various metrics as the bottleneck bandwidth is var-
ied. The rate of flow arrivals is set such that the of-
fered load to the system is 60% of the bottleneck ca-
pacity for the various runs of the experiment. At lower
capacities, TCP’s slow-start phase overruns the available
bandwidth resources, causing packet loss storms, result-
ing in substantial back-off and increased transfer times.
TCP’s transfer time performance levels out with increas-
ing bandwidth, but never approaches the performance of
PCP due to the O(log n) overhead associated with the
startup phase.

Figure 9 illustrates the performance of various flows
through our base configuration of a 40 Mb/s bottleneck
router as we vary the round-trip latency of the flows. We
again consider fixed-size flows of length 250 KB, and
we also fix the offered load at 60% (twelve new flows
per second for this configuration). The average round-
trip latency is varied from 5ms to 100ms, and the buffer
space is set to the corresponding bandwidth-delay prod-
uct for each run. At small RTTs, TCP flows tend to
blow out the small router queues rather quickly, while at



high RTTs, the O(log n) slow-start overhead translates
to much higher transfer times. PCP flows track the per-
formance of fair queueing under all RTT conditions.

We also study performance as we vary the mean flow
length. Figure 10 graphs the various performance met-
rics as we vary the flow size and correspondingly vary
the arrival rate in order to fix the offered load at 60%. As
we study the performance of TCP flows, we observe a
tradeoff between two competing phenomena. As we in-
crease the flow lengths, the initial slow-start overhead is
amortized over a larger transfer. The resulting efficiency
is however annulled by increased loss rates as there are a
sufficient number of packets per flow for TCP to overrun
buffer resources during the slow-start phase.

4.2.5 Impact of Transmission Loss

Finally, we evaluate the impact of transmission loss on
the response time for the different protocols. We con-
sider transmissions with an average RTT of 25 ms and
subject the packets to a constant loss rate, independent
of the load in the system. Figure 11 graphs the results.
The response time for TCP blows up with increased loss
rates, since TCP interprets losses as signals of conges-
tion. PCP and fair queueing can tolerate losses with-
out suffering a substantial increase in response times. In
PCP, when a loss is detected, either through a timeout
or by the presence of acknowledgments for subsequent
messages, the packet is scheduled for retransmission for
the next available time slot based on the current paced
transmission rate.

5 Related Work

As we have noted, many of the elements of PCP have
been proposed elsewhere; our principal contribution is to
assemble these ideas into a system that can emulate the
efficiency of network-based congestion control.

Our work on PCP is inspired in many ways by Ether-
net arbitration [8]. PCP, like Ethernet, is designed to per-
form well in the common case of low load, with high load
stability and fairness an important but secondary con-
cern. Ethernet’s lack of stability and fairness in certain
extreme cases yielded much followup work within the
academic community, but Ethernet’s common case per-
formance and simplicity was sufficient for it to be wildly
successful in practice.

Our work also closely parallels the effort to define al-
gorithms for endpoint admission control [11, 23, 33, 17,
7]. In these systems, endpoints probe the network to de-
termine if a fixed-rate real-time connection can be admit-
ted into the system with reasonable QoS guarantees and
without disrupting previously admitted connections. As
with our work, this research demonstrated that endpoints
can effectively emulate centralized resource manage-
ment. Nevertheless, there are significant differences with

our work. First, real-time connections have fixed band-
width demands and are relatively long-running; hence,
probes were run only at connection setup, and it was not
necessary to make them particularly efficient. For exam-
ple, Breslau et al. suggest that probes should use TCP-
like slow start to determine if there is sufficient capacity
for the connection [11]. Our system is designed to allow
probes to be short and precise. With endpoint admission
control, once the connection is started, no further adapta-
tion is needed; by contrast, dynamic adaptation is clearly
required for efficient and fair congestion control.

Another major area of related work is the various ef-
forts to short-circuit TCP’s slow start delay for moderate-
sized connections. Typically, these systems use some
form of rate pacing for the initial (large) window, but
revert to TCP-like behavior for steady state. This allows
these systems to be mostly backwardly compatible with
existing TCP implementations. As we have argued, how-
ever, determining the available bandwidth along a net-
work path is easiest when network traffic is designed
to be smooth and well-conditioned. For example, TCP
Swift Start [43] uses an initial burst of four packets to
measure the physical (not available) capacity of the net-
work path. The hosts then set their initial window to be a
fixed fraction (e.g. 1/8th) of the physical capacity. If the
bottleneck has significant unused bandwidth, this works
great, but it can theoretically create persistent congestion
if the rate of arriving flows is greater than the fixed frac-
tion can support. TCP Fast Start [42] and the MIT Con-
gestion Manager [6] use history to guide the selection of
the initial congestion window and other TCP parameters;
however, their approach only works for nearly simultane-
ous connections to the same destination.

