
1

Shading
(Part 2)

Brian Curless
CSEP 557

Winter 2013

2

Reading

Required:

 Angel chapter 5.

Optional:

 OpenGL red book, chapter 5.

3

Gouraud vs. Phong interpolation

Now we know how to compute the color at a point
on a surface using the Blinn-Phong lighting model.

Does graphics hardware do this calculation at every
point? Not by default...

Smooth surfaces are often approximated by
polygonal facets, because:

 Graphics hardware generally wants polygons
(esp. triangles).

 Sometimes it easier to write ray-surface
intersection algorithms for polygonal models.

How do we compute the shading for such a surface?

4

Faceted shading

Assume each face has a constant normal:

For a distant viewer and a distant light source and
constant material properties over the surface, how
will the color of each triangle vary?

Result: faceted, not smooth, appearance.

5

Faceted shading (cont’d)

[Williams and Siegel 1990] 6

Gouraud interpolation

To get a smoother result that is easily performed in
hardware, we can do Gouraud interpolation.

Here’s how it works:

1. Compute normals at the vertices.

2. Shade only the vertices.

3. Interpolate the resulting vertex colors.

7

Rasterization with color

Recall that the z-buffer works by interpolating z-
values across a triangle that has been projected into
image space, a process called rasterization.

During rasterization, colors can be smeared across a
triangle as well:

8

Facted shading vs. Gouraud interpolation

[Williams and Siegel 1990]

9

Gouraud interpolation artifacts

Gouraud interpolation has significant limitations.

1. If the polygonal approximation is too coarse, we
can miss specular highlights.

2. We will encounter Mach banding (derivative
discontinuity enhanced by human eye).

This is what graphics hardware does by default.

A substantial improvement is to do…

10

Phong interpolation

To get an even smoother result with fewer artifacts,
we can perform Phong interpolation.

Here’s how it works:

1. Compute normals at the vertices.

2. Interpolate normals and normalize.

3. Shade using the interpolated normals.

11

Gouraud vs. Phong interpolation

[Williams and Siegel 1990] 12

Default pipeline: Gouraud interpolation

→ triangle1 2 3, ,i i iv v v

Default fragment processing:

Vertex
processor

Rasterizer

Fragment
processor

Primitive
assembler

attach cphong to vertex as “varying”
vi ← project v to image

phong shade with , , , , ,d s sc L V N k k n

 determine lighting directionL
determine viewing directionV 
normalize()eN n

Default vertex processing:

phongcolor pc

13

Vertex shader:
attach ne to vertex as “varying”
attach ve to vertex as “varying”
vi ← project v to image

Programmable pipeline:
Phong-interpolated normals!

Vertex
processor

Rasterizer

Fragment
processor

Primitive
assembler

→ triangle1 2 3, ,i i iv v v

Fragment shader:

color shade with , , , , ,p p p
d s sL V N k k n

normalize()p
eN n

 determine lighting directionL 
determine viewing directionV 

14

Surface normals

How can we compute the normal to a surface at a
given point?

15

Tangent vectors and tangent planes

16

Normals on a surface of revolution

17

Summary

You should understand the equation for the Blinn-
Phong lighting model described in the “Iteration
Four” slide:

 What is the physical meaning of each variable?

 How are the terms computed?

 What effect does each term contribute to the
image?

 What does varying the parameters do?

You should also understand the differences between
faceted, Gouraud, and Phong interpolated shading.

And you should understand how to compute the
normal to a surface of revolution.

