Texture Mapping

Brian Curless
CSEP 557
Winter 2013

Reading

Required

- Angel, 7.4-7.10

Recommended

Optional

- Woo, Neider, & Davis, Chapter 9

Implementing texture mapping

A texture lives in it own abstract image coordinates parameterized by (s,t) in the range $[0,1]$, $[0,1]$:

It can be wrapped around many different surfaces:

With a gray checker, we can do the sphere and cylinder mappings directly (as we will see later). For z-buffers, everything gets converted to a triangle mesh with associated (s,t) coordinates.

Note: if the surface moves/deforms, the texture goes with it.
Texture coordinates on a surface of revolution

\[s = \frac{\theta}{2\pi} \]
\[t = \frac{j}{N} \]
\[\text{N samples} \]
\[\text{Sample} \]

Do this: arc length parameterization

Mapping to texture image coords
The texture is usually stored as an image. Thus, we need to convert from abstract texture coordinates:

\[(s, t) \text{ in the range } [0, 1] \times [0, 1] \]

to texture image coordinates:

\[(r_{\text{tex}}, s_{\text{tex}}) \text{ in the range } [0, w_{\text{tex}}] \times [0, h_{\text{tex}}] \]

Q: What do you do when the texture sample you need lands between texture pixels?

Texture resampling

We need to resample the texture:

Thus, we seek to solve for: \(T(x, y) = T(i + \Delta x, j + \Delta y) \)

A common choice is bilinear interpolation:

\[T(i + \Delta x, j) = \frac{1 - \Delta x}{\Delta x} T(i, j) \]
\[\quad + \frac{\Delta x}{\Delta x} T(i + 1, j) \]
\[T(i + \Delta x, j + 1) = \frac{1 - \Delta y}{\Delta y} T(i, j + 1) \]
\[\quad + \frac{\Delta y}{\Delta y} T(i + 1, j + 1) \]
\[T(i + \Delta x, j + \Delta y) = \frac{1 - \Delta y}{\Delta y} T(i + \Delta x, j) \]
\[\quad + \frac{\Delta y}{\Delta y} \left(\frac{1 - \Delta x}{\Delta x} T(i + \Delta x, j + 1) \right) \]
\[= \frac{1 - \Delta y}{\Delta y} T(i, j + 1) \]
\[\quad + \frac{\Delta y}{\Delta y} \left(\frac{1 - \Delta x}{\Delta x} T(i + 1, j + 1) \right) \]
\[\quad + \frac{\Delta x}{\Delta x} \left(\frac{1 - \Delta y}{\Delta y} T(i + \Delta x, j + 1) \right) \]
\[\quad + \frac{\Delta y}{\Delta y} \left(\frac{1 - \Delta x}{\Delta x} T(i + 1, j + 1) \right) \]

Texture mapping and the z-buffer
Texture mapping can also be handled in z-buffer algorithms.

Method:
- Scan conversion is done in screen space, as usual
- Each pixel is colored according to the texture
- Texture coordinates are found by Gouraud-style interpolation

Note: Mapping is more complicated to handle perspective correctly!
Displacement mapping

Textures can be used for more than just color.

In displacement mapping, a texture is used to perturb the surface geometry itself. Here's the idea in 2D:

- These displacements "animate" with the surface
- In 3D, you would of course have (st) parameters instead of just s

Suppose Q is a simple surface, like a cube. Will it take more work to render the modified surface Q?

Bump mapping

In bump mapping, a texture is used to perturb the normal:

- Use the original, simpler geometry, Q(s), for hidden surfaces
- Use the normal from the displacement map for shading:

$$\hat{N} = \text{normal}(Q(s))$$

What artifacts in the images would reveal that bump mapping is a false? No self-occlusions of bump. Silhouettes will not have bumps. Perspective location of bumps will be off.

Displacement vs. bump mapping

Original rendering
Rendering with bump map wrapped around a cylinder

Bump map and rendering by Waven Allinger
Solid textures

Q: What kinds of artifacts might you see from using a marble veneer instead of real marble?

One solution is to use solid textures:

- Use model-space coordinates to index into a 3D texture
- Like "carving" the object from the material

One difficulty of solid texturing is coming up with the textures.

Solid textures (cont'd)

Here's an example for a vase cut from a solid marble texture:

Solid textures (cont'd)

In environment mapping (also known as reflection mapping), a texture is used to model an object's environment:

- Rays are bounced off objects into environment
- Color of the environment used to determine color of the illumination
- Environment mapping works well when there is just a single object - or in conjunction with ray tracing

This can be readily implemented (without interreflection) using a fragment shader, where the texture is stored in a "cube map" instead of a sphere.

With a ray tracer, the concept is easily extended to handle refraction as well as reflection (and interreflection).
Summary

What to take home from this lecture:

1. The meaning of the boldfaced terms.
2. Familiarity with the various kinds of texture mapping, including their strengths and limitations.