Surfaces of revolution

Surfaces of Revolution

Brian Curless

CSEP 557
Winter 2013

Idea: rotate a 2 D profile curve around an axis.
 What kinds of shapes can you model this way?

Constructing surfaces of revolution

Given: A set of points C[i] on a curve in the $x y$-plane:

$$
C[i]=\left[\begin{array}{c}
C_{x}[i] \\
C_{y}[i] \\
0 \\
1
\end{array}\right] \quad \text { where } i \in[0, N-1]
$$

Let $R_{y}\left(\theta_{j}\right)$ be a rotation about the y-axis. By angle θ_{j}.
Find: A set of points $S[i, j]$ on the surface formed by rotating $C[i]$ rotated about the y-axis. Assume $j \in[0, M-1]$.

Solution:

Constructing surfaces of revolution

We now have an array of points, $\mathrm{S}[1, j]$ on the surface.

How would we turn this into a mesh of triangles?
How many triangles are generated?

How would we send the triangles to the graphics card?

