Week 6 study sheet: Curves

Problem 1 (28 points) A Bézier curve of degree n, which (for the purposes of this problem) we'll donate by $Q^{n}(u)$, can be defined in terms of the locations of its $n+1$ control points $\left\{V_{0}, \ldots, V_{n}\right\}$:

$$
Q^{n}(u)=\sum_{i=0}^{n} V_{i}\binom{n}{i} u^{i}(1-u)^{n-i}
$$

a) (4 points) Use de Casteljau's algorithm to find the (approximate) position of the Bézier curves $Q^{1}(u)$ and $Q^{2}(u)$ defined by the two control polygons below at $u=1 / 3$:

Problem 1 (continued)

True or false:
b) (2 points) Every Bézier curve $Q^{1}(u)$ is a line segment (assuming no repeated control points).
c) (2 points) Every Bézier curve $Q^{2}(u)$ lies in a plane.
d) (3 points) The tangent of $Q^{1}(u)$ at $u=0$ is always 0 .
e) (3 points) The curvature of $Q^{2}(u)$ at $u=0$ is always 0 .
f) (7 points) For every Bézier curve $Q^{1}(u)$ there exists a curve $Q^{2}(u)$ such that $Q^{1}(u)=Q^{2}(u)$ for all u. (For full credit, provide a proof of your answer for this part.)

Problem 1 (continued)

Since a Bézier curve $Q^{n}(u)$ can be expressed as a linear combination of control points

$$
B_{0}(u) V_{0}+B_{1}(u) V_{1}+\cdots+B_{n}(u) V_{n}
$$

we can associate an interval $\left[u_{\min }, u_{\min }\right.$] with each control point V_{i}, defined as the region of the parameter domain u for which $B_{i}(u)$ is larger than any of the other "basis functions" $B_{0}(u), \ldots, B_{n}(u)$. We'll call this interval the dominant region of a control point V_{i}.

For example, for Bézier curves of degree 1 , the dominant region of V_{0} is $[0,1 / 2]$, and the dominant region of V_{1} is $[1 / 2,1]$.
g) (7 points) What is the dominant region for each of the three control points V_{0}, V_{1}, V_{2} of a Bézier curve of degree 2? (For full credit, provide a proof of your answer.)

Problem 2 (20 points) More complex curves can be designed by piecing together different Bézier curves to make mathematical "splines." Two popular splines are the B -spline and the Catmull-Rom spline. If $\left\{B_{0}, B_{1}, B_{2}, B_{3}\right\}$ and $\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$ are cubic B-spline and Catmull-Rom spline control points, respectively, then the corresponding Bézier control points $\left\{V_{0}, V_{1}, V_{2}, V_{3}\right\}$ can be constructed by the following identity:

$$
\left[\begin{array}{l}
V_{0} \\
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\frac{1}{6}\left[\begin{array}{llll}
1 & 4 & 1 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 4 & 0 \\
0 & 1 & 4 & 1
\end{array}\right]\left[\begin{array}{l}
B_{0} \\
B_{1} \\
B_{2} \\
B_{3}
\end{array}\right]=\frac{1}{6}\left[\begin{array}{rrrr}
0 & 6 & 0 & 0 \\
-1 & 6 & 1 & 0 \\
0 & 1 & 6 & -1 \\
0 & 0 & 6 & 0
\end{array}\right]\left[\begin{array}{l}
C_{0} \\
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right]
$$

True or false:
a) (2 points) B-splines and Catmull-Rom splines both have C^{2} continuity.
b) (2 points) Neither B-splines nor Catmull-Rom splines interpolate their control points.
c) (2 points) B-splines and Catmull-Rom splines both lie inside the convex hull of their control points.
d) (2 points) B-splines and Catmull-Rom splines both provide local control.

Problem 2 (continued)

e) (6 points) The points $\left\{B_{0}, B_{1}, B_{2}, B_{3}\right\}$ below are control points for a cubic B-spline. Construct, as carefully as you can on the diagram below, the Bézier control points $\left\{V_{0}, V_{1}, V_{2}, V_{3}\right\}$ corresponding to the same curve.
f) (6 points) The points $\left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$ below are control points for a cubic Catmull-Rom spline. Construct, as carefully as you can on the diagram below, the Bézier control points $\left\{V_{0}, V_{1}, V_{2}, V_{3}\right\}$ corresponding to the same curve.

