Reading

14. Parametric surfaces

Mathematical surface representations

- Explicit $z=f(x, y)$ (a.k.a., a "height field")
- what if the curve isn't a function, like a sphere?
- Implicit $g(x, y, z)=0$
- Parametric $(x(u, v), y(u, v), z(u, v))$
- For the sphere:
$x(u, v)=r \cos 2 \pi v \sin \pi u$
$y(u, v)=r \sin 2 \pi v \sin \pi u$
$z(u, v)=r \cos \pi u$

As with curves, we'll focus on parametric surfaces.

Surfaces of revolution

Idea: rotate a 2D profile curve around an axis.

What kinds of shapes can you model this way?

Constructing surfaces of revolution

Given: A curve $C(u)$ in the $x y$-plane:

$$
C(u)=\left[\begin{array}{c}
c_{x}(u) \\
c_{y}(u) \\
0 \\
1
\end{array}\right]
$$

Let $R_{x}(\theta)$ be a rotation about the x-axis.
Find: A surface $S(u, v)$ which is $C(u)$ rotated about the x-axis.

Solution:

General sweep surfaces

The surface of revolution is a special case of a swept surface.

Idea: Trace out surface $S(u, v)$ by moving a profile curve $C(u)$ along a trajectory curve $T(v)$.

More specifically:

- Suppose that $C(u)$ lies in an $\left(x_{c}, y_{c}\right)$ coordinate system with origin O_{c}.
- For every point along $T(v)$, lay $C(u)$ so that O_{c} coincides with $T(v)$.

Orientation

The big issue:

- How to orient $C(u)$ as it moves along $T(v)$?

Here are two options:

1. Fixed (or static): Just translate O_{c} along $T(v)$.
2. Moving. Use the Frenet frame of $T(v)$.

- Allows smoothly varying orientation.
- Permits surfaces of revolution, for example.

Frenet frames

Motivation: Given a curve $T(v)$, we want to attach a smoothly varying coordinate system.

To get a 3D coordinate system, we need 3 independent direction vectors.

$$
\begin{aligned}
& \hat{t}(v)=\operatorname{normalize}\left(T^{\prime}(v)\right) \\
& \hat{b}(v)=\operatorname{normalize}\left(T^{\prime}(v) \times T^{\prime \prime}(v)\right) \\
& \hat{n}(v)=\hat{b}(v) \times \hat{t}(v)
\end{aligned}
$$

As we move along $T(v)$, the Frenet frame (t, b, n) varies smoothly.

Frenet swept surfaces

Orient the profile curve $C(u)$ using the Frenet frame of the trajectory $T(v)$:

- Put $C(u)$ in the normal plane $n b$.
- Place O_{c} on $T(v)$.
- Align x_{c} for $C(u)$ with b.
- Align y_{c} for $C(u)$ with -n.

If $T(v)$ is a circle, you get a surface of revolution exactly!

What happens at inflection points, l.e., where curvature goes to zero?

Variations

Several variations are possible:

- Scale $C(u)$ as it moves, possibly using length of $T(v)$ as a scale factor.
- Morph $C(u)$ into some other curve $C^{\prime}(u)$ as it moves along $T(v)$.
- ...

Tensor product Bézier surfaces

Given a grid of control points $V_{i j}$, forming a control net, contruct a surface $S(u, v)$ by:

- treating rows of V as control points for curves $V_{0}(u), \ldots, V_{n}(u)$.
- treating $V_{0}(u), \ldots, V_{n}(u)$ as control points for a curve parameterized by v.

Tensor product surfaces, cont.

Let's walk through the steps:

Which control points are interpolated by the surface?

Matrix form

Tensor product surfaces can be written out explicitly:

$$
\begin{aligned}
S(u, v) & =\sum_{i=0}^{n} \sum_{j=0}^{n} V_{i j} B_{i}^{n}(u) B_{j}^{n}(v) \\
& =\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right] M_{\text {Bezier }} V M_{\text {Bezier }}^{T}\left[\begin{array}{c}
v^{3} \\
v^{2} \\
v \\
1
\end{array}\right]
\end{aligned}
$$

Tensor product B-splines, cont.

Which B-spline control points are interpolated by the surface?

Tensor product B-spline surfaces

As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C2 continuity and local control, we get B-spline curves:

- treat rows of B as control points to generate Bézier control points in u.
- treat Bézier control points in u as B-spline control points in v.
- treat B-spline control points in v to generate Bézier control points in u.

Tensor product B-splines, cont.

Another example:

Trimmed NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.

Sometimes, we want to have control over which parts of a NURBS surface get drawn.

For example:

We can do this by trimming the $u-v$ domain.

- Define a closed curve in the $u-v$ domain (a trim curve)
- Do not draw the surface points inside of this curve.

It's really hard to maintain continuity in these regions, especially while animating.

Summary

What to take home:

- How to construct swept surfaces from a profile and trajectory curve:
- with a fixed frame
- with a Frenet frame
- How to construct tensor product Bézier surfaces
- How to construct tensor product B-spline surfaces

