
18. Radiosity
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Reading

Recommended:

� Watt, Chapter 10.

Optional:

� M. F. Cohen and J. R. Wallace. Radiosity and Realistic

Image Synthesis. Academic Press. 1993.
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Physically-based rendering

Basic optics

� Physics of light and color

� Geometrical optics

� Ray \metaphor"

� Re
ection and transmission

� Radiative transfer

� Measurement: radiometry and photometry

� Transport theory and integral equations
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Physically-based rendering, cont'd

Why physically-based?

� Insights into problem of rendering

� Illumination engineering

� Quest for realism

� A \grand challenge" problem in graphics

� The light holodeck...someday
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Radiometry

So far we have considered bouncing of light around room

using ray tracing.

What is the fundamental quantity that is bouncing around?

This quanitity is a function of some variables. What are they?
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Radiance

In graphics (and illumination engineering), the measure of

energy along a ray is called radiance.

Rougly speaking, radiance is the power per unit area per unit

direction passing through a point p in a particular direction

u:

L(p;u)

For the moment, we are ignoring wavelength dependence.

One of the most important properties of radiance: radiance

is constant along a ray travelling through empty space.
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The BRDF

Given an incoming direction and an outgoing direction, only

a portion of the light is re
ected depending on the surface

material properties.

L(p;uin)

p

dA

L(p;uout)

uin
uout

This re
ection function is called the BRDF, or Bi-directional

Re
ectance Distribution Function.

fr(p;uin ! uout) �
L(p;uout)

L(p;uin)

I use the � sign here, because, strictly speaking we need to

include a di�erential and a cosine. Let's stick with our

intuitive de�nition.
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The grand scheme

Physics
   Transport theory

Mathematics
    Integral equations

Computer Science
   Algorithms
   Numerics

Photons/light

Radiometry

Surface balance
equation

Surface rendering
equation

Radiosity equation
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Surface balance equation

We can decompose the radiance coming from a surface in

terms of:

[outgoing] = [emitted] + [re
ected] + [transmitted]

L(p;uout) = Le(p;uout) + Lr(p;uout) + Lt(p;uout)

In our derivations, we will ignore transmission.
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The surface rendering equation

Our objective is to solve for the radiance function, L(p;uout)

over all surfaces in all directions.

Given the geometric relationship between two patches:

�i

dAi

ni

L(pi;uout)

�j

nj

dAj

pi

L(pi;uin)

pj

The equation we are trying to solve is:

L(pi;uout) = Le(pi;uout)

+
Z

M

fr(pi;uin ! uout)G(pi;pj)L(pi;uin)dAj

Where M refers to all surfaces in the scene and G(pi;pj)

describes how e�ciently light is transported from surface j to

surface i. This equation is known as the surface

rendering equation.
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Radiosity

Solving the full blown rendering equation is very hard. What

happens when we have only di�use surfaces in a scene?

Light is re
ected equally in all directions, so:

fr(p;uin ! uout) = fr;d(p)

In addition, the radiance from each point is equal in all

directions:

L(p;uout) = Ld(p)

After dropping angular dependencies, the rendering equation

becomes:

Ld(pi) = Le(pi) +
Z

M

fr;d(pi)G(pi;pj)Lo(pj)dAj

Thus, we now need to solve for a function Ld(p) over 2D

(surfaces) only.
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Radiosity and re
ectance

We could just go ahead and work on solving the new

rendering equation, but we must obey some conventions

�rst...

Radiosity, B(p), is the power per unit area leaving a

surface.

For a di�use surface, it is related to the radiance by:

B(p) = �Ld(p)

Re
ectance, �(p), is the ratio of the power per unit area

leaving a surface to the power per unit area striking a surface.

Re
ectance varies from 0 to 1 and is related to the BRDF of

a di�use surface by:

�(p) = �fr;d(p)
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The radiosity equation

After making some subsitutions, we arrive at:

B(pi) = E(pi) +
Z

M

�(pi)
G(pi;pj)

�
B(pj)dAj

B(pi) = E(pi) + �(pi)
Z

M

F (pi;pj)B(pj)dAj

The discrete form of this equation is:

Bi = Ei + �i
X
j
FijBj
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Intuition for the radiosity equation

To solve for the discrete radiosity function, we will break a

scene into patches and solve a light transport equation.

