Texture Mapping
Reading

Required

- Angel, 8.6, 8.7, 8.9, 8.10, 9.13-9.13.2

Recommended

Optional

- Woo, Neider, & Davis, Chapter 9
Texture mapping

Texture mapping allows you to take a simple polygon and give it the appearance of something much more complex.

- Due to Ed Catmull, PhD thesis, 1974
- Refined by Blinn & Newell, 1976

Texture mapping ensures that “all the right things” happen as a textured polygon is transformed and rendered.
Implementing texture mapping

A texture lives in its own abstract image coordinates parameterized by \((u, v)\) in the range \([0..1], [0..1]\):

It can be wrapped around many different surfaces:

In graphics hardware, texture coordinates of triangle vertices are interpolated during rasterization.

Note: if the surface moves/deforms, the texture goes with it.
Mapping to texture image coords

The texture is usually stored as an image. Thus, we need to convert from abstract texture coordinate:

$$ (u, v) \text{ in the range } ([0..1], [0..1]) $$

to texture image coordinates:

$$ (u_{\text{tex}}, v_{\text{tex}}) \text{ in the range } ([0.. \ w_{\text{tex}}], [0.. h_{\text{tex}}]) $$

Q: What do you do when the texture sample you need lands between texture pixels?
Texture resampling

We need to resample the texture:

A common choice is **bilinear interpolation**:

\[T(a, b) = T(i + \Delta_x, j + \Delta_y) \]

\[= \frac{(1-\Delta_y)}{\Delta y} T(i + \Delta_x, j) + \frac{\Delta y}{\Delta y} T(i + \Delta_x, j + 1) \]

\[\rightarrow T(i + \Delta_x, j) = \frac{(1-\Delta_x)}{\Delta x} T[i, j] + \frac{\Delta x}{\Delta x} T[i+1, j] \]

\[\rightarrow T(i + \Delta_x, j + 1) = \frac{(1-\Delta_x)}{\Delta x} T[i, j + 1] + \frac{\Delta x}{\Delta x} T[i+1, j + 1] \]

\[T(a, b) = \frac{(1-\Delta_y)}{\Delta y} \frac{(1-\Delta_x)}{\Delta x} T[i, j] + \frac{(1-\Delta_y)}{\Delta y} \frac{\Delta x}{\Delta x} T[i+1, j] + \frac{\Delta y}{\Delta y} \frac{(1-\Delta_x)}{\Delta x} T[i, j + 1] + \frac{\Delta y}{\Delta y} \frac{\Delta x}{\Delta x} T[i+1, j + 1] \]
Displacement mapping

Textures can be used for more than just color.

In **displacement mapping**, a texture is used to perturb the surface geometry itself. Here's the idea in 2D:

- These displacements “animate” with the surface
- In 3D, you would of course have (u,v) parameters instead of just u.

Q: Do you have to do hidden surface calculations on \tilde{Q}?
Bump mapping

In **bump mapping**, a texture is used to perturb the normal:

- Use the original, simpler geometry, \(Q(u) \), for hidden surfaces
- Use the normal from the displacement map for shading:

\[
\tilde{N} = \text{normal}[\tilde{Q}(u)]
\]

Q: What artifacts in the images would reveal that bump mapping is a fake?

- No self-occlusions
- Silhouettes wrong
- Cast shadows
Displacement vs. bump mapping

Input texture

Rendered as displacement map over a rectangular surface
Displacement vs. bump mapping (cont'd)

Original rendering Rendering with bump map wrapped around a cylinder

Bump map and rendering by Wyvern Aldinger
Solid textures

Q: What kinds of artifacts might you see from using a marble veneer instead of real marble?

One solution is to use solid textures:

- Use model-space coordinates to index into a 3D texture
- Like "carving" the object from the material

One difficulty of solid texturing is coming up with the textures.
Solid textures (cont'd)

Here's an example for a vase cut from a solid marble texture:

Solid marble texture by Ken Perlin, (Foley, IV-21)
Solid textures (cont'd)

\[\text{in}(x,y,z) = \text{stripes}(x) \]

\[\text{shift}(x,y,z) = K \cdot \text{noise}(x,y,z) \]

\[\text{out}(x,y,z) = \text{stripes}(x + \text{shift}(x,y,z)) \]

Increasing K
Environment mapping

In **environment mapping** (also known as **reflection mapping**), a texture is used to model an object's environment:

- Rays are bounced off objects into environment
- Color of the environment used to determine color of the illumination
- Really, a simplified form of ray tracing
- Environment mapping works well when there is just a single object – or in conjunction with ray tracing

Under simplifying assumptions, environment mapping can be implemented in hardware.

With a ray tracer, the concept is easily extended to handle refraction as well as reflection.
Summary

What to take home from this lecture:

1. The meaning of the boldfaced terms.

2. Familiarity with the various kinds of texture mapping, including their strengths and limitations.