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Reading

Required:

+ Angel readings for “Parametric Curves” lecture,
with emphasis on 10.1.2, 10.1 3, 10.1.5, 106.2,
10.7.3, 10.84.

Optional

+ Bartels, Beatty, and Barsky. Anintroduction to
Splines for use in Computer Graphics and
Geometric Modeling, 1987.
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Mathematical surface representations Surfaces of revolution
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As with curves, we'll focus on parametric surfaces.
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General sweep surfaces

The surface of revolution is a spedal case of a
swept surface.

Idea: Trace out surface 5(u,v) by moving a profile
curve C(u) along a trajectory curve T{v).

More specifically:

+ Suppose that C(u) liesin an (x_y ) coordinate
system with origin 0.

+ For every point along Ty}, lay C{u) sothat O,
coincides with T{1).

Orientation

The big issue:

+ How to orient C{u) as it moves along T{v)?

Here are two options:

1. Fixed (or static): Just translate O_along T{v).
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2. Moving. Use the Frenet frame of T{1}.

+ Allows smoothly varying orientation.
¢ Permits surfaces of revolution, for example.

Frenet frames

Motivation: Given a curve T(V), we want to attach a
smoothly varying coordinate system.
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To get a 30 coordinate system, we need 3
independent direction vectors.

Tangent: t{v} =nomalize[T'(v}]
Binormal: b{v) =normalize[T'(v7) x T"{v)]
Normal:  n(v)=h{v) < t(v)

As we move along T(v), the Frenet frame (8, b,n) varies
smoothly.

Frenet swept surfaces

Orient the praofile curve C(u) using the Frenet frame
of the trajectory T{v):

+ Put C{u} in the normal plane .

+ Place O, on T(\).

+  Alignx_for Clu) with b.

+ Align y_for C{u) with -n.

Neormal plane

If T(v} is a circle, you get a surface of revolution
exactly!




Degenerate frames

Let's look back at where we computed the
coordinate frames from curve derivatives:
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Where might these frames be ambiguous or
undetermined?

Variations

Several variations are possible:

+ Scale C{u) as it moves, possibly using length of
Tv) as a scale factor.

+ Morph Clw) into some other curve Clwyasit
moves along 7.
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Tensor product Bézier surfaces Tensor product Bézier surfaces, cont.
Let's walk through the steps:
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Givena grid of control points V, forming a control net,
Control polygen at u=1/2 Curve at S(1/2,¥)

construct a surface 5{u,v) by:

+ treating rows of V (the matrix consisting of the V)
as control points for curves Vo {ul,..., V (u).

+ treating V{u),..., V,{t} as control points for a curve
parameterized by v.

Which control points are interpolated by the surface?




Polynomial form of Bézier surfaces

Fecall that cubic Béder cyrves can be writtenin terms of
the Eernstein polynomials:
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Atensor product Bézier surface can be written as:

S, v):ii v, b, )

=0 j=0

In the previous slide, we constructed curves along u, and

then alongwv. This corresponds to re-grouping the terms
like s
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But, we could have constructed ther along v, thenw
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Tensor product B-spline surfaces

As with spline curves, we can piece together a
sequence of Bézier surfaces to make a spline surface.

If we enforce 2 continuity and local control, we get
B-spline curves:

+ treat rowrs of Bas control points to generate
Bézier control points in u.

+ treat Bézier control points in v as B-spline
control pointsin v.

+ treat B-spline control points in v to generate
Bézier control points in u.

Tensor product B-spline surfaces, cont.
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Which B-spline control points are interpelated by the
surface?

Tensor product B-splines, cont.

Ancther example:




NURBS surfaces

Uniform B-spline surfaces are a spedal case of NURBS
surfaces.

Trimmed NURBS surfaces

Sometimes, we want to have control over which parts
of a NURBS surface get drawn.

For example:
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We can do this by trimming the u-v domain.
+ Define a dosed curve in the t-v domain {a trim
curve)
+ Do not draw the surface points inside of this
curve,

It's really hard to maintain continuity in these regions,
especially while animating.

Summary

What to take home:

*

How to construcdt swept surfaces froma profile
and trajectory curve:

+ with a fixed frame

+ with aFrenet frame

How to construdt tensor product Bézier surfaces

How to construct tensor product B-spline
surfaces