A room containinfg a light and one object Break up the room into ”patches”

Each patch receives light from other patches... ...and reflects light back to these patches.
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Intuition for the radiosity equation, cont'd

Consider the light impinging on one patch:

i

j

We can compute the re
ected radiosity, Bi, by re
ecting and

summing the contributions from every other patch:

Bi = Ei + �i
X
j
FijBj

The Fij are called the form factors and tells us how

radiosity from one patch is transported to another. But what

form does it take?
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The form factor

Consider the transport of energy from patch j to i:

i

j

i

j

�i

�j

rij

Transport path Geometrical notation

Now let's vary the size, orientation, visibility, and distance

between the patches:

i

j

i

j

(e)

(a)

(f)

i

j

(b)

occluder

i

j

(d)

i

j

(c)

i

j

How does the transport vary in each of (a)-(f)?
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The form factor, cont'd

Let's put all these terms together:

Fij =
VijAjcos�icos�j

�r2ij
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Matrix form of the radiosity equation

Here again is the radiosity equation:

Bi = Ei + �i
X
j
FijBj

We can re-write this as:

Bi � �i
X
j
FijBj = Ei

Now we can write a matrix equation and solve!

2
66666666666666664

1� �1F11 ��1F12 � � ��1F1n

��2F21 � ��2F2n

� � �

� � �

��n�1Fn�1;1 ��n�1Fn�1;n

��nFn1 � � ��nFn;n�1 1� �nFnn

3
77777777777777775

2
66666666666666664

B1

B2

�

�

�

Bn

3
77777777777777775

=

2
66666666666666664

E1

E2

�

�

�

En

3
77777777777777775
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Matrix form of the radiosity equation, cont'd

If we de�ne:

K =

2
6666666666664

�1F11 � � � �1F1n

� � �

� � �

� � �

�nFn1 � � � �nFnn

3
7777777777775

Then we can re-write the equation as:

(I �K)B = E

One way to solve this is to compute B = (I �K)�1E

directly.

This is really expensive. The matrix, (I �K) is generally

fairly dense (O(n2) interactions), and inversion requires

O(n3) operations.
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Solving the radiosity equation

Iterative methods will generally get you close to the solution

in fewer steps.

One possibility is to do a von Neumann expansion:

(I �K)�1 = I +K +K2 +K3 + :::

so that we could compute a truncated series:

B = E +KE +K2E +K3E + :::
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Solving the radiosity equation, cont'd

We can write this as iterative matrix multiplication:

B(0) = E

B(1) = B(0) +KB(0)

B(2) = B(1) +KB(1)

B(3) = B(2) +KB(2)

Note that each multiplication by K corresponds to bouncing

the radiosity through the scene one more time.

This still converges fairly slowly and runs in O(n2) assuming

you can stop after a number of iterations much less than n.
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Solving the radiosity equation, cont'd

Whenever we multiply a row of K by B, we can think of this

as gathering energy into a patch.

A faster converging method is based on the notion of

\shooting" energy from patches.
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Solving the radiosity equation, cont'd

The idea is:

1. Sort the patches by the amount of radiosity they

currently have.

2. Shoot the energy from the brightest patch to all the

other patches.

3. Mark this patch as having zero \unshot" radiosity.

4. Choose the next patch with the largest unshot radiosity

and iterate.

This approach is called \progressive radiosity".

The convergence is substantially faster, closer to O(n) in

practice.
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Solving the radiosity equation, cont'd

Another idea is to compute the interactions hierarchically.

If two patches are close together, then link them in the usual

way. If they are further apart, then link their parent patches.

The complexity can be shown to be linear in n, the number

of leaf node patches.

However, the original input patches are the parent patches,

so if there are k input patches, there are at least O(k2)

interactions. Total complexity is then O(n + k2).
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Final rendering

So, what can you do with the solution when you're done?

Once we've solved for the radiosity, we can ray trace the

scene from any viewpoint without bouncing any rays. The

results of all the bounces have been pre-computed.

We call this a \view indedpendent solution."
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Final rendering, cont'd

Better yet, we can do an interactive walkthrough:

1. Given the radiosity at the center of patches (e.g.,

triangles or rectangles), estimate the radiosity at the

vertices.

2. Use graphics hardware and Gouraud shading and do an

interactive walkthrough.

[Show video.]
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Final rendering, cont'd

We can also use hybrid methods. Use:

� radiosity methods (great for di�use interre
ections, but

no modeling of specularity)

� and ray tracing (lousy for di�use interre
ections, but

great for specularity)

to get some of the most realistic renderings ever produced!
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