
Raytracer project

Requirements:

• Sphere intersection

• Phong model

• Light sources/shadows

• Reflection

• Refraction

1



Requirements: Sphere intersections

ray
su

rfa
ce

 n
or

m
al

• You can assume that the sphere is the unit sphere centered at the origin; we take

care of all the other transforms.

• All the excitement happens in Sphere::intersectLocal, which takes in a ray

and returns true if an intersection is found. If an intersection exists, information

about it (including the t value and the normal vector) are returned through the

isect object.

• Don’t forget about RAY_EPSILON!

2



Requirements: Phong shading

• Include all the terms in the Phong shading equation,

I = ka + kaIa +
∑
j

fatten(dj)Ilj [kd(N · L+ + ks(V ·R)ns+ ]

• Everything you need to modify is in Material::shade. Remember to iterate

over all lights! Look at Material.h for what the different material coefficients

represent.

• You’ll need to multiply the material’s specular exponent by 128 in order to get

the correct results.

3



Requirements: opaque shadows and lighting

• Lighting and shadows are handled in light.cpp and material.cpp.

• Point lights should have intensity fall-off using the equation

fatten(d) =
1

a + bd + cd2

• Tracing shadow rays back to the light. Remember that point lights have a

position in space!

4



Requirements: reflection

• You’ll be working in RayTracer.cpp for both reflection and refraction.

• Make sure you remember to multiply the color returned by recursively tracing

reflection rays by the surface’s reflective coefficient.

5



Requirements: refraction

• Use the direction of the surface normal to determine whether the ray is entering

or leaving the object.

• Be sure to consult the errata for the Watt book!

6



Vector math tips

Use the prod function for pointwise products, that is

prod

a1

a2

a3

b1

b2

b3

 =

a1b1

a2b2

a3b3



7


