Ray Tracing

Reading

Foley et al., 16.12

Optional:

- Glassner, An introduction to Ray Tracing, Academic Press, Chapter 1.
- T. Whitted. "An improved illumination model for shaded display". Communications of the ACM 23(6), 343-349, 1980.

Geometric optics

We will take the view of geometric optics

- Light is a flow of photons with wavelengths. We'll call these flows "light rays."
- Light rays travel in straight lines in free space.
- Light rays do not interfere with each other as they cross.
- Light rays obey the laws of reflection and refraction.
- Light rays travel from the light sources to the eye, but the physics is invariant under path reversal (reciprocity).

Forward Ray Tracing

- Rays emanate from light sources and bounce around in the scene.
- Rays that pass through the projection plane and enter the eye contribute to the final image.

- What's wrong with this method?

Eye vs. Light

- Starting at the light (a.k.a. forward ray tracing, photon tracing)

- Starting at the eye (a.k.a. backward ray tracing)

Whitted ray-tracing algorithm

1. For each pixel, trace a primary ray to the first visible surface
2. For each intersection trace secondary rays:

- Shadow rays in directions L_{i} to light sources
- Reflected ray in direction R
- Refracted ray (transmitted ray) in direction T

Reflection

- Reflected light from objects behaves like specular reflection from light sources
- Reflectivity is just specular color
- Reflected light comes from direction of perfect specular reflection

- Is this model reasonable?

Refraction

- Amount to transmit determined by transparency coefficient, which we store explicitly
- T comes from Snell' s law

$$
\eta_{i} \sin \left(\theta_{i}\right)=\eta_{t} \sin \left(\theta_{t}\right)
$$

Total Internal Reflection

- When passing from a dense medium to a less dense medium, light is bent further away from the surface normal
- Eventually, it can bend right past the surface!
- The θ_{i} that causes θ_{t} to exceed 90 degrees is called the critical angle $\left(\theta_{c}\right)$. For θ_{i} greater than the critical angle, no light is transmitted.
- A check for TIR falls out of the construction of T

Index of Refraction

- Real-world index of refraction is a complicated physical property of the material

Me dium	Index of refraction
Vaccum	1
Air	1.0003
Water	1.33
Fused quartz	1.46
Glass, crown	1.52
Glass, dense flint	1.66
Diamond	2.42

- IOR also varies with wavelength, and even temperature!
- How can we account for wavelength dependence when ray tracing?

Stages of Whitted ray-tracing

Primary rays

Reection rays

Shadow rays

Refracted rays

The Ray Tree

Shading

If $\mathrm{I}\left(P_{0}, \mathbf{u}\right)$ is the intensity seen from point P_{0} along direction \mathbf{u}

$$
I\left(P_{0}, \mathbf{u}\right)=I_{\text {direct }}+I_{\text {reflected }}+I_{\text {transmitted }}
$$

where
$I_{\text {direct }}=\operatorname{Shade}(\mathbf{N}, \mathbf{L}, \mathbf{u}, \mathbf{R})$ (e.g. Phong shading model)
$I_{\text {reflected }}=k_{r} I(P, \mathbf{R})$
$I_{\text {transmitted }}=k_{t} I(P, \mathbf{T})$

Typically, we set $k_{r}=k_{\mathrm{s}}$ and

$$
k_{t}=1-k_{\mathrm{s}} .
$$

Parts of a Ray Tracer

- What major components make up the core of a ray tracer?
- Outer loop sends primary rays into the scene
- Trace arbitrary ray and compute its color contribution as it travels through the scene
- Shading model

$$
I=k_{e}+k_{a} I_{a}+\sum_{l} f\left(d_{i}\right) I_{l i}\left[k_{d}\left(\mathbf{N} \cdot \mathbf{L}_{i}\right)_{+}+k_{s}(\mathbf{V} \cdot \mathbf{R})_{+}^{n_{s}}\right]
$$

Outer Loop

```
void traceImage (scene)
{
    for each pixel (i,j) in the image {
    p = pixelToWorld(i,j)
    c = COP
    u = (p - c)/||p-c||
    I(i,j) = traceRay (scene, c, u)
    }
}
```


