
Computer Graphics  Instructor: Brian Curless
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Homework #2 
 

Shading, Projections, Texture Mapping,  

Ray Tracing, and Bezier Curves 
 
 
 
 
 

 
Assigned:  Wednesday, Nov 16th  

 
Due:   Wednesday, Nov 30th  

                 at the beginning of class 
 
 
 
Directions: Please provide short written answers to the following questions on your own paper.  
Feel free to discuss the problems with classmates, but please follow the Gilligan’s Island rule*, 
answer the questions on your own, and show your work. 
 
Please write your name on your assignment! 
 
 
* The Gilligan's Island Rule: This rule says that you are free to meet with fellow student(s) and 
discuss assignments with them. Writing on a board or shared piece of paper is acceptable during 
the meeting; however, you should not take any written (electronic or otherwise) record away 
from the meeting. After the meeting, engage in a half hour of mind-numbing activity (like 
watching an episode of Gilligan's Island), before starting to work on the assignment. This will 
assure that you are able to reconstruct what you learned from the meeting, by yourself, using 
your own brain. 
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Problem 1. Interpolated shading (20 points)  
 
The faceted polyhedron shown in the figure at right is an 
octahedron and consists of two pyramids connected at the base 
comprised of a total of 8 equilateral triangular faces with vertices 
at (1,0,0), (0,1,0), (0,0,1), (-1,0,0), (0,-1,0), and (0,0,-1).  The 
viewer is at infinity (i.e., views the scene under parallel 
projection) looking in the (-1,0,-1) direction, and the scene is lit by 
directional light shining down from above parallel to the y-axis 

with intensity IL = (1,1,1).  The octahedron’s materials have both 
diffuse and specular components, but no ambient or emissive 
components.  The Blinn-Phong shading equation thus reduces to: 
 

           

where

1 if 0
       

0 if 0
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For this problem, kd = ks = (0.5, 0.5, 0.5) and ns=40. 
 
(a) (2 points) In order to draw the faces as flat-shaded triangles, we must shade them using only their face 

normals. In OpenGL, this could be accomplished by specifying the vertex normals as equal to the face 
normals.  (The same vertex would get specified multiple times, once per triangle with the same 
coordinates but different normal each time.)  What is the unit normal for triangle ABC? 

 
(b) (3 points) Assume that this object is really just a crude approximation of a sphere (e.g., perhaps you 

are using the octahedron to represent the sphere because your graphics card is slow).  If you want to 
shade the octahedron so that it approximates the shading of a sphere, what would you specify as the 
unit normal at each vertex of triangle ABC? 

 
(c) (5 points) Given the normals in (b), compute the rendered colors of vertices A, B, and C.  Show your work. 

 
(d) (2 points) Again given the normals in (b), describe the appearance of triangle ABC as seen by the 

viewer using Gouraud interpolation. 
 
(e) (3 points) Now switch from Gouraud-interpolated shading to Phong-interpolated shading.  How will 

the appearance of triangle ABC change (given the normals in (b)? 
 

(f) (3 points) Remember that this object is being used to simulate a sphere.  
One simple improvement to the geometry of the model is to subdivide 
each triangular face into four new equilateral triangle (sometimes called 4-
to-1 triangular subdivision), and then move the newly inserted vertices to 
better approximate the sphere’s shape.  If you subdivided triangle ABC 
this way, as shown in the figure to the right, what would be the best 
choices for the new coordinates and unit normals of the three added 
vertices A', B', and C' in order to more closely approximate a unit sphere?   
 

(g) (2 points) If you continued this subdivision process – repeatedly 
performing 4-to-1 subdivision, repositioning the inserted vertices, and 
computing their ideal normals – would the Gouraud-interpolated and 
Phong-interpolated renderings of the refined shape converge toward the 
same answer, i.e., the appearance of a ray traced sphere?  Explain. 
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Problem 2. Texture mapping (15 points) 
 
When a texture map is applied to a surface, points that are distinct in the rectangular texture map may be 
mapped to the same place on the object.  For example, when a texture map is applied to a cylinder, the left and 
right edges of the texture map are mapped to the same place.  We call a mapping “valid” if it does not map two 
points of different colors to the same point on the object.  For each of the 16 cases below, indicate whether the 
mapping is valid (write “Yes” or “No” above the texture map).  If it is not valid, mark with an X two points on 
the texture map that map to the same point on the object, but have different colors.  Use the texture mapping 
formulas specified below for each primitive, where the u, v parameters range from 0 to 1.  The (u, v) origin of 
each texture map is in the lower left corner of the texture.  The first of the 16 cases below is done for you.  
Please write on this page and include it with your homework solution. You do not need to justify your 
answers.   
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Problem 3. Projections (18 points) 
 
Imagine there is a pinhole camera located at the origin, COP1, that is looking in the –z direction.  The 

projection plane (PP) is the plane z = zP (note zP is a negative number), so that the distance from COP1 to PP 
is d = -zP, as shown in the figure below.  Let there be two points in the scene, P = [0 yP zP 1]T and Q = [0 yP 
2zP 1]T. 
 

 
 
The projection matrix for this camera is 
 

1 0 0 0

0 1 0 0

0 0 1/ 0pz

 
 
 
  

 

 
This projects P to the point [0 yP 1]T and Q to the point [0 ½yP 1]T. 
 

a) (4 points) Now, assume that the camera has moved to COP2 (shown above) at [0 0 -2zP 1]T.  
Assume PP stays at z = zP.  Derive the new projection matrix that maps points onto PP.  Show 
your work. 

 
b) (3 points) If your matrix in part a) is correct, point P should project to the same image point as 

before.  Calculate the projection of point Q.  How did the projection of point Q change when the 
camera moved from COP1 to COP2?   

 
c) (7 points) Suppose we want to keep the projection of Q constant at [0 ½yP 1]T.  Suppose the center of 

projection is at COP = [0 0 zCOP 1]T.  To keep the projection of Q constant, we will need to vary the z-
coordinate of PP; let the updated PP be z = pz .  Solve for pz needed to keep Q’s projection constant 

as zCOP varies.  Show your work.  Note that the z-coordinate of Q is fixed at 2zP, but the z-coordinate 
of PP is now a variable, pz . 

 
d) (4 points) Now consider moving the COP infinitely far back along the positive z-axis while keeping 

PP at its original location, z = zP.  Derive the new projection matrix for this case.  Show your work.  
What is this sort of projection called? 

 

zP 

zP 

yP 

P

Q 
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Problem 4.  Ray intersection with implicit surfaces (24 points)  
 
There are many ways to represent a surface.  One way is to define a function of the form 0),,( zyxf .  
Such a function is called an implicit surface representation.  For example, the equation 

0),,( 2222  rzyxzyxf  defines a sphere of radius r.  Suppose we wanted to ray trace a so-
called “tangle cube,” described by the equation: 
 

4 4 4 2 2 25 5 5 12 0x y z x y z        
 

In the figure below, the left column shows two renderings of the tangle cube, the middle column 
illustrates taking a slice through the x-y plane (at z = 0), and the right column shows a slice parallel to the 
x-y plane taken toward the bottom of the tangle cube (plane at z ≈ -1.5): 
 

 
 

In the next problem steps, you will be asked to solve for and/or discuss ray intersections with this 
primitive.  Performing the ray intersections will amount to solving for the roots of a polynomial, much as 
it did for sphere intersection.  For your answers, you need to keep a few things in mind: 

 
 You will find as many roots as the order (largest exponent) of the polynomial. 
 You may find a mixture of real and complex roots.  When we say complex here, we mean a number that 

has a non-zero imaginary component. 
 All complex roots occur in complex conjugate pairs.  If A + iB is a root, then so is A – iB. 
 Sometimes a real root will appear more than once, i.e., has multiplicity > 1.  Consider the case of sphere 

intersection, which we solve by computing the roots of a quadratic equation. A ray that intersects the 
sphere will usually have two distinct roots (each has multiplicity = 1) where the ray enters and leaves the 
sphere.  If we were to take such a ray and translate it away from the center of the sphere, those roots get 
closer and closer together, until they merge into one root.  They merge when the ray is tangent to the 
sphere.  The result is one distinct real root with multiplicity = 2. 

 

(a) (9 points) Consider the ray dtP  , where  000P  and  1 1 0d .  Typically, we normalize 

d, but for simplicity (and without loss of generality) you can work with the un-normalized d as given 
here.   
 Solve for all values of t where the ray intersects the tangle cube (including any negative values of t).  

You should analyze/factorize your equation in t to arrive at an exact answer.  Show your work.   
 In the process of solving for t, you should have computed the roots of a polynomial.  How many 

distinct real roots did you find?  How many of them have multiplicity > 1?  How many complex roots 
did you find? 

 Which value of t represents the intersection we care about for ray tracing?   
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Problem 4 (cont’d)   
 

b) (15 points) What are all the possible combinations of roots when ray tracing this surface, not counting the one in 
part (a)?  For each combination, describe the 4 roots as in part (a), draw a ray in the x-y plane that gives rise to 
that combination, and place a dot at each intersection point. Assume the origin of the ray is outside of the 
bounding box of the object.  There are five diagrams below that have not been filled in.  You may not need all 
five; on the other hand, if you can actually think of more distinct cases than spaces provided, then we might just 
give extra credit.  The first one has already been filled in.  (Note: not all conceivable combinations can be 
achieved on this particular implicit surface.  For example, there is no ray that will give a root with  
multiplicity 4.)  Please write on this page and include it with your homework solution. You do not need to 
justify your answers.   

 
 

                                                  
 

# of distinct real roots:  4           # of distinct real roots:    # of distinct real roots: 
 

# of real roots w/ multiplicity > 1: 0  # of real roots w/ multiplicity > 1: # of real roots w/ multiplicity > 1: 
 

# of complex roots: 0    # of complex roots:    # of complex roots: 
 
 
              

                    
                                       
 
# of distinct real roots:             # of distinct real roots:    # of distinct real roots: 
 
# of real roots w/ multiplicity > 1:  # of real roots w/ multiplicity > 1: # of real roots w/ multiplicity > 1: 
 
# of complex roots:    # of complex roots:    # of complex roots: 
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Problem 5. Bezier splines (23 points) 
 
Consider a Bezier curve segment defined by three control points V0, V1, and V2.  
 

a) (3 points) What is the polynomial form of this curve, when written out in the form 
Q(u) = An un + An-1 un-1 + … + A0, where n is determined by the number of control points.  The 
coefficients A0, …, An should be substituted in the polynomial equation with expressions that depend on 
the control points V0, V1, and V2.  You may start with recursive subdivision or with the summation over 
Bernstein polynomials provided in lecture.  Either way, show your work. 
 

b) (2 points) What is the first derivative of Q(u) evaluated at u = 0 and at u = 1 (i.e., what are Q’(0) and 
Q’(1))?  Show your work. 

 
c) (2 points) What is the second derivative of Q(u) evaluated at u = 0 and at u = 1 (i.e., what are Q’’(0) and 

Q’’(1))?  Show your work. 
 
d) (5 points) To create a spline curve, we can stitch together consecutive Bezier curves.  In this problem, we 

can add control points W0, W1, and W2.  What constraints must be placed on W0, W1, and/or W2 so that, 

when combined with V0, V1, and V2, the resulting spline curve is C1 continuous at the joint between the 
Bezier segments?  Write out equations for W0, W1, and/or W2 in terms of V0, V1, and/or V2.  (It may be 
that not all of the W control points are constrained, in which case you would have fewer than three 
equations.)  Show your work.  Draw a copy of the control polygon below (shown at the bottom of the 
page) and place all constrained vertices exactly, and unconstrained vertices wherever you like, and then 
sketch the spline curve. 

 

e) (5 points) Suppose we wanted to make the spline curve C2 continuous at the joint between the Bezier 
segments.  Now what constraints must be placed on W0, W1, and W2?  Write out equations for W0, W1, 
and/or W2 in terms of V0, V1, and/or V2.  (It may be that not all of the W control points are constrained, in 
which case you would have fewer than three equations.)  Show your work. Draw a copy of the control 
polygon below (shown at the bottom of the page) and place all constrained vertices exactly, and 
unconstrained vertices wherever you like, and then sketch the spline curve. 

 

f) (3 points) Is it possible to achieve C3 continuity with this spline?  Explain. 
 
g) (3 points) Suppose again that the control points are in two dimensions, but now V1 = V2 = W0 = W1.  

Think of this as sliding V2 over on top of V1 in the figure below, then placing W0 and W1 on top of those 
points, and then adding W2 at some arbitrary position, somewhere to the right but not collinear with V0 
and V1.  Sketch the resulting curve.  Will this curve be C1?  Justify your answer. 

 
 

 
  
 

 

V0 

V1 V2 


