Data Analytics

Dan Ports, CSEP 552
Today

• MapReduce
 • is it a major step backwards?
 • beyond MapReduce: Dryad

• Other data analytics systems:
 • Machine learning: GraphLab
 • Faster queries: Spark
MapReduce Model

- input is stored as a set of key-value pairs \((k,v)\)

- programmer writes map function
 \(\text{map}(k,v) \rightarrow \text{list of }(k2, v2)\) pairs
 gets run on every input element

- hidden shuffle phase:
 group all \((k2, v2)\) pairs with the same key

- programmer writes reduce function
 \(\text{reduce}(k2, \text{set of values}) \rightarrow \text{output pairs }(k3,v3)\)
MapReduce implementation
MapReduce article

- Mike Stonebraker (Berkeley -> MIT)
 - built one of first relational DBs (Ingres) & many subsequent systems: Postgres, Mariposa, Aurora, C-Store, H-Store, ..
 - many startups: Illustra, Streambase, Vertica, VoltDB
 - 2014 Turing award
- David DeWitt (Wisconsin -> Microsoft)
 - parallel databases, database performance
Discussion

• Is MapReduce a major step backwards?
• Are database researchers incredibly bitter?
• Are systems researchers ignorant of 50 years of database work?
Systems vs Databases

- two generally separate streams of research
- distributed systems are relevant to both
 - much distributed systems research follows from OS community, including MapReduce
- (I have worked on both)
The database tradition

• Top-down design

• Most important: define the right semantics first
 • e.g., relational model and abstract language (SQL)
 • e.g., concurrency properties (serializability)

• …then figure out how to implement them
 • usually in a general purpose system
 • making them fast comes later

• Provide general interfaces for users
The OS tradition

- Bottom-up design
- Most important: engineering elegance
 - simple, narrow interfaces
 - clean, efficient implementations
 - performance and scalability first-class concerns
- Figuring out the semantics is secondary
- Provide tools for *programmers* to build systems
• Where does MapReduce fit into this?

• Does this help explain the critique?
MapReduce Critiques

• Not as good as a database interface
 • no schema; uses imperative language instead of declarative

• Poor implementation: no indexes, can’t scale

• Not novel

• Missing DB features & incompatible with existing DB tools
 • loading, indexing, transactions, constraints, etc
• Is MapReduce even a database?

• Is this an apples-to-oranges comparison?

• Should Google have built a scalable database instead of MR?
MapReduce vs DBs

• Maybe not that far off?

• Languages atop MapReduce for simplified (either declarative or imperative) queries:
 • Sawzall (Google); Pig (Yahoo), Hive (Facebook)
 • often involve adding schema to data
(My) lessons from MapReduce

• Specializing the system to focus on a particular type of processing makes the problem tractable

• Map/reduce functional model supports writing easier parallel code (though so does the relational DB model!)

• Fault-tolerance is easy when computations are idempotent and stateless: just reexecute!
Non-lesson

• The map and reduce phases are not fundamental

• Don’t need to follow the pattern
 input -> map -> shuffle -> reduce -> output

• Some computations can’t be expressed in this model

• but could generalize MapReduce to handle them
Example

• 1. score webpages by words they contain
 2. score webpages by # of incoming links
 3. combine the two scores
 4. sort by combined score

• would require multiple MR runs, probably 1 per step

• step 3 has 2 inputs; MR supports only one

• MR requires writing output & intermed results to disk
Dryad

- MSR system that generalizes MapReduce

- Observation: MapReduce computation can be visualized as a DAG
 - vertexes are inputs, outputs, or computation workers
 - edges are communication channels
Dryad

- Arbitrary programmer-specified graphs
- inputs, outputs = set of typed items
- edges are channels (TCP, pipe, temp file)
- intermediate processing vertexes can have several inputs and outputs
Dryad implementation

• Similar to MapReduce
 • vertices are stateless, deterministic computations
 • no cycles means that after a failure, can just rerun a vertex’s computation
 • if its inputs are lots, rerun upstream vertices (transitively)
Programming Dryad

- Don’t want programmers to directly write graphs

- also built DryadLINQ, an API that integrates with programming languages (e.g., C#)
DryadLINQ example

