
Winter 2013 Help Slides

RAY TRACER

OUTLINE

• What do you have to do for this project?

• Ray Class

• Isect Class

• Requirements

• Tricks

• Artifact Requirement

• Bells and Whistles

WELCOME TO THE RAYTRACER PROJECT

• You have to implement:

• Shading (has multiple parts)

• Reflection and Refraction

• Sphere Intersection

• The ability to intersect triangles

• Complex objects consist of a 3D mesh made up of

many triangles

RAY CLASS

• A 3D ray is a fundamental component of a raytracer.

• ray r (start position, direction, RayType)

• enum RayType{VISIBILITY, REFLECTION, REFRACTION,

SHADOW};

• example: ray r(foo, bar, ray::SHADOW);

• r.at(t), returns the position end point of the ray r

• t: the distance from the start position

r.at(t)

Start

position

VEC.H, MAT.H: MATH FUNCTIONS

• vec.h gives useful tools for 2D, 3D, and 4D vectors:

• Easy Vector Construction

• eg. Vec3d x = Vec3d(0,0,0);

• Basic operators are overrided

• +,-,arithmetic, Vec3d v3 = v1 + v2

• *, multiply by constant, Vec3d v3 = 2*v1;

• *, dotproduct, eg. double dot = v1 * v2;

• ^, crossproduct, eg. Vec3d cross = v1 ^ v2;

• Other useful functionality, read vec.h for complete details

• normalize(), length(), iszero()

ISECT CLASS

• An isect represents the location where a ray
intersects an object.

• Important member variables:

 const SceneObject *obj; // the object that was intersected.

 double t; // the distance along the ray where it occurred.

 Vec3d N; // the normal to the surface where it occurred

 Vec2d uvCoordinates; // texture coordinates on the surface. [1.0,1.0]

 Material *material; // non-NULL if exists a unique material for this intersect.

 const Material &getMaterial() const; // return the material to use

REQUIREMENT: SPHERE INTERSECTION

• Fill in Sphere::intersectLocal in

SceneObjects\Sphere.cpp:

• Return true if ray r intersects the canonical sphere

(sphere centered at the origin with radius 1.0) in

positive time.

• Set the values of isect i:

• i.obj = this

• i.setT(time of intersection)

• i.setN(normal at intersection).

REQUIREMENT: TRIANGLE INTERSECTION

• Fill in TrimeshFace::intersectLocal in

SceneObjects\trimesh.cpp:

• Intersect r with the triangle abc:

 Vec3d &a = parent->vertices[ids [0]];

 Vec3d &b = parent->vertices[ids [1]];

 Vec3d &c = parent->vertices[ids [2]];

• return true if ray r intersects the triangle.

• More Help? See page linked to on project website

• https://www.cs.washington.edu/education/courses/csep557/
handouts/triangle_intersection.pdf

https://www.cs.washington.edu/education/courses/csep557/handouts/triangle_intersection.pdf
https://www.cs.washington.edu/education/courses/csep557/handouts/triangle_intersection.pdf

REQUIREMENT:

BLINN-PHONG SPECULAR-REFLECTION MODEL

• Fill in Material::shade in material.cpp:

• Refer to the RayTracing lecture:

• https://www.cs.washington.edu/education/courses/csep557/handouts/R

ayTracing.pdf

• To sum over the light sources, use an iterator as

described in the comments of the code.

• Need to implement Phong normal interpolation

https://www.cs.washington.edu/education/courses/csep557/handouts/RayTracing.pdf
https://www.cs.washington.edu/education/courses/csep557/handouts/RayTracing.pdf

REQUIREMENT: MULTIPLE LIGHT SOURCES

• Fill in PointLight::distanceAttenuation in light.cpp
(DirectionalLight::distanceAttenuation is done for
you).

• Use the alternative described in the ray-tracing
lecture where

 a = constantTerm

 b = linearTerm

 c = quadraticTerm

• These terms are defined in light.h.

REQUIREMENT: SHADOW ATTENUATION

• Fill in DirectionalLight::shadowAttenuation and
PointLight::shadowAttenuation in light.cpp.

• The ray-tracing lecture shows you where to insert this factor
into the Blinn-Phong equation (A shadow for each light).

• Rather than simply setting the attenuation to 0 if an object
blocks the light, accumulate the product of k_t’s for objects
which block the light (use the prod function from the vec.h).

• Extra Credit: Better shadow handling (caustics, global
illumination, etc.)

REQUIREMENT: REFLECTION

• Modify RayTracer::traceRay in RayTracer.cpp

to implement recursive ray tracing which

takes into account reflected rays.

