
9. Hidden Surface Algorithms

1

Optional reading

� Foley, van Dam, Feiner, Hughes, Chapter 15

� I. E. Sutherland, R. F. Sproull, and

R. A. Schumacker, A characterization of ten hidden

surface algorithms, ACM Computing Surveys 6(1):

1{55, March 1974.

2

Introduction

Once we transform all the geometry into screen space,

we need to decide which parts are visible to the viewer.

Known as the \hidden surface elimination problem" or

the \visible surface determination problem."

There are dozens of hidden surface algorithms.

They can be characterized in at least three ways:

� Object-resolution vs. image-resolution (a.k.a,

object-space vs. image-space)

� Object order vs. image order

� Sort �rst vs. sort last

3

Object-precision algorithms

� Basic idea:

� Operate on the geometric primitives themselves

� Objects typically intersected against each other

� Tests performed to high precision

� Finished list of visible objects can be drawn at

any resolution

� Complexity:

� Related to number of objects n

� Typically O(n2)

� Implementation:

� Di�cult to implement

� Can get numerical problems

4

Image-precision algorithms

� Basic idea:

� Find the closest point as seen through each pixel

� Calculations performed at display resolution

� Does not require high precision

� Complexity:

� Related to resolution (number of pixels), R, of

display

� One measure is depth complexity, d { average

number of objects along a pixel. Gives

algorithm complexity of O(dR).

� Implementation:

� Very simple to implement!

Used a lot in practice!

5

Object order vs. image order

Object order:

� Consider each object only once, draw its pixels, and

move on to the next object

� Might draw the same pixel multiple times

Image order:

� Consider each pixel only once, �nd nearest object,

and move on to the next pixel

� Might compute relationships between objects

multiple times

6

Sort �rst vs. sort last

Sort �rst:

� Find some depth-based ordering of the objects

relative to the camera, then draw back to front

� Build an ordered data structure to avoid

duplicating work

Sort last:

� Sort implicitly as more information becomes

available

7

Outline of lecture

� Z-bu�er

� Ray casting

� Binary space partitioning (BSP) trees

8

Z-bu�er

The \Z-bu�er" or \depth bu�er" algorithm [Catmull,

1974] is probably the simplest and most widely used.

Here is pseudocode for the Z-bu�er hidden surface

algorithm:
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

for each pixel (x; y) do

Z-bu�er[x; y] -FAR

Fb[x; y] hbackground colori

end for

for each polygon P do

for each pixel in P do

Compute depth z and shade s of P at (x; y)

if z > Z-bu�er[x; y] then

Z-bu�er[x; y] z

Fb[x; y] s

end if

end for

end for

9

Z-bu�er, cont'd

The z value can be computed incrementally, like the

shade s.

xi

yi

(x2; y2; z2)
(R2; G2; B2)

(x1; y1; z1)
(R1; G1; B1)

(x3; y3; z3)
(R3; G3; B3)

Curious fact:

� Described as the \brute-force image space

algorithm" by [SSS]

� Mentioned only in Appendix B as a point of

comparison for huge memories, but written o� as

totally impractical

Today, Z-bu�ers are commonly implemented in

hardware.

10

Z-bu�er: Analysis

� Classi�cation?

� Easy to implement?

� Hardware implementible?

� Incremental drawing calculations (uses coherence)?

� Memory intensive?

� Pre-processing required?

� On-line (doesn't need all objects in advance)?

� Handles transparency?

� Handles refraction?

� Polygon-based?

� Extra work for moving objects?

� Extra work for moving viewer?

� E�cient shading (doesn't compute colors of hidden

surfaces)?

� Handles cycles and self-intersections?

11

Ray casting

pi

eye

O1

O2

Idea: For each pixel pi,

� Send ray from eye, through center of pi, into scene

� Intersect ray with each object

� Select nearest intersection

12

Ray casting, cont.

pi

eye

O1

O2

Implementation:

� Might parameterize each ray:

R(t) = eye + t(eye� pi)

� Each object Oi returns ti > 1 such that �rst

intersection with Oi occurs at Pi = R(ti).

� Foremost object is:

13

Ray casting: Analysis

� Classi�cation?

� Easy to implement?

� Hardware implementible?

� Incremental drawing calculations (uses coherence)?

� Memory intensive?

� Pre-processing required?

� On-line (doesn't need all objects in advance)?

� Handles transparency?

� Handles refraction?

� Polygon-based?

� Extra work for moving objects?

� Extra work for moving viewer?

� E�cient shading (doesn't compute colors of hidden

surfaces)?

� Handles cycles and self-intersections?

14

Binary-space partitioning (BSP) trees

� Idea:

� Do extra preprocessing to allow quick display

from any viewpoint.

� Key observation: A polygon P is painted in correct

order if

� Polygons on far side of P are painted �rst

� P is painted next

� Polygons in front of P are painted last

15

BSP tree creation

1

2
3

4

5

5b
5a

1

2
3

4

5

5b
5a

1

2
3

4

5

5b
5a

16

BSP tree creation, cont'd

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

procedure MakeBSPTree:

takes PolygonList L

returns BSPTree

Choose polygon P from L to serve as root

Split all polygons in L according to P

root P

root:l MakeBSPTree(fpolygons on neg. side of Pg)

root:r MakeBSPTree(fpolygons on pos. side of Pg)

return root

end procedure

Note: Performance is improved when fewer polygons are

split | in practice, best of � 5 random splitting

polygons are chosen.

17

BSP tree display

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

procedure DisplayBSPTree:

takes BSPTree T

if T is empty then return

if viewer is in front of T:root then

DisplayBSPTree(T:l)

Draw T:root

DisplayBSPTree(T:r)

else

DisplayBSPTree(T:r)

Draw T:root

DisplayBSPTree(T:l)

end if

end procedure

18

BSP trees: Analysis

� Classi�cation?

� Easy to implement?

� Hardware implementible?

� Incremental drawing calculations (uses coherence)?

� Memory intensive?

� Pre-processing required?

� On-line (doesn't need all objects in advance)?

� Handles transparency?

� Handles refraction?

� Polygon-based?

� Extra work for moving objects?

� Extra work for moving viewer?

� E�cient shading (doesn't compute colors of hidden

surfaces)?

� Handles cycles and self-intersections?

19

Summary

What to take home from this lecture:

1. Classi�cation of hidden surface algorithms

2. Understanding of Z-bu�er and ray casting hidden

surface algorithms

3. Familiarity with BSP trees

20

