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Computer Graphics  Instructor: Brian Curless
CSE 557 Winter 2013
 
 
 
 
 
 
 
 
 
 

Homework #2 
 

Shading, Texture Mapping, 
Ray Tracing, and Parametric Curves 

 
 
 
 

 
Assigned: Tuesday, March 5th  

 
Due:   Tuesday, March 19th  

                 at the beginning of class 
 
 
 

 
 
 

Directions: Please provide short written answers to the following questions, using this page as a 
cover sheet.  Be sure to justify your answers when requested.  Feel free to discuss the problems with 
classmates, but please answer the questions on your own. 

 
 

Be sure to write your name on your homework solution.   
You may (optionally) use this page as a cover sheet. 

 
 

 
 
 

Name:_______________________________________________________________ 
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Problem 1.  Shading, displacement mapping, and normal mapping (26 points) 
 

In this problem, an opaque surface will be illuminated by one directional light source and will reflect light 
according to the following Phong shading equation: 
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Note the inclusion of a shadowing term, which takes on a value of 0 or 1.  For simplicity, we will assume a 

monochrome world where I, L, kd, and ks are scalar values. 
 
Suppose a viewer is looking down at an infinite plane (the x-y plane) as illustrated below.  The scene is 
illuminated by a directional light source, also pointing straight down on the scene. 
 

 
 
Answer the following questions below, giving brief justifications of each answer.  Note that lighting and 
viewing directions are from the point of view of the light and viewer, respectively, and need to be negated 
when considering the surface-centric shading equation above.  [In general, you don't need to solve equations 
and precisely plot functions.  It is enough to describe the variables involved, how they relate to each other, and 
how this relationship will determine, e.g., the appearance of the surface.  If you're more comfortable making 
the answers analytical with equations and plots, however, you are welcome to do so.] 

 
a) (2 points) Assume: Perspective viewer at (0,0,1) looking in the (0,0,-1) direction, angular field of view of 

90 degrees, lighting direction of (0,0,-1), kd = 0.5, ks = 0.  Describe the brightness variation over the image 
seen by the viewer.  Justify your answer. 

 
b) (2 points) Assume: Perspective viewer at (0,0,1) looking in the (0,0,-1) direction, , angular field of view of 

90 degrees, lighting direction of (0,0,-1), kd = 0.5, ks = 0.5, ns = 10. Describe the brightness variation over 
the image seen by the viewer.  Justify your answer. 

 

c) (2 points) Assume: Orthographic viewer looking in the (0,0,-1) direction, lighting direction of (0,0,-1), kd = 

0.5, ks = 0.5, ns = 10.  Describe the brightness variation over the image seen by the viewer.  Justify your 
answer. 

 

d) (2 points) Assume: Orthographic viewer looking in the (0,0,-1) direction, kd = 0.5, ks = 0.  The lighting 
direction starts at (-sqrt(2)/2 ,0, -sqrt(2)/2) and then rotates around the z-axis.  Describe the brightness 
variation over time, as seen by the viewer. Justify your answer. 
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Problem 1. (cont’d) 
 

e) (2 points) Assume: Orthographic viewer looking in the (0,0,-1) direction, kd = 0.5, ks = 0.5, ns = 10. The 
lighting direction starts at (-sqrt(2)/2 ,0, -sqrt(2)/2) and then rotates around the z-axis.  Describe the 
brightness variation over time, as seen by the viewer. Justify your answer. 

 
 
Suppose now the infinite plane is replaced with a surface z = cos(x): 
 

 
 
We can think of this as simply adding a displacement d=cos(x) in the normal direction to the x-y plane.   

 

f) (4 points) Assume: Orthographic viewer looking in the (0,0,-1) direction, lighting direction of (0,0,-1), kd = 

0.5, ks = 0.  At what values of x is the surface brightest?  At what values is it dimmest?  Describe the 
appearance of the surface.  Justify your answers. 
 

g) (4 points) Assume: Orthographic viewer looking in the (0,0,-1) direction, lighting direction of (0,0,-1), kd 

=0, ks =0.5, ns =10.  At what values of x is the surface brightest?  Describe the appearance of the surface.  

How does the appearance change as ns increases to 100?  Justify your answers. 
 

 
Suppose now that we simply keep the normals used in (f)-(g) and map them over the plane from the first part 
of the problem.  The geometry will be flat, but the shading will be based on the varying normals.  

