Intradomain routing protocols

- Centralized arbiter
 - scalability – function of communication cost and computation
 - fault tolerance (single point failure)
 - simpler
 - propagation of updates

- Distributed routing computation
 - Distance vector routing – each node talks only to neighbors, exchanges tables, and keeps best alternative
 - fundamental problem – propagation not deterministic, info gets lost, can lead to routing loops or flaps
 - poison reverse – remember immediate source of info
 - path vector (BGP) – remember complete path
 - Link-state routing – (e.g. OSPF) send info about all neighbors to everyone, compute routes (shortest path)
 - problem – temporary routing loops during update propagation (no synchronization)
 - Is it better to send update message and then compute update or compute the update and then send update message? No clear answer.
 a) SEND FIRST – propagate news quickly
 b) UPDATE FIRST – prevents neighbor from updating first and creating loop, but takes longer to stabilize. (OSPF)

Periodic updates – why?
1) hello, is link up?
2) congestion control
3) routing updates (changes)
4) soft state recovery
BGP (interdomain routing) only sends deltas rather than entire table with each update.

Difficult to guarantee end-to-end quality of service if route changes, requiring circuit tear down and re-establishment.

Exercise – what happens if a router misbehaves, sending incorrect updates?

Metrics?
1) Hop count – poor metric, adding paths can degrade performance.
2) Transmission + delay + queue time

Route selection today -
1) Heuristics – do the best you can
2) Circuits and policy
3) Optimization algorithms

Adaptive routing at local level for congestion control can lead to route oscillation.