- Word frequency: count occurrences of each word, return top 3

```csharp
public static IQueryable<Pair> Histogram(input, k) {
    var words = input.SelectMany(x => x.Split(' '));
    var groups = words.GroupBy(x => x);
    var counts = groups.Select(x => new Pair(x.Key, x.Count()));
    var ordered = counts.OrderByDescending(x => x.Count);
    var top = ordered.Take(k);
    return top;
}
```

<table>
<thead>
<tr>
<th>Table</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>table</code></td>
<td>"A line of words of wisdom"</td>
</tr>
<tr>
<td><code>SelectMany</code></td>
<td>["A", "line", "of", "words", "of", "wisdom"]</td>
</tr>
<tr>
<td><code>GroupBy</code></td>
<td>["A", "line", "of", "words", "of", "wisdom"]</td>
</tr>
<tr>
<td><code>Select</code></td>
<td>[{"A", 1}, {"line", 1}, {"of", 2}, {"words", 1}, {"wisdom", 1}]</td>
</tr>
<tr>
<td><code>OrderByDescending</code></td>
<td>[{"of", 2}, {"A", 1}, {"line", 1}, {"words", 1}, {"wisdom", 1}]</td>
</tr>
<tr>
<td><code>Take(3)</code></td>
<td>[{"of", 2}, {"A", 1}, {"line", 1}]</td>
</tr>
</tbody>
</table>
DryadLINQ example
Machine Learning: GraphLab

- ML and data mining are hugely popular areas now!
 - clustering, modeling, classification, prediction
- Need to run these algorithms on huge data sets
- Means that we need to run them on distributed systems
- Need new distributed systems abstractions
Example: PageRank

- Assign a score to each webpage
- Update the score:

\[
\text{PageRank of site} = \sum \frac{\text{PageRank of inbound link}}{\text{Number of links on that page}}
\]
- Repeat until converged
What’s the right abstraction?

- Message-passing & threads? (MPI/pthreads)
 - leaves all the hard work to the programmer!
 - fault tolerance, load balancing, locking, races

- MapReduce?
 - fails when there are computational dependencies in data (Dryad can help)
 - fails when there is an iterative structure
 - rerun until it converges? programmer has to deal with this!

- GraphLab: computational model for graphs
Why graphs?

• most ML/DM applications are amenable to graph structuring

• ML/DM is often about dependencies between data
 • represent each data item as a vertex
 • represent each dependency between two pieces of data as an edge
Graph representation

• graph = vertices + edges, each with data

• graph structure is static, data is mutable

• update function for a vertex
 f(v, S_v) -> (S_v, T)

 • S_v is the scope of vertex v:
 the data stored in v and all adjacent vertexes + edges

 • vertex function can update any data in scope

 • T: output a new list of vertices that need to be rerun
Synchrony

• GraphLab model allows asynchronous computation

• synchronous = all parameters are updated simultaneously using values from previous time step

 • requires a barrier before next round; straggler problem

 • iterated MapReduce works like this

• asynchronous = continuously update parameters, always using most recent input values

 • adapts to differences in execution speed

 • supports dynamic computation:
 in PageRank, some nodes converge quickly; stop rerunning them!
Graph processing correctness

• Is asynchronous processing OK?

• Depends on the algorithm

 • some require total synchrony

 • usually ok to compute asynchronously as long as there’s consistency

 • sometimes it’s even ok to run without locks at all

• Serializability: same results as though we picked a sequential order of vertexes and each ran their update function in sequence
GraphLab implementation

• 3 versions
 • single machine, multicore shared memory
 • Distributed GraphLab (this paper)
 • PowerGraph (distributed, optimized for power-law graphs)
Single-machine GraphLab

- Maintain queue of vertices to be updated, run update functions on these in parallel
- Ensuring serializability involves locking the scope of a vertex update function
- Weaker versions for optimizations: reduced scope
Making GraphLab distributed

• Partition the graph across machines w/ edge cut
 • partition boundary is set of edges =>
 each vertex is on exactly one machine
 • except we need “ghost vertices” to compute:
 cached copies of vertices stored on neighbors

• Consistency problem:
 keep the ghost vertices up to date

• Partitioning controls load balancing
 • want same number of vertices per partition (=> computation)
 • want same number of ghosts (=> network load for cache updates)
Locking in GraphLab

• Same general idea as single-machine but now distributed!

