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Today
• MapReduce 

• is it a major step backwards? 

• beyond MapReduce: Dryad 

• Other data analytics systems: 

• Machine learning: GraphLab 

• Faster queries: Spark



MapReduce Model
• input is stored as a set of key-value pairs (k,v) 

• programmer writes map function  
  map(k,v) -> list of (k2, v2) pairs  
  gets run on every input element 

• hidden shuffle phase:  
group all (k2, v2) pairs with the same key 

• programmer writes reduce function  
    reduce(k2, set of values) -> output pairs (k3,v3)



MapReduce implementation



MapReduce article
• Mike Stonebraker  (Berkeley -> MIT) 

• built one of first relational DBs (Ingres) & 
many subsequent systems:  
Postgres, Mariposa, Aurora, C-Store, H-Store, .. 

• many startups: Illustra, Streambase, Vertica, VoltDB 

• 2014 Turing award 

• David DeWitt (Wisconsin -> Microsoft) 

• parallel databases, database performance



Discussion

• Is MapReduce a major step backwards? 

• Are database researchers incredibly bitter? 

• Are systems researchers ignorant of 50 years of 
database work?



Systems vs Databases
• two generally separate streams of research 

• distributed systems are relevant to both 

• much distributed systems research follows 
from OS community, including MapReduce 

• (I have worked on both)



The database tradition
• Top-down design 

• Most important: define the right semantics first 

• e.g., relational model and abstract language (SQL) 

• e.g., concurrency properties (serializability) 

• …then figure out how to implement them 

• usually in a general purpose system 

• making them fast comes later 

• Provide general interfaces for users



The OS tradition
• Bottom-up design 

• Most important: engineering elegance 

• simple, narrow interfaces 

• clean, efficient implementations 

• performance and scalability first-class concerns 

• Figuring out the semantics is secondary 

• Provide tools for programmers to build systems



• Where does MapReduce fit into this? 

• Does this help explain the critique?



MapReduce Critiques
• Not as good as a database interface 

• no schema; uses imperative language instead of 
declarative 

• Poor implementation: no indexes, can’t scale 

• Not novel 

• Missing DB features & incompatible with existing DB tools 

• loading, indexing, transactions, constraints, etc



• Is MapReduce even a database? 

• Is this an apples-to-oranges comparison? 

• Should Google have built a scalable database 
instead of MR?



MapReduce vs DBs

• Maybe not that far off? 

• Languages atop MapReduce for simplified  
(either declarative or imperative) queries: 

• Sawzall (Google); Pig (Yahoo), Hive (Facebook) 

• often involve adding schema to data



(My) lessons from MapReduce

• Specializing the system to focus on a particular 
type of processing makes the problem tractable 

• Map/reduce functional model supports writing 
easier parallel code  
(though so does the relational DB model!) 

• Fault-tolerance is easy when computations are 
idempotent and stateless: just reexecute!



Non-lesson
• The map and reduce phases are not fundamental 

• Don’t need to follow the pattern  
input -> map -> shuffle -> reduce -> output 

• Some computations can’t be expressed in this 
model 

• but could generalize MapReduce to handle them



Example
• 1. score webpages by words they contain 

2. score webpages by # of incoming links 
3. combine the two scores  
4. sort by combined score 

• would require multiple MR runs, probably 1 per step 

• step 3 has 2 inputs; MR supports only one 

• MR requires writing output & intermed results to disk



Dryad
• MSR system that generalizes 

MapReduce 

• Observation: MapReduce 
computation can be  
visualized as a DAG 

• vertexes are inputs, outputs, 
or computation workers 

• edges are communication 
channels



Dryad
• Arbitrary programmer-

specified graphs 

• inputs, outputs =  
set of typed items 

• edges are channels  
(TCP, pipe, temp file) 

• intermediate processing 
vertexes can have several 
inputs and outputs



Dryad implementation
• Similar to MapReduce 

• vertices are stateless, deterministic computations 

• no cycles means that after a failure, can just 
rerun a vertex’s computation 

• if its inputs are lots, rerun upstream vertices 
(transitively)



Programming Dryad

• Don’t want programmers to directly write graphs 

• also built DryadLINQ, an API that integrates with 
programming languages (e.g., C#)



DryadLINQ example
• Word frequency: count occurrences of each word, 

return top 3
public static IQueryable<Pair> Histogram(input, k){
  var words = input.SelectMany(x => x.Split(' ')); 
  var groups = words.GroupBy(x => x); 
  var counts = groups.Select(x => new Pair(x.Key, x.Count())); 
  var ordered = counts.OrderByDescending(x => x.Count); 
  var top = ordered.Take(k); 
  return top;
}



DryadLINQ example



Machine Learning: 
GraphLab

• ML and data mining are hugely popular areas now! 

• clustering, modeling, classification, prediction 

• Need to run these algorithms on huge data sets 

• Means that we need to run them on distributed 
systems 

• Need new distributed systems abstractions



Example: PageRank

• Assign a score to each webpage 

• Update the score:  
 
 

• Repeat until converged



What’s the right abstraction?
• Message-passing & threads? (MPI/pthreads) 

• leaves all the hard work to the programmer!  
fault tolerance, load balancing, locking, races 

• MapReduce? 

• fails when there are computational dependencies in data (Dryad 
can help) 

• fails when there is an iterative structure 

• rerun until it converges? programmer has to deal with this! 

• GraphLab: computational model for graphs



Why graphs?
• most ML/DM applications are amenable to graph 

structuring 

• ML/DM is often about dependencies between data 

• represent each data item as a vertex 

• represent each dependency between two pieces 
of data as an edge



Graph representation
• graph = vertices + edges, each with data 

• graph structure is static, data is mutable 

• update function for a vertex  
f(v, Sv) -> (Sv, T) 

• Sv is the scope of vertex v:  
the data stored in v and all adjacent vertexes + edges 

• vertex function can update any data in scope 

• T: output a new list of vertices that need to be rerun



Synchrony
• GraphLab model allows asynchronous computation 

• synchronous = all parameters are updated simultaneously using values 
from previous time step 

• requires a barrier before next round; straggler problem 

• iterated MapReduce works like this 

• asynchronous = continuously update parameters, always using most 
recent input values 

• adapts to differences in execution speed 

• supports dynamic computation:  
in PageRank, some nodes converge quickly; stop rerunning them!



Graph processing correctness
• Is asynchronous processing OK? 

• Depends on the algorithm 

• some require total synchrony 

• usually ok to compute asynchronously as long as there’s 
consistency 

• sometimes it’s even ok to run without locks at all 

• Serializability: same results as though we picked a sequential 
order of vertexes and each ran their update function in 
sequence



GraphLab implementation

• 3 versions 

• single machine, multicore shared memory 

• Distributed GraphLab (this paper) 

• PowerGraph (distributed, optimized for power-
law graphs)



Single-machine GraphLab
• Maintain queue of vertices to be updated,  

run update functions on these in parallel 

• Ensuring serializability involves locking the  
scope of a vertex update function 

• Weaker versions for optimizations: reduced scope



Making GraphLab distributed
• Partition the graph across machines w/ edge cut 

• partition boundary is set of edges => 
each vertex is on exactly one machine 

• except we need “ghost vertices” to compute:  
cached copies of vertices stored on neighbors 

• Consistency problem:  
keep the ghost vertices up to date 

• Partitioning controls load balancing 

• want same number of vertices per partition (=> computation) 

• want same number of ghosts (=> network load for cache updates)



Locking in GraphLab
• Same general idea as single-machine but now distributed! 

• Enforcing consistency model requires acquiring locks on vertex 
scope 

• If need to acquire lock on edge or vertex on boundary, need to 
do it on all partitions (ghosts) involved 

• What about deadlock? 

• usual DB answer is to detect deadlocks and roll back 

• GraphLab uses a canonical ordering of lock acquisition 
instead



Fault-tolerance

• MapReduce answer isn’t good enough:  
workers have state so we can’t just reassign their 
task 

• Take periodic, globally consistent snapshots 

• Chandy-Lamport snapshot algorithm!



Challenge: power-law graphs
• Many graphs are not uniform! 

• Power-law: a few popular vertices with many edges,  
many unpopular vertices with a few edges 

• Problem for GraphLab: edge cuts are hugely imbalanced



PowerGraph: later version
• First improvement:  

partition by cutting vertices instead of edges 

• each edge is in one partition, vertices can be in multiple 

• high-degree vertices are split over many partitions 

• Second: parallelize update function (new API) 

• each server computes its “local” change to a split vertex, 
e.g., PageRank computation from other pages on that server 
then accumulate and apply the partial updates 

• Third: better algorithm for fair partitioning



Spark

• Framework for large-scale distributed computation 

• Designed for to support interactive applications  
not just batch processing 

• Relatively recent (2012) but used widely:  
IBM, Yahoo, Baidu, Groupon, …  
Apache project, 1000+ contributors



Spark motivation
• Want a general framework for distributed computations 

• MapReduce isn’t enough 

• too inflexible, can’t handle iteration, etc 

• can’t do interactive queries, only batch processing 

• Argument: MR can’t handle complex interactive 
queries because the only way to share data across 
jobs is to store it in stable storage



Spark challenge
• Store intermediate data in a way that’s both fault-

tolerant and efficient 

• want it to be in-memory because that’s 10-100x 
faster than writing to disk / network FS 

• enable reusing intermediate results between 
different computations 

• but in-memory data can be lost on failure!



Abstraction: RDDs
• immutable collection of records, partitioned 

• only two ways to create a RDD 

• access dataset on stable storage 

• transformation of existing RDD (map, join, etc) 

• Creation is lazy, just specifies a plan for computing 

• Actions, e.g., storing result, cause RDD to be 
materialized



Example: PageRank



PageRank RDDs



RDDs
• RDDs are represented as 

• list of parent RDDs

• function to compute result from them

• partitioning scheme 

• computation placement hint 

• list of partitions for the RDD



Failure recovery in Spark
• Spark only makes one in-memory copy of a newly computed RDD 

partition! (by default) 

• if it fails, data is gone! 

• Scheduler detects machine failure and schedules recomputation 

• will need to recursively compute all partitions it depends on, until one 
of them is found 

• Checkpointing is optional 

• user can ask Spark scheduler to make some RDD persistent 

• expensive, but means that failure won’t have to recompute everything