 

h) (5 points) Assume: Orthographic viewer looking in the (0,0,-1) direction, kd =0.5, ks =0.  If we define the 
lighting to have direction (-sin, 0, -cos), will the normal mapped rendering look the same as the 
displacement mapped rendering for each of = 0, 10, and 80 degrees?  Justify your answer. 

 

i) (3 points) Assume: Orthographic viewer, lighting direction of (0,0,-1), kd =0.5, ks =0.  As we generally 
move the viewer around – rotating it to various viewing direcitons – will the normal mapped rendering 
look the same as the displacement mapped rendering?  Justify your answer. 
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Problem 2.  Ray intersection with implicit surfaces (23 points) 
 
There are many ways to represent a surface.  One way is to define a function of the form 0),,( zyxf .  Such a 

function is called an implicit surface representation.  For example, the equation 0),,( 2222  rzyxzyxf  
defines a sphere of radius r.  Suppose we wanted to ray trace a “quartic chair,” described by the equation: 
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On the left is a picture of a quartic chair, and on the right is a slice through the y-z plane. 
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For this problem, we will assume a = 0.95, b = 0.8, and k = 5. 

 
In the next problem steps, you will be asked to solve for and/or discuss ray intersections with this primitive.  
Performing the ray intersections will amount to solving for the roots of a polynomial, much as it did for sphere 
intersection.  For your answers, you need to keep a few things in mind: 
 

 You will find as many roots as the order (largest exponent) of the polynomial. 
 
 You may find a mixture of real and complex roots.  When we say complex here, we mean a number that has a 

non-zero imaginary component. 
 
 All complex roots occur in complex conjugate pairs.  If A + iB is a root, then so is A – iB. 
 
 Sometimes a real root will appear more than once, i.e., has multiplicity > 1.  Consider the case of sphere 

intersection, which we solve by computing the roots of a quadratic equation. A ray that intersects the sphere 
will usually have two distinct roots (each has multiplicity = 1) where the ray enters and leaves the sphere.  If 
we were to take such a ray and translate it away from the center of the sphere, those roots get closer and closer 
together, until they merge into one root.  They merge when the ray is tangent to the sphere.  The result is one 
distinct real root with multiplicity = 2. 

 

a) (8 points) Consider the ray dtP  , where  000P  and  0 0 1d .  Solve for all values of t 

where the ray intersects the quartic chair (including negative values of t).  Which value of t represents the 
intersection we care about for ray tracing?  In the process of solving for t, you will be computing the roots of a 
polynomial.  How many distinct real roots do you find?  How many of them have multiplicity > 1?  How many 
complex roots do you find? 
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Problem 2 (cont’d)   
 

b) (15 points) What are all the possible combinations of roots, not counting the one in part (a)?  For each 
combination, describe the 4 roots as in part (a), draw a ray in the y-z plane that gives rise to that combination, 
and place a dot at each intersection point. There are five diagrams below that have not been filled in.  You may 
not need all five; on the other hand, if you can actually think of more distinct cases than spaces provided, then 
we might just give extra credit.  The first one has already been filled in.  (Note: not all conceivable 
combinations can be achieved on this particular implicit surface.  For example, there is no ray that will give a 
root with multiplicity 4.)  Please write on this page and include it with your homework solution. You do not 
need to justify your answers.   

 
 
 

              
 
   # of distinct real roots:  4                   # of distinct real roots:            # of distinct real roots: 
 
   # of real roots w/ multiplicity > 1:  0         # of real roots w/ multiplicity > 1:          # of real roots w/ multiplicity > 1: 
 
   # of complex roots:   0            # of complex roots:            # of complex roots: 
 
 
 
 
 

              
  
   # of distinct real roots:                     # of distinct real roots:            # of distinct real roots: 
 
   # of real roots w/ multiplicity > 1:           # of real roots w/ multiplicity > 1:          # of real roots w/ multiplicity > 1: 
 
   # of complex roots:             # of complex roots:            # of complex roots: 
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Problem 3.  Counting rays (25 points) 
 
In this problem, we study the number of rays traced for using different ray tracing algorithms.  Consider the 
following setup: 
 

m x m pixels 
k x k supersampling 
n geometric primitives 
 light sources 
d bounces (reflections and/or refractions) 

 
For each of the algorithms and scenarios discussed in parts (a)-(e) below, assume the following: 
 

 You are counting rays cast, including primary rays, shadow (light) rays, reflected rays, and (when asked 
for in the problem) refracted rays. 