Trace Pseudocode

color traceRay (point P_{θ}, direction u)
\{

TraceRay Pseudocode

```
function traceRay(scene, P}\mp@subsup{P}{0}{},\mathbf{u}) 
    (t, P, N, obj) \leftarrow scene.intersect ( }\mp@subsup{P}{0}{},\mathbf{u}
    I = shade( u, N, scene )
    R = reflectDirection( u, N )
    I }\leftarrow I + obj.\mp@subsup{k}{r}{}* traceRay(scene, P, R
    if ray is entering object {
        (n}\mp@subsup{\textrm{n}}{\textrm{i}}{},\mp@subsup{\textrm{n}}{\textrm{t}}{})\leftarrow\mathrm{ (index_of_air, obj.index)
    } else {
        ( }\mp@subsup{n}{i}{},\mp@subsup{n}{t}{})\leftarrow\mathrm{ (obj.index, index_of_air)
    }
    if (notTIR ( u, N, n}\mp@subsup{\textrm{n}}{\textrm{i}}{,},\mp@subsup{\textrm{n}}{\textrm{t}}{})\mathrm{ ) {
        T = refractDirection ( u, N, ni, nt )
        I \leftarrow I + obj.k.k * traceRay(scene, P, T)
    }
    return I
}
```


Raytracer Demo

Controlling Tree Depth

- Ideally, we' d spawn child rays at every object intersection forever, getting a "perfect" color for the primary ray.
- In practice, we need heuristics for bounding the depth of the tree (i.e., recursion depth)
- ?

Shading Pseudocode

Shadow attenuation pseudocode

Check to see if a ray makes it to the light source.
function shadowAttenuation(L_{i}, scene, P) \{
d = (L_{i}. position - P).normaLize () ($\left.t, \mathrm{P}_{1}, \mathrm{~N}, \mathrm{obj}\right) \leftarrow$ scene.intersect $(P, \mathrm{~d})$
if P_{1} is before the light source \{ atten $=0$
\} else \{ atten = 1
\}

Light

```
\}
return atten
    return atten
```


Q: What if there are transparent objects along a path to the light source?

Ray-Object Intersection

- Must define different intersection routine for each primitive
- The bottleneck of the ray tracer, so make it fast!
- Most general formulation: find all roots of a function of one variable
- In practice, many optimized intersection tests exist (see Glassner)

Ray-Sphere Intersection

- Given a sphere centered at $P_{c}=[0,0,0]$ with radius r and a ray $P(t)=P_{0}+t \boldsymbol{u}$, find the intersection(s) of $P(t)$ with the sphere.

Object hierarchies and ray intersection

How do we intersect with primitives transformed with affine transformations?

$$
\begin{aligned}
\mathbf{u}^{\prime} & =\left[\begin{array}{l}
u_{x} \\
u_{y} \\
u_{z} \\
0
\end{array}\right] \mathbf{X}^{-1} \\
P^{\prime} & =\left[\begin{array}{c}
P_{x} \\
P_{y} \\
P_{z} \\
1
\end{array}\right] \mathbf{X}^{-1}
\end{aligned}
$$

Numerical Error

- Floating-point roundoff can add up in a ray tracer, and create unwanted artifacts
- Example: intersection point calculated to be ever-so-slightly inside the intersecting object. How does this affect child rays?
- Solutions:
- Perturb child rays
- Use global ray epsilon

Plane Intersection

- We can write the equation of a plane as:

$$
a x+b y+c z+d=0
$$

- The coefficients a, b, and c form a vector that is normal to the plane, $\mathbf{n}=[a b c]^{\mathrm{T}}$. Thus, we can re-write the plane equation as:

$$
\mathbf{n} \cdot(\mathbf{P}+t \mathbf{u})+d=0
$$

- We can solve for the intersection parameter (and thus the point):

Ray-Polymesh Intersection

1. Use bounding sphere for fast failure
2. Test only front-facing polygons
3. Intersect ray with each polygon's supporting plane
4. Use a point-in-polygon test
5. Intersection point is smallest t

Axis-Aligned Cube Intersection

- for each pair of parallel planes, compute t intersection values for both
- Let $t_{\text {near }}$ be the smaller, $t_{\text {far }}$ be the larger
- let $t_{l}=$ largest $t_{\text {near }}, t_{2}=$ smallest $t_{\text {far }}$
- ray intersects cube if $t_{1}<=t_{2}$
- intersection point given by t_{l}

Goodies

- There are some advanced ray tracing feature that selfrespecting ray tracers shouldn' t be caught without:
- Acceleration techniques
- Antialiasing
- CSG
- Distribution ray tracing

Acceleration Techniques

- Problem: ray-object intersection is very expensive
- make intersection tests faster
- do fewer tests

Fast Failure

- We can greatly speed up ray-object intersection by identifying cheap tests that guarantee failure
- Example: if origin of ray is outside sphere and ray points away from sphere, fail immediately.

