Reading

Required:

- Watt, Chapter 1.

6. Affine transformations

Supplemental:

- Foley et al., Chapter 5.1-5.5
- David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, Second edition, McGraw-Hill, New York, 1990, Chapter 2.

Geometric transformations

Geometric transformations will map points in one space to points in another: $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\mathbf{f}(x, y, z)$

These tranformations can be very simple, such as scaling each coordinate, or complex, such as non-linear twists and bends.

We'll focus on transformations that can be represented easily with matrix operations

We'll start in 2D.

Representation

We can represent a point $p=(x, y)$ in the plane

- as a column vector $\left[\begin{array}{l}x \\ y\end{array}\right]$
- as a row vector $\left[\begin{array}{ll}x & y\end{array}\right]$

Representation, cont.

We can represent a 2-D transformation M by a matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

If p is a column vector, M goes on the left:

$$
\begin{aligned}
p^{\prime} & =M p \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] } & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

If p is a row vector, M^{T} goes on the right:

$$
\begin{aligned}
p^{\prime} & =p T \\
{\left[\begin{array}{ll}
x^{\prime} & y^{\prime}
\end{array}\right] } & =\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
\end{aligned}
$$

We will use column vectors

Two-dimensional transformations

Here's all you get with a 2×2 transformation matrix M :

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

So

$$
\begin{aligned}
x^{\prime} & =a x+b y \\
y^{\prime} & =c x+d y
\end{aligned}
$$

We will develop some intimacy with the elements a, b, c, d. . .

Identity

Suppose we choose $a=d=1, b=c=0$:

- Gives the identity matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- Doesn't move the points at all

Scaling

Suppose we set $b=c=0$, but let a and d take on any positive value:

- Gives a scaling matrix

$$
\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]
$$

- Provides differential scaling in x and y :

$$
\begin{aligned}
x^{\prime} & =a x \\
y^{\prime} & =d y
\end{aligned}
$$

$\stackrel{y}{*}$

$\stackrel{y}{x}$

Suppose we keep $b=c=0$, but let a or d go negative

Examples:

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

Now let's leave $a=d=1$ and experiment with $c \ldots$

The matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right]
$$

gives:

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=c x+y
\end{aligned}
$$

Effect is called a " \qquad "

Effect on unit square

Let's see how a general 2×2 transformation M affects the unit square:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & a & a+b & b \\
0 & c & c+d & d
\end{array}\right]
$$

ㅊ

y
4

Effect on unit square, cont.

Observe:

- Origin invariant under M
- M can be determined just by knowing how the corners $(1,0)$ and $(0,1)$ are mapped
- a and d give x - and y-scaling
- b and c give x - and y-shearing

Rotation

From our observations of the effect on the unit square, it should be easy to write down a matrix for "rotation about the origin":
长

y

- $\left[\begin{array}{l}1 \\ 0\end{array}\right] \rightarrow$
- $\left[\begin{array}{l}0 \\ 1\end{array}\right] \rightarrow$

A 2×2 matrix allows

- Scaling
- Rotation
- Reflection
- Shearing

Q: What important operation does that leave out?

Homogeneous coordinates

Idea is to loft the problem up into 3 -space, adding a third component to every point:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

And then transform with a 3×3 matrix:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{llc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

$$
\begin{array}{ll}
y \\
A & y \\
i
\end{array}
$$

Rotation about arbitrary points

Until now, we have only considered rotation about the origin.

With homogeneous coordinates, you can specify a rotation, θ, about any point $\mathbf{q}=\left[q_{x} q_{y}\right]^{T}$ with a matrix:

1. Translate q to origin
2. Rotate
3. Translate back
[^0]
Mathematical properties of affine transformations

All of the transformations we've looked at so far are examples of "affine transformations."

Here are some useful properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Midpoints map to midpoints (in fact, ratios are always preserved)

Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D ones. For example, scaling:

Scaling

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Translation in 3D

Rotation in 3D

Rotation now has more possibilities in 3D:

$$
\begin{aligned}
& R_{x}(\theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& R_{y}(\theta)=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& R_{z}(\theta)=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Shearing in 3D

Shearing is also more complicated. Here is one example:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & b & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

[^0]: Note: Transformation order is important!