• Enforcing consistency model requires acquiring locks on vertex scope

• If need to acquire lock on edge or vertex on boundary, need to do it on all partitions (ghosts) involved

• What about deadlock?
 • usual DB answer is to detect deadlocks and roll back
 • GraphLab uses a canonical ordering of lock acquisition instead
Fault-tolerance

• MapReduce answer isn’t good enough: workers have state so we can’t just reassign their task

• Take periodic, globally consistent snapshots
 • Chandy-Lamport snapshot algorithm!
Challenge: power-law graphs

• Many graphs are not uniform!

• Power-law: a few popular vertices with many edges, many unpopular vertices with a few edges

• Problem for GraphLab: edge cuts are hugely imbalanced
PowerGraph: later version

• First improvement: partition by cutting *vertices* instead of edges
 • each edge is in one partition, vertices can be in multiple
 • high-degree vertices are split over many partitions

• Second: parallelize update function (new API)
 • each server computes its “local” change to a split vertex, e.g., PageRank computation from other pages on that server then accumulate and apply the partial updates

• Third: better algorithm for fair partitioning
Spark

- Framework for large-scale distributed computation
- Designed for to support interactive applications not just batch processing
- Relatively recent (2012) but used widely: IBM, Yahoo, Baidu, Groupon, …
 Apache project, 1000+ contributors
Spark motivation

• Want a general framework for distributed computations

• MapReduce isn’t enough
 • too inflexible, can’t handle iteration, etc
 • can’t do interactive queries, only batch processing

• Argument: MR can’t handle complex interactive queries because the only way to share data across jobs is to store it in stable storage
Spark challenge

• Store intermediate data in a way that’s both fault-tolerant and efficient
 • want it to be in-memory because that’s 10-100x faster than writing to disk / network FS
 • enable reusing intermediate results between different computations
 • but in-memory data can be lost on failure!
Abstraction: RDDs

- immutable collection of records, partitioned
- only two ways to create a RDD
 - access dataset on stable storage
 - transformation of existing RDD (map, join, etc)
- Creation is lazy, just specifies a plan for computing
- Actions, e.g., storing result, cause RDD to be materialized
Example: PageRank

1. Start each page with a rank of 1
2. On each iteration, update each page’s rank to
 \[\Sigma_{i \in \text{neighbors}} \frac{\text{rank}_i}{|\text{neighbors}_i|} \]

```scala
links = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
  ranks = links.join(ranks).flatMap {
    (url, (links, rank)) =>
      links.map(dest => (dest, rank/links.size))
  }.reduceByKey(_ + _)
}
```
PageRank RDDs

\[
\begin{align*}
\text{links} &= \text{// RDD of (url, neighbors) pairs} \\
\text{ranks} &= \text{// RDD of (url, rank) pairs} \\
\text{for } (i \leftarrow 1 \text{ to ITERATIONS}) \{ \\
\quad &\text{ranks} = \text{links} \cdot \text{join} \left(\text{ranks} \right) \cdot \text{flatMap} \{ \\
\quad &\quad \text{(url, (links, rank)) =>} \\
\quad &\quad \text{links} \cdot \text{map}(\text{dest} \Rightarrow (\text{dest}, \text{rank} / \text{links.size})) \\
\quad &\} \cdot \text{reduceByKey}(_ + _) \\
\}\}
\end{align*}
\]
RDDs

- RDDs are represented as
 - list of parent RDDs
 - function to compute result from them
 - partitioning scheme
 - computation placement hint
 - list of partitions for the RDD
Failure recovery in Spark

• Spark only makes one in-memory copy of a newly computed RDD partition! (by default)
 • if it fails, data is gone!

• Scheduler detects machine failure and schedules recomputation
 • will need to recursively compute all partitions it depends on, until one of them is found

• Checkpointing is optional
 • user can ask Spark scheduler to make some RDD persistent
 • expensive, but means that failure won’t have to recompute everything