• See lecture notes.

REQUIREMENT: REFRACTION
• Modify RayTracer::traceRay in RayTracer.cpp

• create refracted rays.

• Remember Snell’s law, be careful about total internal
refraction and the normal direction when the ray is
exiting a material into air

• You can test with simple/cube_transparent.ray

• Unlike reflection, this routine has several cases to consider:

• an incoming ray

• an outgoing ray

• totally internally refracted ray.

nglass=1.5
1



2


2


1


nair=1.0003

TIPS

• Use the sign of the dot product r.getDirection() with i.N to

determine whether you’re entering or exiting an object

• Use RAY_EPSILON (which is defined as 0.00001) to account

for computer precision error when checking for intersections

RAY_EPSILON

THE DEBUGGER TOOL

• shipped with the skeleton code

• http://www.cs.washington.edu/education/courses/csep557/13wi/project

s/trace/extra/debug.html

http://www.cs.washington.edu/education/courses/csep557/13wi/projects/trace/extra/debug.html
http://www.cs.washington.edu/education/courses/csep557/13wi/projects/trace/extra/debug.html

ARTIFACT REQUIREMENT

• Draw a pretty picture!

• One JPEG/PNG image traced with your Ray
Tracer submitted for voting.

• Has to be a (somewhat) original scene

• For each image submitted for voting, a short .txt
description of the scene or special features.

• Examples of each bell/whistle implemented with
an accompanying readme.txt specifying which
image demonstrates which feature (and
where/how).

RAY TRACING YOUR SURFACE OF

REVOLUTION

• Render your surface of revolution to earn one easy extra point

• Using this code snippet to write triangle mesh into a file

• http://www.cs.washington.edu/education/courses/csep557/13

wi/projects/trace/code/write_revolution_rayfile.c

• Using this .ray file as a template

• http://www.cs.washington.edu/education/courses/csep557/13

wi/projects/trace/code/revolution.ray

• It contains default lighting of modeler

• Replace polymesh{} part with your own surface of revolution

• Render your new .ray file in tracer

http://www.cs.washington.edu/education/courses/csep557/13wi/projects/trace/code/write_revolution_rayfile.c
http://www.cs.washington.edu/education/courses/csep557/13wi/projects/trace/code/write_revolution_rayfile.c
http://www.cs.washington.edu/education/courses/csep557/13wi/projects/trace/code/revolution.ray
http://www.cs.washington.edu/education/courses/csep557/13wi/projects/trace/code/revolution.ray

SAMPLE RESULTS

With texture mapping

BELLS AND WHISTLES

• TONS of Awesome Extra Credit!!!

• Antialiasing – A must for nice scenes (to render scenes without
“jaggies”)

• Interpolate trimesh material properties – will make them look nicer

• Environment/Texture/Bump Mapping – Relatively easy ways to
create complex, compelling scenes

• Single Image Random Dot Stereograms

• Depth of field, Soft shadows, Motion blur, Glossy reflection – most
images we’re used to have at least one of these effects

• NOTE: Please add control boxes for substantial ray tracing
modifications so the required extensions are easily gradable

• see sample solution style

• Especially things like anti-aliasing, glossy reflection, soft
shadows, etc.

3D AND 4D FRACTALS

http://www.cs.washington.edu/education/courses/cse457/04sp/projects/trace/vote/omicron-tortman/omicron-tortman2.txt

CONSTRUCTIVE SOLID GEOMETRY

• Allows for complex objects while still just intersecting simple primitives

USING PLY MODELS

• ply is one of the standard formats

for 3D models

http://en.wikipedia.org/wiki/PLY_%28fil

e_format%29

• There are a lot of ply models

available online

• We provide a simple tool that

converts ply models into .ray files.

• You still need to add lighting and

material property.

http://en.wikipedia.org/wiki/PLY_%28file_format%29
http://en.wikipedia.org/wiki/PLY_%28file_format%29

THE DREADED MEMORY LEAK!!!

• A Memory Leak can (and probably will) ruin your night of rendering hours
before the artifact is due.

• depth 10, Anti-Aliasing, HUGE Image  ALL MEMORY CONSUMED BY
ray.exe

• at 1.8 GB on Hardware lab machines

• Cause: not calling free after allocating memory

• Object constructors, vector (array) creation

• It is HIGHLY RECOMMENDED you have no memory leaks

• Solution: call the “delete [object]” on ANYTHING you create that
temporarily

• i.e. 3 byte temporary vectors in rayTrace function