$t_{c a}<0$, so the ray
points away from the sphere
- Many other fast failure conditions are possible!

Hierarchical Bounding Volumes

- Arrange scene into a tree
- Interior nodes contain primitives with very simple intersection tests (e.g., spheres). Each node's volume contains all objects in subtree
- Leaf nodes contain original geometry
- Like BSP trees, the potential benefits are big but the hierarchy is hard to build

Spatial Subdivision

- Divide up space and record what objects are in each cell
- Trace ray through voxel array

Antialiasing

- So far, we have traced one ray through each pixel in the final image. Is this an adequate description of the contents of the pixel?

- This quantization through inadequate sampling is a form of aliasing. Aliasing is visible as "jaggies" in the ray-traced image.
- We really need to colour the pixel based on the average

Aliasing

Supersampling

- We can approximate the average colour of a pixel's area by firing multiple rays and averaging the result.

Adaptive Sampling

- Uniform supersampling can be wasteful if large parts of the pixel don't change much.
- So we can subdivide regions of the pixel's area only when the image changes in that area:

- How do we decide when to subdivide?

CSG

- CSG (constructive solid geometry) is an incredibly powerful way to create complex scenes from simple primitives.

- CSG is a modeling technique; basically, we only need to modify rayobject intersection.

CSG Implementation

- CSG intersections can be analyzed using "Roth diagrams".
- Maintain description of all intersections of ray with primitive
- Functions to combine Roth diagrams under CSG operations

- An elegant and extremely slow system

Distribution Ray Tracing

- Usually known as "distributed ray tracing", but it has nothing to do with distributed computing
- General idea: instead of firing one ray, fire multiple rays in a jittered grid

- Distributing over different dimensions gives different effects
- Example: what if we distribute rays over pixel area?

Noise

- Noise can be thought of as randomness added to the signal.
-The eye is relatively insensitive to noise.

DRT pseudocode

traceImage () looks basically the same, except now each pixel records the average color of jittered sub-pixel rays.
function traceImage (scene):
for each pixel (i, j) in image do
$\mathrm{I}(\mathrm{i}, \mathrm{j}) \leftarrow 0$
for each sub-pixel id in (i,j) do
$\mathbf{s} \leftarrow \operatorname{pixelToWorld}(\mathrm{jitter}(\mathrm{i}, \mathrm{j}, \mathrm{id}))$
$\mathbf{p} \leftarrow \mathbf{C O P}$
$\mathbf{u} \leftarrow(\mathbf{s}-\mathbf{p})$.normalize()
$\mathrm{I}(\mathrm{i}, \mathrm{j}) \leftarrow \mathrm{I}(\mathrm{i}, \mathrm{j})+\operatorname{traceRay}($ scene, $\mathbf{p}, \mathbf{u}, \mathrm{id})$
end for
$I(\mathrm{i}, \mathrm{j}) \leftarrow \mathrm{I}(\mathrm{i}, \mathrm{j}) /$ numSubPixels
end for
end function
-A typical choice is numSubPixels $=4 * 4$.

DRT pseudocode (cont'd)

-Now consider traceRay(), modified to handle (only) opaque glossy surfaces:
function traceRay(scene, $\mathbf{p}, \mathbf{u}, \mathrm{id}$):
$(\mathbf{q}, \mathbf{N}$, obj $) \leftarrow$ intersect (scene, $\mathbf{p}, \mathbf{u})$
I $\leftarrow \operatorname{shade}(\ldots)$
$\mathbf{R} \leftarrow$ jitteredReflectDirection $(\mathbf{N},-\mathbf{u}, \mathrm{id})$
$\mathrm{I} \leftarrow \mathrm{I}+$ obj. $\mathrm{k}_{\mathrm{r}} * \operatorname{traceRay}$ (scene, $\left.\mathbf{q}, \mathbf{R}, \mathrm{id}\right)$
return I
end function

Pre-sampling glossy reflections

Distributing Reflections

- Distributing rays over reflection direction gives:

Distributing Refractions

- Distributing rays over transmission direction gives:

Distributing Over Light Area

- Distributing over light area gives:

Distributing Over Aperature

- We can fake distribution through a lens by choosing a point on a finite aperature and tracing through the "infocus point".

Distributing Over Time

- We can endow models with velocity vectors and distribute rays over time. this gives:

Chaining the ray id's

- In general, you can trace rays through a scene and keep track of their id's to handle all of these effects:

