Raytracer project

Requirements:

e Sphere intersection

e Phong model

e Light sources/shadows
e Reflection

e Refraction

Requirements: Sphere intersections

e You can assume that the sphere is the unit sphere centered at the origin; we take
care of all the other transforms.

e All the excitement happens in Sphere: :intersectLocal, which takes in a ray
and returns true if an intersection is found. If an intersection exists, information
about it (including the ¢ value and the normal vector) are returned through the
isect object.

e Don’t forget about RAY_EPSILON!

Requirements: Phong shading

e Include all the terms in the Phong shading equation,
I=ko+kalo+ Y fuen(d)]y [ka(N - Ly + ky(V - R)?]
J

e Everything you need to modify is in Material: :shade. Remember to iterate
over all lights! Look at Material.h for what the different material coefficients
represent.

e You'll need to multiply the material’s specular exponent by 128 in order to get
the correct results.

Requirements: opaque shadows and lighting

NN V4

//I\

e Lighting and shadows are handled in 1ight.cpp and material.cpp.
e Point lights should have intensity fall-off using the equation

1
aend -
atten!) a + bd + cd?

e Tracing shadow rays back to the light. Remember that point lights have a
position in space!

Requirements: reflection

e You'll be working in RayTracer.cpp for both reflection and refraction.

e Make sure you remember to multiply the color returned by recursively tracing
reflection rays by the surface’s reflective coefficient.

Requirements: refraction

e Use the direction of the surface normal to determine whether the ray is entering
or leaving the object.

e Be sure to consult the errata for the Watt book!

Vector math tips

Use the prod function for pointwise products, that is

ay bl ay b1
prod | |as| |bo = | asby
as bg CL3b3