Similarly, several previous efforts have proposed using
delay information, rather than packet loss, to guide con-
gestion control. An early example of this was the packet
pair algorithm, using the delay spread from back to back
packets to measure the bottleneck bandwidth through a
fair-queued router [35]. Packet pair does not perform
well with FIFO queues, however, as all endpoints would
send at the maximum capacity of the link. Two more
recent examples are TCP Vegas [10] and FastTCP [31].
The motivation in each case was to improve steady state
TCP performance. As we have argued, many TCP trans-
fers never reach steady state on today’s networks.

Finally, we use many individual pieces of technology
developed in other contexts. XCP was the first to show
that separate mechanisms could be used to provide effi-
ciency and eventual fairness in a congestion control al-
gorithm [32]. In XCP, routers allocate resources to flows
without keeping per-flow state. If there is idle capac-
ity, flow rates are rapidly increased without regard to
fairness; eventual fairness is provided as a background
additive increase/multiplicative decrease process applied



 0

 500

 1000

 1500

 2000

 0  200  400  600  800  1000

Tr
an

sf
er

 ti
m

e 
(m

s)

Flow size in packets

TCP
PCP

Fair Queueing

 0

 500

 1000

 1500

 2000

 0  200  400  600  800  1000

Tr
an

sf
er

 ti
m

e 
S

td
. D

ev
. (

m
s)

Flow size in packets

TCP
PCP

Fair Queueing

 0

 10

 20

 30

 40

 50

 0  200  400  600  800  1000

Q
ue

ue
 S

iz
e

Flow size in packets

TCP
PCP

Fair Queueing

 0.001

 0.01

 0.1

 1

 10

 0  200  400  600  800  1000

Lo
ss

 ra
te

 (%
)

Flow size in packets

TCP
PCP

Fair Queueing

Figure 10: Effect of varying flow size. Bottleneck bandwidth is 40 Mb/s, average RTT is 25 ms, and interarrival times are set to
operate the system at 60% load. Fair queueing and PCP suffer no packet loss.
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Figure 11: Performance over a lossy channel. Bottleneck bandwidth is 40 Mb/s, average RTT is 25 ms, flow lengths are 250 KB,
and interarrival times are set to operate the system at 60% load. Fair queueing and PCP suffer no congestion packet loss.

to all flows. We directly leverage their approach in our
work; in fact, we initially started our effort to investigate
whether we could achieve the efficiency of XCP without
router support. Similarly, Jain and Dovrolis show how
to efficiently measure the available bandwidth (capacity
less utilization) of an Internet path, by successively prob-
ing the path with faster and faster rates until measured
delays start increasing [29]. We use a version of their
technique, with two principal differences. Their moti-
vation was to measure Internet paths; ours is congestion
control. Thus, we carefully meter our probe rates, to en-
sure that they usually succeed; Jain and Dovrolis attempt
to drive the network to the point where the probe starts
causing congestion. Their work is also complicated by
the fact that TCP traffic is particularly bursty at short
time-scales, requiring much longer measurements than
in our system. By ensuring that all traffic is paced, we
can use shorter and more precise probes. Finally, we
note that rate pacing has been proposed as a way to speed
TCP startup [42, 43, 28]; if the TCP congestion control
variables can be measured or predicted, pacing can pro-
vide a way to smooth the initial flight of traffic. We build
on this work by using rate pacing throughout the life-
time of a connection, to provide high resource utilization
with low delay variance. Earlier work has shown that this
form of complete rate pacing interacts poorly with TCP
dynamics, by delaying the onset of congestion [1]. In our
system, however, the fact that competing flows use rate
pacing allows an endpoint to quickly and accurately find
if there is available capacity, avoiding the need to drive
the resource to overload to determine its resource limits.

6 Conclusion
We have presented the design, implementation and eval-
uation of PCP, a novel architecture for distributed con-
gestion control with minimal router support. By using
short, paced, high-rate bursts, PCP is able to quickly con-
verge to the desired bandwidth in the common case of
lightly loaded links with good history. Although our re-
sults are somewhat preliminary, we have demonstrated
that our approach can significantly outperform TCP, and
approach optimal, for response time, loss rate, queue oc-
cupancy, and fairness. We believe PCP’s combination of
techniques shows great promise as a distributed resource
allocation mechanism for modern networks.
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