 No acceleration techniques are used. 
 Every recursively traced (reflected or refracted) ray hits an object, including the primary rays. 
 You will always cast a ray to the light source after intersecting an object, and this does not count as a 

recursive “bounce” (but certainly counts as a cast ray). 
 Each ray cast to a light source counts as a single ray-cast, even when accounting for transparent shadows.  

(The transparent shadow case can be handled by keeping track of all intersections encountered – not just 
the closest – when casting a ray to a light, so this is a reasonable assumption.) 

 
Explain your steps in arriving at answers to the questions below.  For each sub-problem, in some cases, you can 
write out a closed form solution directly, but you must explain your reasoning.  In other cases, you might need 
to write out a summation (with the  symbol for the summation); where possible, convert the summation to a 
closed form answer.   
 
a) (5 points) For Whitted ray tracing, assuming reflection (but no refraction) at every surface, how many rays 

are cast? 
 
b) (5 points) For Whitted ray tracing, assuming reflection and refraction at every surface, how many rays are 

cast? 
 
c) (5 points) Suppose now, in order to get glossy reflections, you recursively cast k x k rays around the 

reflection direction at each bounce.  Assuming glossy reflection (but no refraction) at every surface, how 
many rays are cast? 

 
d) (5 points) In addition, in order to get translucent (blurry) refraction effects, you recursively cast k x k rays 

around the refraction direction at each bounce.  Assuming glossy reflection and translucent refraction at 
every surface, how many rays are cast? 

 
e) (5 points) Suppose now you switch to using distribution ray tracing.  Assuming glossy reflection and 

translucent refraction at every surface, how many rays are cast? 
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Problem 4. Bezier splines (26 points) 
 

Consider a Bezier curve segment defined by three control points V0, V1, and V2.  
 

a) (4 points) What is the polynomial form of this curve, when written out in the form 
Q(u) = An un + An-1 u

n-1 + … + A0, where n is determined by the number of control points.  The coefficients 
A0, …, An should be substituted in the polynomial equation with expressions that depend on the control points 
V0, V1, and V2.  You may start with recursive subdivision or with the summation over Bernstein polynomials 
provided in lecture.  Either way, show your work. 
 

b) (3 points) What is the first derivative of Q(u) evaluated at u = 0 and at u = 1 (i.e., what are Q’(0) and Q’(1))?  
Show your work. 

 
c) (3 points) What is the second derivative of Q(u) evaluated at u = 0 and at u = 1 (i.e., what are Q’’(0) and 

Q’’(1))?  Show your work. 
 
d) (5 points) To create a spline curve, we can stitch together consecutive Bezier curves.  In this problem, we can 

add control points W0, W1, and W2.  What constraints must be placed on W0, W1, and/or W2 so that, when 

combined with V0, V1, and V2, the resulting spline curve is C
1
 continuous at the joint between the Bezier 

segments?  Write out equations for W0, W1, and/or W2 in terms of V0, V1, and/or V2.  (It may be that not all of 
the W control points are constrained, in which case you would have fewer than three equations.)  Show your 
work.  Draw a copy of the control polygon below and place all constrained vertices exactly, and unconstrained 
vertices wherever you like, and then sketch the spline curve. 

 

e) (5 points) Suppose we wanted to make the spline curve C
2
 continuous at the joint between the Bezier 

segments.  Now what constraints must be placed on W0, W1, and W2?  Write out equations for W0, W1, and/or 
W2 in terms of V0, V1, and/or V2.  (It may be that not all of the W control points are constrained, in which case 
you would have fewer than three equations.)  Show your work. Draw a copy of the control polygon below and 
place all constrained vertices exactly, and unconstrained vertices wherever you like, and then sketch the spline 
curve. 

 

f) (3 points) Is it possible to achieve C
3
 continuity with this spline?  Explain. 

 
g) (3 points) Suppose that all the control points are points in three dimensions, so that we can create a spline 

curve in 3-space.  Each Bezier curve segment (i.e., the one corresponding to V0, V1, and V2 and the one 
corresponding to W0, W1, and W2) will lie in a plane, though not necessarily the same plane for both segments.  
Why?  Would this still be the case if the Bezier curve segments were instead defined by four control points 
each?  Explain. 

 
 
 

V0 

V1 V2 


